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Preface

Advances in radar technology and application demands have promoted the fast development of
radar signal processing and data processing technology. In recent years, with the continual emer-
gence of new types of radar, significant progress has been made in related hardware, algorithms, and
computer performance, and the signal processing capacity has been constantly improved, which
demands the application of new algorithms in related radar data processing equipment to implement
the simultaneous processing of multiple targets in the cluttered environments and allow the data
association and tracking of multiple targets and information fusion of multiple radars in complex
environments. That is why we decided to publish Radar Data Processing with Applications.
This book begins with the basic linear and nonlinear filtering approaches, and introduces the

development and latest research findings on radar data processing technology thoroughly and
systematically. Its main contents are as follows.

1. The initial discussion deals with the static and dynamic parameter estimation for linear and non-
linear discrete-time systems, providing such classical filtering algorithms as the Kalman filter,
the extended Kalman filter, the unscented Kalman filter, and the particle filter.

2. Measurement preprocessing techniques are discussed, including time and space registration,
radar error correction, and data compression.

3. Such practical issues as multi-target track initiation, data association, and tracking are intro-
duced, of which multi-target data association is divided into the maximum likelihood and
Bayesian approach. Maneuvering target tracking, group target tracking, and track termination
are also discussed.

4. The final analysis is the practical application of radar data processing, including passive radar
data processing, pulse Doppler radar data processing, phased array radar data processing, radar
network error registration, radar network data processing, radar data processing performance
evaluation, and simulation techniques.
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1
Introduction

1.1 Aim and Significance of Radar Data Processing

Generally, a modern radar system consists of two important components: a signal processor and a
data processor. The signal processor is used for target detection (i.e., the suppression of undesirable
signals produced by ground or sea surface clutter, meteorological factors, radio frequency interfer-
ence, noise sources, and man-made interference) [1–3]. When the video output signal, after signal
processing and constant false alarm rate (CFAR) detection fusion, exceeds a certain detection
threshold, it can be determined that a target has been discovered. Then, the discovered target signal
will be transmitted to the data recording device, where the space position, amplitude value, radial
velocity, and other characteristic parameters of the target are recorded, usually by computers. The
measurement output from the data recording device needs to be processed in the data processor,
which associates, tracks, filters, smooths, and predicts the obtained measurement data – such as
the target position (radial distance, azimuth, and pitch angle) and the motion parameters [4–6] –
for the effective suppression of random errors occurring during the measurement, estimation of
the trajectory and related motion parameters (velocity and acceleration, etc.) of the target in the con-
trol area, prediction of the target’s position at the next moment, and formation of a steady target
track, so that highly accurate real-time tracking is realized [7–9].
In terms of the level at which radar echo signals are processed, radar signal processing is usually

viewed as the primary processing of the information detected by the radar unit. It is done at each
radar station, with information obtained from the same radar and the same scanning period and dis-
tance unit, with the aim of extracting useful target information from clutter, noise, and various active
and passive jamming backgrounds. Radar data processing is usually viewed as secondary process-
ing of the radar information [10–13]. Making use of information from the same radar, but with dif-
ferent scanning periods and distance units, it can be done both at each independent radar station and
at the information processing center or system command center of the radar network. Data fusion of
multiple radars can be viewed as a third or tertiary processing of the radar information, which is
usually done at the information processing center. Specifically, the information the processing

Radar Data Processing with Applications, First Edition. He You, Xiu Jianjuan, and Guan Xin.
© 2016 Publishing House of Electronics Industry. All rights reserved. Published 2016 by John Wiley & Sons
Singapore Pte. Ltd.



center receives is the measurement from the primary processing or the track from the secondary
processing (usually called the local track) by multiple radars, and the track after fusion (called
the global track or system track). The function of the secondary processing of radar information,
based on the primary processing, is to filter and track several targets, and estimate the targets’
motion parameters and characteristic parameters. Secondary processing is done strictly after pri-
mary processing, while there is no strict time limit between secondary and tertiary processing.
The third level of processing is the expansion and extension of secondary processing, which is
mainly reflected in space and dimension.

1.2 Basic Concepts in Radar Data Processing

The input to the radar data processing unit is the measurement from the front, which is the object of
data processing, while the output is the track formed after data processing is conducted. Generally,
functional modules of radar data processing include measurement pretreatment, track initiation and
termination, and data association and tracking. A wave gate must be set up between the association
and the tracking process, and their relationship is shown in the block diagram in Figure 1.1. The
content and related concepts of the functional modules of radar data processing are briefly discussed
as follows.

1.2.1 Measurements

Measurements, also called observations, refer to noise-corrupted observations related to the state of
a target [14]. The measurements are not usually raw data points, but the output from the data record-
ing device after signal processing. Measurements can be divided, according to whether they are
associated with the known target track, into free measurements and correlated measurements. Free
measurements are spots that are not correlated with the known target track, while correlated meas-
urements are spots that are correlated with the known target track.

1.2.2 Measurement Preprocessing

Although modern radar adopts many signal processing technologies, there will always be a small
proportion of clutter/interference signals left out. To relieve the computers doing the follow-up
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Figure 1.1 Radar data processing relation diagram
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processing job from a heavy burden, prevent computers from saturation, and improve system per-
formance, the measurement given by the primary processing needs to be preprocessed, which is
called “measurement preprocessing”: the preprocessing of secondary processing of radar informa-
tion. The preprocessing is a precondition of correct processing of radar data, since an effective meas-
urement data processing method can actually help yield twice the result with half the effort, with the
target tracking accuracy improved while the computational complexity of the target tracking is
reduced. The measurement preprocessing technology mainly involves system error registration,
time synchronization, space alignment, outlier rejection, and saturation prevention.

1.2.2.1 System Error Registration

Themeasurement data from radars contains two types of error. One is random error, resulting from the
interior noise of the measurement system. Random error may vary with each measurement, and may
be eliminated to some extent by increasing the frequency ofmeasurement andminimizing its variance
in the statistical sense by means of methods like filtering. The other is system error, resulting from
measurement environments, antennas, servo systems, and such non-calibration factors in the data
correction process as the position error of radar stations and the zero deviation of altimeters. System
error is complex, slowly varying, and non-random, and can be viewed as an unknown variable in a
relatively long period of time. As indicated by the findings in Ref. [15], when the ratio of system errors
to random errors is greater than or equal to 1, the effect of distributed track fusion and centralized
measurement fusion deteriorates markedly, and at this point system errors must be corrected.

1.2.2.2 Time Synchronization

Owing to the possible difference in each radar’s power-on time and sampling rate, the target meas-
urement data recorded by data recording devices may be asynchronous. Therefore, these observa-
tion data must be synchronized in multiple-radar data processing. Usually, the sampling moment of
a radar is set as the benchmark for the time of other radars.

1.2.2.3 Space Alignment

Space alignment is the process of unifying the coordinate origin, coordinate axis direction, etc. of
the data from the radar stations in different places, so as to bring the measurement data from several
radars into a unified reference framework, paving the way for the follow-up radar data processing.

1.2.2.4 Outlier Rejection

Outlier rejection is the process of removing the obviously abnormal values from radar measure-
ment data.

1.2.2.5 Saturation Prevention

Saturation prevention mainly deals with saturation in the following two cases.

1. In the design of a data processing system, there is a limit to the number of target data. However,
in a real system, saturation occurs when the data to be processed exceed the processing capacity.
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2. The time used to process data is limited. Saturation occurs when the number of measurements,
or batches of targets, reaches a certain extent. In this case, the processing of the data from one
observation has to be interrupted before the processor starts to deal with the next batch of data.

1.2.3 Data Association

In the single-target, clutter-free environment, where there is only one measurement in the target-
related wave gate, only tracking is involved. Under multi-target circumstances, where a single meas-
urement falls in the intersection area of several wave gates or several measurements fall in the
related wave gate of a single target, data association is involved. For instance, suppose two target
tracks have been established before the radar’s nth scanning, and two echoes are detected in the nth
scanning, are the echoes from two new targets or from the two established tracks at that time? If they
are from the two established tracks at that time, then in what way can the echoes resulting from the
two scans and the two tracks be correctly paired? The answer involves data association, the estab-
lishment of the relationship between the radar measurements at a given moment and the measure-
ments (or tracks) at other moments, to check whether these measurements originate from the
processing of the same target (or to ensure a correct process of measurement-and-track pairing).
Data association, also called “data correlation” or “measurement correlation,” is a crucial issue in

radar data processing. False data association could pair the target with a false velocity, which could
result in the collision of aircraft with air traffic control radars, or the loss of target interception with
military radars. Data association is realized through related wave gates, which exclude the true
measurements of other targets and the false measurements of noise and interference.
Generally, data association can be categorized, according to what is being associated with what,

into the following classes [16]:

1. measurement-to-measurement (track initiation);
2. measurement-to-track (track maintenance or track updating);
3. track-to-track, also called track correlation (track fusion).

1.2.4 Wave Gate

In the process of target track initiation and tracking, a wave gate is often used to solve data asso-
ciation problems. What then is a wave gate? How many categories is it divided into? A brief
discussion of these questions follows.
An initial wave gate is a domain centering on free measurements, used to determine the region

where the target’s observations may occur. At the track initiation stage, the initial wave gate is
normally bigger for better target acquisition.
A correlation wave gate (or tracking wave gate, validation gate) is a domain centering on the

predicted position of the tracked target, used to determine the region where the target’s observations
may occur [17].
The size of the wave gate is related to the magnitude of radar measurement error, the probability

of correct echo reception, etc. That is to say, when deciding the wave gate’s shape and size,
one should make it highly probable that the true measurement falls in the wave gate, while making
sure that there are not many unrelated measurements in the correlation wave gate. The echo falling
in the correlation wave gate is called a candidate echo. The size of the tracking gate reflects the
error in the predicted target position and velocity, which is related to the tracking method, radar
measurement error, and required correct correlation rate. The size of the correlation wave gate is

4 Radar Data Processing with Applications



not fixed in the tracking process, but adaptive adjustment should be made among small, medium,
and large wave gates in accordance with the tracking conditions.

1. For a target in uniform rectilinear motion (e.g., a civil airliner flying smoothly at high altitude), a
small wave gate should be set up, with its minimum size no less than three times the mean square
root value of the measurement error.

2. When the target maneuver is relatively small (e.g., when the aircraft is taking off, landing, or
making a slow turn), a medium wave gate should be set up, by adding one or two times the mean
square root value of the measurement error to the small wave gate.

3. When the target maneuver is relatively big (e.g., when the aircraft is making a fast turn, or when the
target is lost and recaptured), a large wave gate should be set up. Besides, at the track initiation
stage, a large wave gate should be adopted to effectively capture the target’s initial wave gate.

1.2.5 Track Initiation and Termination

Track initiation refers to the process from the entrance (and detection) of a target into the radar
coverage area to the establishment of the target track. Target initiation is important in radar data
processing. If the track initiation is incorrect, target tracking is impossible.
Since the target being tracked may escape the surveillance zone at any time, once it goes beyond

the radar detection range, the tracker must make relevant decisions to eliminate the unwanted track
files for track termination.

1.2.6 Tracking

Tracking is one of the two primary issues in radar data processing. It refers to the processing of the
target’s measurements for the constant estimation of the target’s current state [16]. The multiple-
radar and multi-target tracking system is a highly complex large-scale system, whose complexity
is mainly due to the uncertainty in radar data processing.

1. From the perspective of measurement data, the received radar measurements form a random
sequence, which may be obtained by non-equal interval sampling, and the observation noises
are non-Gaussian. This should be considered in real measurement data processing.

2. From the perspective of multi-target tracking, the complexity of the tracking problem lies
mainly in:
a. the uncertainty of measurement origin – since there are multiple targets and false alarms,

many measurements may be produced in radar environments, which will lead to the uncer-
tainty of the measurements used for filtering;

b. the uncertainty of the target model parameter – since targets could be on maneuvers at any
time, the model parameter initially set could be incorrect. Therefore, adjustments must be
made to the model parameter in accordance with the tracking conditions; hence maneuvering
target tracking.

3. From the perspective of the system, the tracking system could be nonlinear, with a complex con-
struction. On the one hand, the system tracking performance under complex circumstances
depends chiefly on the filtering algorithm’s capability to deal with the uncertainty of measure-
ment origins and target model parameters, or its capability to effectively solve the problem of
measurement correlation and adaptive target tracking. On the other hand, the nonlinear charac-
teristics of the system itself should also be taken into consideration.
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For the effective tracking of the target under these complex circumstances, the following two
problems need to be solved.
First, the establishment of the target motion model and the observation model. Estimation

theory, which provides a foundation for radar data processing, requires the establishment of a sys-
tem model describing the dynamic characteristics of target and radar measurement processes.
A valuable method of describing the systemmodel, the state variable method, is based on the system
state equation and the observation equation. According to this method, the state variable,
system state equation, system observation equation, system noise and observation noise, system
input and output (i.e., the estimated value of the state variable) are the five essential elements of
the target tracking system modeling. The five elements above reflect the basic characteristics
of a system, and can be viewed as a complete expression of a dynamic system. The introduction
of the state variable is the core of creating an optimum control and estimation theory, because
in the state space, the state variable defined should be a batch of variables with minimum dimensions
that can fully reflect the system dynamic characteristics. The state variable at any given time is
expressed as a function of the state variable prior to that time, and the input/output relationship
of the system is described by the state transition model and the output observation model in the time
domain. The state reflects the system’s “interior condition.” The input can be described by the state
equation, which is composed of the decided time function and the random process representing
the unpredictable variable or noise. The output is a function of the state vector, usually disturbed
by the random observation error, and can be described by measurement equations. In the system
modeling process, the use of the system state equation and the observation equation in the
description of the dynamic characteristics of the target is therefore the most successful method
in common use. The relation between the state equation and the measurement equation is shown
in Figure 1.2.
Second, the tracking algorithm. The tracking filtering algorithm in the state space is actually

a matter of optimum estimation based on state space. The following two points are of major concern.

1. Multiple maneuvering target tracking. Maneuvers are both the basic attribute of the target and the
forms of motion commonly used in attacks or escapes. Therefore, maneuvering multi-target
tracking is the focus of target tracking, dealing with the problem of a maneuvering target model,
testing and tracking algorithm.

2. The optimality, robustness, and rapidity of tracking algorithms. That is to say, an overall
consideration is needed of the tracking timeliness, tracking accuracy, and robustness of the
algorithm.
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1.2.7 Track

A track is a trajectory which is formed with the states of a target estimated from a set of measure-
ments of the same target (i.e., tracking trajectory). The radar, when conducting multi-target data
processing, designates an identity (ID) for each tracking trajectory, namely the track ID, which
serves as a point of reference for all the parameters related to a given track. The measurement of
the track’s reliability can be described by the track quality which, if properly controlled, can help
both promptly and accurately initiate a track so that a new target file is set up, and cancel a track so
that the redundant target files are cleared up. Tracks are the ultimate result of data processing, as
shown in Figure 1.3.
The concepts related to tracks also include the following.

1. Possible track. The possible track is a track composed of a single measurement point.
2. Tentative track. Tentative tracks are tracks composed of two or more measurement points with

low track quality. They could be target tracks, or random interference, namely false tracks. After
initial correlation is complete, a possible track is turned into a tentative track or a canceled track.
The tentative track is also called a temporary track.

3. Confirmed track. A confirmed track, also called a reliable track or a stable track, is a track with
stable output or a track whose track quality exceeds a given value. It is the formal track set up by
the data processor, and is generally considered as a true target track.

4. Fixed track. A fixed track is a track composed of clutter measurements, whose position does not
change much with the scans of a radar set.
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Figure 1.3 Data processing flowchart

7Introduction



The following sequence can be determined in the correlation process of measurements
and tracks: fixed tracks first, then reliable tracks, and finally tentative tracks. That is to say, after
a batch of observation measurements is obtained, the correlation of these measurements and the
fixed track is done first. The measurements that can be correlated with the fixed track are deleted
from the measurement file and are used to update the fixed track (i.e., to replace the old clutter
points with the measurements that are correlated). If these measurements cannot be correlated
with the fixed track, they should be correlated with the existing confirmed track. The success-
fully correlated measurements are used to update the confirmed track. The measurements that
cannot be correlated with the confirmed track should be correlated with the tentative track, which
finally either disappears or is turned into a confirmed track or a fixed track. The confirmed track
has priority over the tentative track, which excludes the possibility that the tentative track obtains
measurements from the reliable track.

5. Canceled track. When its quality is lower than a given value or is composed of isolated
random interference points, the track is called a canceled track, and the process is called
track cancellation or track termination. Track cancellation is the process of erasing the track
when it does not conform to a certain rule, which means the track is not a track of a true
target, or that the corresponding target has moved out of the radar coverage range. Specif-
ically, when a certain track cannot be correlated with any measurement in a certain scan, an
extrapolation should be done according to the latest velocity. Any track that does not
receive a measurement in a certain number of successive scans should be canceled. The pri-
mary task of track cancellation is to promptly cancel a false track with the true one being
retained.
There are three possible instances of track cancellation.
i. Possible tracks (with only track heads) to be canceled as long as there is no measurement in

the first scanning period that follows them.
ii. Tentative tracks (such as a newly initiated track) to be erased from the database as

long as there is no measurement in the three successive scanning periods that fol-
low them.

iii. Confirmed tracks, whose cancellation should be done with caution. If no measurement falls
in the relevant wave gates in four to six successive scanning periods, cancellation of the track
can be considered. It is worth noting that extrapolation must be used several times to expand
the wave gates to recapture the lost target. Of course, track quality management can also be
used to cancel a track.

6. Redundant tracks. Two or more tracks being allocated to the same true target is called track
redundancy. The unnecessary track is called a redundant track.

7. Track interruption. If a certain track is allocated to a true target at time t, but no track is allocated
to the target at time t +m, then track interruption happens at time t, where m is a parameter set by
the tester, usually m= 1.

8. Track switch. If a certain track is allocated to a true target at time t, while another track is
allocated to the target at time t +m, then track switch happens at time t, where m is a parameter
set by the tester, usually m= 1.

9. Track life (the length of a track; the times the track is successively correlated). Based on whether
the terminated track is false or true, it can be divided into [18, 19]:
a. False track life.The average times of radar scanning from the initiation of a false track to its

deletion is called false track life. False track can sometimes last for a long time when false
measurements are highly dense.
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b. True track life. The average times of radar scanning of a true track mistaken for a false one and
deleted after it is initiated.

True track maintenance time is restricted by two factors:
1. The measurement track correlation error (the true measurement is measured but is correl-

ated with other tracks, which commonly occurs in dense target environments or crossed
target environments) could lower the quality of a true track, or even result in the deletion of
a true track mistaken for a false one.

2. The times that measurements are successively lost reach a given threshold, so the track is
deleted as a lost target, which commonly happens when the signal-to-noise ratio is low or
there is strong interference.

1.3 Design Requirements and Main Technical Indexes
of Radar Data Processors

1.3.1 Basic Tasks of Data Processors

As can be seen from the discussion and elaboration of the relevant basic concepts in radar data
processing, the basic tasks of data processors include:

a. measurement pretreatment;
b. determination of the correlation area and correlation principle, and the distinction between true

and false measurements;
c. the establishment of new tracks;
d. the correlation of measurements and existing tracks, track maintenance;
e. the correlation between and fusion of tracks;
f. track termination and track management, including quality grade determination and track quality

management;
g. situation display, including the display of tracks and measurements.

1.3.2 The Engineering Design of Data Processors

The engineering design of data processors is a comprehensive design. Generally, the following three
issues need to be considered.
First, the balanced relationship between tracking accuracy, robustness, and real-time perform-

ance. Target tracking algorithms are mostly obtained when the probability distribution function
of the system noise and measurement noise is subject to certain assumptions, and usually the
assumed system noise and observation noise are both Gaussian white noise. However, in real
systems it is hardly possible to find a matrix that accords completely with Gaussian distribution
because the mutation of the electromagnetic environment, the immaturity and failure of the
observation equipment, etc. can result in the deviation of observations from the Gaussian
distribution. When the system’s actual noise distribution deviates from the assumed noise dis-
tribution, tracking algorithms can effectively exclude the interference of the uncertainty factors
and abnormal values in the system, and consequently ensure that there is not much change in the
estimation effect and the estimation accuracy. Simply put, the tracking algorithms can ensure the
robustness of estimation algorithms in this case, so that the system can operate normally. This is
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robust tracking (estimation). In other words, a relatively “loose” assumption of the noise distri-
bution mode is allowed, which may not be the optimum one for a certain specific distribution
mode, but can exclude the interference of the abnormal values and help improve the anti-
interference ability of the system.
Basically, research on the robust estimation theory aims to find estimation algorithms that

can both exclude or resist the influence of the abnormal value (cases) and basically possess
the good characteristics of traditional estimation algorithms (i.e., algorithms that incorporate
considerations of optimality and robustness of estimation in a balanced manner). What opti-
mality emphasizes is an algorithm that makes the system index function reach its minimum
(or maximum), while what robustness focuses on is an algorithm that sacrifices some indi-
ces of the system to improve its anti-interference performance. Therefore, an optimal bal-
ance between robustness and optimality is what needs to be taken into consideration in
the whole process of robust tracking system design. Some efficiency has to be sacrificed
to robustness [10].
Common problems in the balance between tracking accuracy, robustness, and real-time

performance are:

1. Excessive emphasis is put on the tracking accuracy index, while the robustness index is
neglected. As a result, the accuracy of the target tracking result is high at the simulation stage,
but declines markedly at the actual engineering test stage, which reduces the algorithm’s
engineering value.

2. Too idealized an index design results in complexity of the algorithm structure, which badly
affects its real-time performance.

As for engineering algorithms, the index of robustness is the first priority, followed by the track-
ing accuracy and the real-time index. However, in an engineered index design, the three indexes
mentioned above are the basic technical indexes on which compromises must be made.
The second issue is one of reliability. An algorithm that is simple in structure, highly reli-

able, easy to realize, and mature in engineering should be used in the engineering design of
radar data processing. Otherwise, the system cannot operate normally and continuously. Mean-
while, the design of the software system data processor needs to be modularized, visible, and
revisable.
The third issue is that of intelligence information processing. Although the function modules con-

tained in data processors are basically the same, different radars have different requirements for the
data processor design. For example, the core of the skywave over-the-horizon radar is the iono-
sphere mathematical model. Specifically, the echo multipath resulting from the multipath structure
of the ionosphere, and the severe attenuation of the echo signal resulting from the severe shortwave
environment noise and ionosphere transmission characteristic can result in a higher probability of
false alarms and missed alarms in radar measurements, leading to discontinuity of the track. How-
ever, the striking problemwith the groundwave over-the-horizon radar is the rejection of false tracks
and the maintenance of stable tracks. Therefore, in the design of data processors, an analysis of the
data processor’s characteristics should be made first according to the system’s index requirements
for data processors, including observation characteristics such as the measurements’ temporal and
spatial distribution characteristics, noise distribution and statistical characteristics, the variation of
the signal-to-noise ratio, the intensiveness of the targets, etc. Besides, the system’s resolution, prob-
ability of detector false alarms and discovery, accumulated time and coordinate system, etc. are also
included in the analysis, to provide a basis for the assignment of data processor indexes and the
emphasis of the design.
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1.3.3 The Main Technical Indexes of Data Processors

The main technical indexes of data processors are as follows.

1. Immediacy. If the adopted tracking algorithm is too complex and takes too long a time to process
the data, it is possible that the second batch of data will come before the processing of the first
batch of data is complete, resulting in saturation of data processing. As a consequence, the pro-
cessing effect and the immediacy of the situation display may be affected, so that the situation
display cannot reflect the current target position information accurately.

2. Tracking capacity. The tracking capacity is the largest number of targets that the data processor
can track simultaneously. The index becomes increasingly demanding with increasing intensive-
ness of targets, the complexity of the environment in which the sensors work, and the processing
speed of the hardware system. Meanwhile, due to factors like undetected data, there could be
discontinuous target tracks, so that one target track could be mistaken for several target tracks
and assigned different target numbers, which increases the system tracking capacity.

3. Probability of true target loss and false targets. These are two mutually restricted crucial
indexes. To ensure the initial probability of the true track, a large correlated wave gate must
be built. This, on the one hand, makes it more probable that the true target will fall in the wave
gate but, on the other hand, increases the number of other unrelated measurements falling in
the wave gate, which is bad for the reduction in false track probability because the initiation
of true targets is ensured at the expense of initiating a large number of false targets. Conversely,
if the probability of false tracks is to be lowered, a small wave gate should be built; as a con-
sequence, true targets may not fall in the wave gate, which could result in a loss of true targets.
This requires a reasonable wave gate design, employing different principles according to the dif-
ferent emphases on the two indexes in engineering, or different detecting areas. In a specific
system the test of this index is closely related to that of the detector index, requiring an overall
consideration of the detector and data processor index [10].

4. Tracking accuracy. Tracking accuracy is a key index of the data processor. It depends mainly on
the measurement accuracy of the detector, the data correlation, and the filtering algorithm
adopted.

1.3.4 The Evaluation of Data Processors

The performance evaluation of the data processor mainly includes the following four aspects.

1. Data association. This is a comparatively complicated evaluation index. Data correlations are
normally evaluated using the data under various circumstances – such as the existence of out-
liers, dense target environments, cross-target environments (see Chapter 17, Figure 17.1), target
approaching and leaving (see Chapter 17, Figure 17.2), maneuvering multi-target environments,
etc. – and by calculating indexes like the target’s correct correlation probability, false correlation
probability, missed correlation probability, etc.

2. Tracking batches. This reflects directly the tracking capacity and the processing capability of the
system.

3. The accuracy of the tracking filter. The balance between indexes – including tracking accuracy,
immediacy, and robustness (anti-interference ability) – should be considered comprehensively.

4. Immediacy. Actual measurement data should be used to test the processing speed of the data
processor.
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The evaluation of data processing is crucial to a radar system, because the test of many of
its indexes – like coverage range, system resolution, tracking batches, tracking accuracy, target
classification, and the estimation of threat – is ultimately determined by the evaluation of data
processors. Related information will be discussed especially in Chapter 17.

1.4 History and Present Situation of Research in Radar Data
Processing Technology

The earliest radar data processing method was the least-squares algorithm put forward by Gauss
in 1795. Gauss used this method to predict Kamiya’s orbit for the first time, and opened up the
scientific field in which mathematical methods were used to process observation and experi-
mental data. Despite its faults, such as neglect of the statistical characteristics of the observa-
tion data, the algorithm has its merits in that it is comparatively simple in calculation.
Therefore, it is still a widely used estimation method, from which some forms suitable for
real-time operation have developed through the generations. This method is used when accur-
ate system dynamic errors and statistical characteristics of the observation data cannot be
acquired.
The maximum likelihood method, proposed by R. A. Fisher in 1912, deals with the estimation

problem from the perspective of probability density, and has made an important contribution to
estimation theory. The estimation of a random process was not developed until the 1930s, while
modern filtering theory was based on probability theory and random process theory. In 1940,
American scholar N. Wiener, one of the originators of control theory, put forward a method to
design statistical filters in frequency domains according to the requirement for fire control –
the famous Wiener filtering. Since its proposal, the method has been used in the fields of com-
munication, radar, and control, with great success. During the same period, former Soviet Union
scholar Kolmogorov proposed and for the first time solved the problem of the prediction and
extrapolation of the discrete stationary random sequence. The Wiener filtering, together with
the Kolmogorov filtering method, opened up a new field in which the statistical method was used
to deal with the random control problem, and established a foothold for the research and devel-
opment of modern filter theories.
The Wiener filter, which adopts the frequency domain design method, is difficult in analysis

and solution and complicated in operation [20]. What’s more, the batch processing method it
adopts demands large storage space. Consequently, its application is quite limited and it is only
applicable to one-dimensional stationary random signal filtering. This defect in the Wiener
filter forced people to seek other optimal filter design methods. An important contribution
was made in this field by American scholar R. E. Kalman, who proposed the discrete-time
system Kalman filter in 1960. In 1961, he worked with S. S. Bucy in extending this filtering
theory to continuous-time systems [21], and formulated a complete theory of Kalman filter
estimation.
The Kalman filter introduces the method for analysis of state variables to filtering theory, and

obtains the time-domain solution of the minimum mean square error estimation problem. More-
over, the Kalman filter theory, which has broken through the limitations of the Wiener filter, can
be used in non-stationary and multi-variable linear time-varying systems. With a recursive struc-
ture, the Kalman filter is more suitable for computer computation, requires lower computational
complexity and smaller data memory, and has stronger real-time performance. It is because of its
advantages over the other filtering methods mentioned above that the Kalman filter found practical
engineering applications once proposed [22, 23]. The Apollo lunar landing program and the
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design of the C-5A aircraft navigation system were the most successful examples of its early
engineering applications. Because of the Kalman filter’s wide application and simple design
method, steady-state gain filtering was proposed on its basis to further lower the computational
complexity [24, 25]. At present, the Kalman filter theory, as one of the most important optimum
estimation theories, is widely used in various fields, such as target tracking, inertial guidance,
GPS, air traffic control, fault diagnosis, etc. In the over 200-year history of filtering theory, Gauss,
Wiener, and Kalman have made important contributions, laying theoretical foundations for radar
data processing.
Since the filtering theory initiated by Kalman is only applicable to linear systems and

requires that the observation equation should be linear, in the following 10 years Bucy,
Sunahara, and coworkers were committed to research on the extension of the Kalman filtering
theory to nonlinear systems and observations, and proposed a filtering method applicable to
nonlinear systems – the extended Kalman filter [16, 25]. Then, successively, in the early
1970s Singer et al. proposed a series of maneuvering target tracking methods [26], and in
the mid-1970s Pearson, Shibata, and coworkers successfully applied Kalman filtering technol-
ogy to the airborne radar tracking system [27]. The traditional Kalman filtering theory is based
on the precondition that the model is accurate and the statistical characteristics of random inter-
ference signals are known. However, in an actual system, sometimes the model is inaccurate,
and/or the statistical characteristics of interference signals are not completely known, which
could greatly lower the traditional Kalman filter’s estimation accuracy and result in filtering
divergence in severe cases. That is why some scholars introduced the idea of robust control
to filtering theory, producing the robust filtering theory [28].
The increasingly complex application environment in recent years requires that radars be capable

of tracking several targets simultaneously. The concept of multi-target tracking was advanced
by Wax in an article published in Applied Physics in 1955 [29]. Then, in 1964, the article “The
association of optimum data in monitoring theory,” published by Sittler in IEEE Transactions
on Military Electronics, became the pioneering work of multi-target tracking [30]. However, since
the Kalman filter was not widely used at that time, he adopted the track splitting algorithm [16].
In the early 1970s, the Kalman filtering method began to be used systematically for multi-target
processing in the case of false alarms [31]. The nearest-neighbor algorithm proposed by Singer
in 1971 is the simplest method of solving data association problems [32], but this method has a
low association rate in clutter environments. In this period, Y. Bar-Shalom played an important role,
proposing in 1975 the probabilistic data association algorithm, which is especially applicable to
single-target tracking in clutter environments [33]; on its basis, Fortmann, Bar-Shalom, and
coworkers put forward the joint probabilistic data association algorithm (JPDA) to effectively
solve the problem of multi-target tracking in clutter environments [34]. Based on Bar-Shalom’s
poly concept, in 1979, Reid proposed using the multiple hypothesis method to solve the problem
of multi-target tracking [35].
With the development of science and technology in recent years, targets have to make maneu-

vers to avoid being tracked and attacked. Therefore, since 1970, Singer, Bar-Shalom, Birmiwal,
and coworkers have successively proposed tracking maneuvering targets with the Singer
algorithm, variable dimension filtering algorithm, interacting multiple model algorithm, etc.
[32, 36–39]. In 1986, S. S. Blackman et al. started to do research on the group target tracking
issue. In 1988, Carlson put forward the federated filter [40], aimed at providing a theoretical basis
for the design of the fault tolerance combined navigation system [41]. In order to effectively solve
the filter problem in nonlinear systems, Julier et al. put forward unscented KF (UKF) [42], which
takes samples of the estimated vector’s probability density function (PDF) so as to decide its mean
value and covariance, and acquires an estimation accuracy which is better than the first-order EKF

13Introduction



algorithm and has the same magnitude as the second-order EKF algorithm. In Ref. [43] the particle
filter (PF) algorithm is proposed, which is close to the UKF algorithm in performance except that
it has a higher computational complexity. The PF has also been used in research tracking before
detecting, etc. in recent years.
With further study being carried out on various aspects of the radar data processing technology,

large numbers of treatises [5, 44–51], academic papers [52–56], and research reports [18, 23, 57]
have emerged. Now data processing technology has been transformed from initial single-radar to
multiple-radar, and from multiple-radar to multiple-sensor, with the emergence of a large number of
treatises and papers on multiple-sensor information fusion [15, 58–64].
In the radar data processing field, many scholars and outstanding experts have made reward-

ing contributions, including Professor Bar-Shalom of the University of Connecticut, USA,
who, since the end of the 1980s, has successively published many highly theoretical and sys-
tematical treatises on multi-target tracking with his students, originating many new theories and
methods, especially in aspects of data association and multi-target/multi-sensor tracking data
fusion. Their research features clear concepts, rigorous deduction, and strong theoretical
dimensions. Another example is S. S. Blackman, an expert with Air America, whose research
is characterized by its higher practicability, or stronger relevance, to actual engineering appli-
cations. Still another is Professor Farina of Naples University, one of the earliest scholars in
radar data processing research.

1.5 Scope and Outline of the Book

Whether in modern defense or air and marine traffic control systems, multi-target tracking is an
indispensable technology. Especially with developments in the “informatization” and networking
of modern warfare, multi-target tracking technology is coming to the fore in all countries, as an
active research field. For example, for air traffic control centers, the management of the aircraft
in air and terminal areas, approach management, collision warning, and collision avoidance, etc.
cannot be realized without a target tracking system, which requires the system to detect and track
the aircraft, and accurately determine position, heading, and speed parameters, thus improving the
safety of air traffic and the utilization of resources.
This book absorbs the latest developments in the field of radar data processing in recent years,

aimed at providing people of the same profession with a foundation for further theoretical research
and practical application. The main content and chapters are as follows.

Chapter 1: Introduction
This chapter discusses many basic concepts in radar data processing. Some of the practical issues
addressed include engineering design requirements, principal technical indicators, and assessment
of radar data processors.

Chapter 2: Parameter Estimation
Starting with the basic concept of time-constant parameter estimation, the chapter discusses some
estimator properties like unbiasedness, variance of estimators, consistency and efficiency of estim-
ators, etc. on the basis of the introduction of several frequently used time-constant parameter esti-
mation techniques, such as maximum a posteriori (MAP), maximum likelihood (ML), minimum
mean squared error (MMSE), and least squares (LS) estimators. Finally, the chapter analyzes the
estimation of non-time-varying vectors, and discusses the LS, MMSE, and LMMSE estimators
under vector circumstances.
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Chapter 3: Linear Filtering Approaches
On the basis of the introduction of the measurement state and measurement equations for a
Kalman filter, including the constant velocity model, constant acceleration model, and coord-
inate turn model, this chapter discusses the relevant filter models and the initiation of the
Kalman filter. Finally, the chapter studies the steady-state Kalman filter, including a mathem-
atical definition and judgment of stable filters, controllability and observability of random
linear systems, etc.

Chapter 4: Nonlinear Filtering Approaches
This chapter discusses the nonlinear filtering approaches in radar data processing, including
extended Kalman filter (EKF), unscented Kalman filter (UKF), and particle filter (PF), giving
the filtering model of each approach. After a simulation analysis of two linear filter algorithms
(Kalman filter and unbiased converted measurement Kalman filter), as well as two nonlinear filter
algorithms (extended Kalman filter and unscented Kalman filter) in the same simulation environ-
ment on the condition that the posterior PDF of the system state is a Gauss hypothesis, a comparison
of the tracking accuracy and computational complexity of these methods is made, and relevant con-
clusions drawn. The chapter also makes a simulation analysis using three nonlinear filter algorithms
(extended Kalman filter, unscented Kalman filter, and particle filter), tracking the same target in the
same simulation environment, compares the tracking accuracy and computational complexity of
these approaches, and makes a comprehensive evaluation of the advantages and disadvantages
of each approach.

Chapter 5: Measurement Preprocessing Techniques
This chapter deals with measurement processing. In a process where several sensors are used to
track targets, in order to improve the tracking accuracy, it is necessary to fuse the information of
several targets, while the primary problem to be solved in the fusion of multiple-sensor information
is the synchronization of different sensors in time and space. The chapter first analyzes and dis-
cusses two issues: the time registration method; selection and transformation of the coordinate sys-
tem. Since the selection of the coordinate system is closely related to practical application, and can
directly influence the tracking effect of the whole system, the chapter starts with a discussion of
some commonly used coordinate systems, and then studies some coordinate transformation tech-
niques, to ensure that all the data information formats can be united in the same coordinate system.
Finally, the chapter analyzes the problem of data compression to minimize the computational load
and improve the track effect.

Chapter 6: Track Initiation in Multi-target Tracking
On the basis of the analysis of the shape, dimensions, and varieties of initial wave gates and cor-
relation wave gates in track initiation, this chapter studies track initiation techniques in multi-target
tracking, including target-oriented sequential processing techniques and batch processing tech-
niques. Usually the sequential processing technique applies to target track initiation in clutter-free
environments, and the target track initiates more quickly, while the batch processing technique is
quite effective when applied to the initiation of the target track in strong clutter environments,
which, however, is at the expense of increased computational complexity, and needs multiple scans
to effectively initiate a track. Finally, a comparative analysis is made of the effects of several com-
monly used track initiation algorithms in the same simulation environment, including a logic-based
method, modified logic-based method, Hough transformation method, and modified Hough trans-
formation method, and relevant conclusions are drawn.
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Chapter 7: Maximum Likelihood Class Multi-target Data Association Methods
This chapter mainly discusses the maximum likelihood class association methods, including the
track splitting method, united maximum likelihood algorithm, 0–1 integer programming algo-
rithm, and generalized correlation algorithm. The main feature of the maximum likelihood class
filter algorithm is that it makes judgments on the basis of the likelihood ratio of the observation
sequence, and does not create a probability that the sequence is correct. Specifically, the track
splitting method makes use of likelihood functions to conduct pruning, excluding the measure-
ment sequences that are unlikely to come from the target. The united maximum likelihood algo-
rithm calculates the likelihood functions of different feasible partitions of all measurement
sequences, and when the likelihood function reaches its maximum, the measurement sequence
with feasible partition is considered the correct sequence from different targets. The principle
of the 0–1 integer programming algorithm is similar to that of the united maximum likelihood
algorithm, and it is further deduced from the united maximum likelihood algorithm. The gener-
alized correlation algorithm defines a score function, which is used to initiate, confirm, and cancel
tracks.

Chapter 8: Bayesian Multi-target Data Association Approach
This chapter mainly discusses the Bayesian association approach, which is concerned with studies
on the latest determined measurement sets, including the nearest-neighbor algorithm, probabilistic
data association algorithm (PDA), integrated probabilistic data association algorithm (IPDA), joint
probabilistic data association algorithm (JPDA), etc. In the JPDA section of this chapter, a very
simple and practical method of determining matrix separation is introduced, another merit of
which is that errors are not likely to occur. Finally, the chapter compares and analyzes the track
performance, consumed time, error tracking rate, etc. of various algorithms through simulation
experiments.

Chapter 9: Tracking Maneuvering Targets
This chapter mainly discusses the tracking method of maneuvering targets. Generally, maneu-
vering target tracking methods can be divided into two classes: tracking algorithms with man-
euvering detection capability (including the white noise model with adjustable level, variable
dimension filtering algorithm, etc.) and adaptive tracking algorithms (including the modified
input estimation algorithm, Singer model algorithm, the current model and its modified algo-
rithm, Jerk model algorithm, multi-model algorithm, and interactive multi-model algorithm,
etc.). The chapter discusses two typical maneuvering target tracking algorithms, makes a simu-
lation analysis and comparison of the above two classes of methods through simulation
examples, and draws conclusions.

Chapter 10: Group Target Tracking
This chapter mainly discusses the issue of group tracking. Because of problems typical of
group tracking itself, the development and research in this area falls behind other techniques.
The chapter starts with a discussion of the initiation of a group, and discusses several typical
group initiation algorithms, including the definition, separation, and correlation of the group,
and the estimation of the speed of the group. On this basis, it discusses refined track initiation
of the targets in a group in a cluttered environment, proposes a group target refined track ini-
tiation algorithm based on the gray theory, and makes simulation verification and analysis.
Besides, the chapter investigates centered group tracking, and analyzes and discusses such
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aspects as the tracking updating, merging, and splitting of a group. In order to further solve the
tracking problems of targets in a group, the chapter also studies the formation group tracking
algorithm. Finally, an overall simulation analysis and summary is made of the group tracking
algorithm.

Chapter 11: Multi-target Track Termination Theory and Track Management
This chapter starts with research on a multi-target tracking termination technique, discussing the
relevant algorithms based on “nearest neighbor,” including the sequence probabilistic ratio test
(SPRT) algorithm, tracking gate method, cost function method, Bayesian algorithm, and all-
neighbors Bayesian algorithm, followed by a comparative analysis and relevant conclusions of
the termination moment and false termination rate of the above-mentioned algorithms in the
same simulation environment. The second part of the chapter relates to track ID management in
the track management technique, including the management of single-track IDs, storage of track
data, and management of double-track IDs. This part also discusses track quality management
and track file management in information fusion systems, and analyzes the selection of initiation
principles and the cancellation of tracks using track quality, as well as the management of track
quality under single-station and multi-station circumstances.

Chapter 12: Passive Radar Data Processing
This chapter first discusses the space correlation of passive radar measurements, including passive
location and tracking using the phase changing rate algorithm and Doppler shift changing rate
multiple-model algorithm. The chapter also analyzes and discusses optimal deployment based
on the area of the minimum concentration ellipse principle for passive sensors, as well as passive
location using time difference of arrival, etc.

Chapter 13: Pulse Doppler Radar Data Processing
On the basis of the introduction of the basic characteristics of pulse Doppler (PD) radars, this chapter
discusses the retrieval of radar data in single-target tracking and multi-target tracking systems. On
this basis, a study is done on several typical tracking algorithms of PD radars, including optimal
distance–velocity coupled tracking, radar target tracking with Doppler measurements, etc. The radar
target tracking algorithm with Doppler measurements focuses on the unbiased sequential extended
Kalman filter algorithm, unbiased sequential unscented Kalman filter algorithm, unscented Kalman
filter algorithmwith Doppler measurements, and unscented Kalman filter algorithm of maneuvering
targets. A comparative analysis is made of several algorithms with Doppler measurements
respectively in two simulation environments, and relevant conclusions are drawn.

Chapter 14: Phased Array Radar Data Processing
This chapter starts with an analysis and discussion of the phased array radar’s main indexes and
features, and on this basis investigates the system structure and work process of phased radars,
and provides relevant system structure block diagrams and phased radar flowcharts. In the phased
radar data processing part, research is carried out on multi-target processing, variable sampling
interval filtering, and resource scheduling strategies on the basis of the discussion of tracking
filtering methods. With regard to variable sampling interval filtering, the chapter analyzes and
discusses adaptive sampling with steady-state gain filters, adaptive sampling based on the
interactive multiple model, adaptive sampling based on the forecast error covariance threshold,
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and adaptive sampling with sampling intervals defined in advance. Finally, the chapter presents a
simulation analysis and comparison of the performance of phased array radar track algorithms.

Chapter 15: Radar Network Error Registration Algorithm
This chapter starts with a discussion of the make-up of system errors and their influence, and in
particular analyzes the influence of large range-finding system errors on tracks. Large range-finding
system errors can result in the affine transformation of target tracks, as well as their shift and rota-
tion, distorting the whole track, while azimuth-finding system errors can enlarge the target track
shift only slightly, having a very small influence on the target track. On this basis, the chapter studies
fixed radar error registration algorithms, including the RTQC error registration algorithm, LS error
registration algorithm, GLS error registration algorithm, accurate maximum likelihood registration
algorithm, and ECEF error registration algorithm. The chapter also deals with research into man-
euvering radar error registration algorithms, particularly the maneuvering radar system modeling
method, maneuvering radar registration algorithm with target locations known, MLRM algorithm,
and ASR algorithm. The chapter ends with a simulation analysis and discussion of the performance
of the above-mentioned algorithms.

Chapter 16: Radar Network Data Processing
On the basis of the introduction of performance evaluation indexes of radar networks, this chapter
investigates data processing of a single-base radar, double-base radar, and multi-base radar network.
Finally, the chapter studies the track correlation technique in radar network data processing, and
focuses on the sequential track association algorithm in the case of multiple local nodes based
on statistics.

Chapter 17: Evaluation of Radar Data Processing Performance
Radar data processing performance depends on various factors, which means that many factors are
involved in the evaluation of radar data processing performance. This chapter mainly discusses the
indexes of the evaluation of radar data processing performance in terms of average track initiation
time, accumulative number of track interruptions, track ambiguity, accumulative number of track
switches, track accuracy, maneuvering target tracking capability, false track ratio, divergence, track
capacity, radar network detection probability, response time, etc. Finally, the chapter studies some
evaluation methods of radar data processing performance, such as the Monte Carlo, semi-physical
simulative evaluation, and testing methods.

Chapter 18: Radar Data Processing Simulation Technology
On the basis of the introduction of basic knowledge on system simulation, this chapter analyzes the
methods of creating a uniform distribution, normal distribution, and arbitrarily distributed random
numbers, as well as the simulation of the target motion model and the simulation of the observation
process under different target motion circumstances. Finally, the chapter gives simulation examples
of radar data processing algorithms, to help readers better understand the system simulation tech-
nology and radar data processing technology, and combine the two technologies in analyzing and
solving practical problems in radar data processing.

Chapter 19: Practical Application of Radar Data Processing
This chapter discusses some typical uses of radar data processing technology in practical applica-
tions, including air traffic control systems, shipboard navigation radar, clutter suppression of ship-
board radar, ground laser radar, marine surveillance systems, fleet aerial defense systems, airborne
early warning radar, aircraft warning radar networks, phased array radar, etc. In practical
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applications, the use of radar data processing technology to estimate the track of a target and predict
its future location is not the ultimate purpose of a radar system. Users should make use of the infor-
mation to make judgments and take actions which meet the specific requirements.

Chapter 20: Review, Suggestions, and Outlook
This chapter provides a review of the main theoretical research achievements in the book, and some
suggestions on key problems in radar data processing technology. Finally, prospects are given for
research directions and development trends of radar data processing technology.
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2
Parameter Estimation

2.1 Introduction

This chapter mainly discusses the estimation of time-invariant parameters. Specifically, it covers the
basic concepts of time-invariant parameter estimation; four time-invariant parameter estimation
techniques – maximum a posteriori (MAP), maximum likelihood (ML), minimum mean square
error (MMSE), and least squares (LS) estimators; properties of estimators; estimation of static
(time-invariant) vectors; and the linear minimum mean square error (LMMSE) estimator. Topics
concerning the time-varying parameter estimation will be discussed in Chapter 3.

2.2 The Concept of Parameter Estimation

Estimation theory is concerned with estimating the value of unknown parameters from a set of
observations related to the unknown parameters [14]. The concept of parameter estimation can
be illustrated by the following example of the estimation of a parameter x.
Given the measurements of the parameter x

z jð Þ= h j,x,w jð Þ½ �, j= 1,2,…,k ð2:1Þ

made in the presence of random noise w( j), where j represents a discrete time, find a function of k
observations

x̂ kð Þ = x̂ k,Zk
� � ð2:2Þ

that is an estimation of the parameter x, where Zk is the set of cumulative measurements up to the
time k.
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When estimating a value, the effect of noise may lead to errors, and a cost will be paid in esti-
mating errors. The cost can be described with a cost function, c x, x̂ð Þ. The cost function, also named
“risk function,” is a function of true values and estimated values. For a single-parameter estimation,
the cost function is usually supposed to be a function of the estimation error ex= x− x̂ zð Þ, that is,
c x, x̂ð Þ= c x− x̂ð Þ. When the estimated parameter is a scalar value, three typical functions are given.

1. The uniform cost function, that is,

c x, x̂ð Þ=
1, x− x̂j j ≥ Δ

2

0, x− x̂j j< Δ
2

8>><>>: ð2:3Þ

WhenΔ! 0 the estimate is very close to the true value and the cost is 0, otherwise the cost is 1
(see Figure 2.1). The MAP estimate is based on a uniform cost function.

2. The squared error cost function, that is,

c x, x̂ð Þ = x− x̂ð Þ2 ð2:4Þ

Here the cost function grows rapidly with increasing error, as shown in Figure 2.2. The
squared error cost function is most widely used because of its convenient mathematical process-
ing. For example, it is the basis of the MMSE estimate.

3. The absolute value of error cost function, that is,

c x, x̂ð Þ= x− x̂j j ð2:5Þ

0

c(x)

x–Δ/2 Δ/2

Figure 2.1 Uniform cost function

0

c(x)

x

Figure 2.2 Squared error cost function

21Parameter Estimation



Here a linear variation of the cost is found with the absolute value of errors, as shown in
Figure 2.3. The conditional median estimate can be obtained from this cost function.
When the estimated parameter is an N-dimensional vector, three typical cost functions are given.

1. The uniform cost function, that is,

c x, x̂ð Þ=
1, exk kS = ex0Sex� �1=2

≥
Δ
2

0, exk kS = ex0Sex� �1=2
<
Δ
2

8>><>>: ð2:6Þ

where exk k is the bound norm of the error vector, and S is the weighted non-negative definite
matrix.

2. The quadratic cost function, or

c x, x̂ð Þ= exk k2S =ex0Sex ð2:7Þ

3. The bound norm cost function, or

c x, x̂ð Þ= exk kS = ex0Sex� �1=2 ð2:8Þ

When the cost function is determined, an expression of average cost (average risk) can be
obtained from the given cost function and the prior distribution function:

�c =
ð + ∞

−∞

ð + ∞

−∞
c x, x̂ð Þp x,zð Þdxdz ð2:9Þ

Bayesian estimation minimizes the average cost, that is, chooses x̂ to obtain the minimum
average cost. From the conditional probability density function (PDF), one can obtain

�c=
ð + ∞

−∞

ð + ∞

−∞
c x, x̂ð Þp x zjð Þdx

� �
p zð Þdz ð2:10Þ

Define

�c x̂ zjð Þ=
ð + ∞

−∞
c x, x̂ð Þp x zjð Þdx ð2:11Þ

0

c(x)

x

Figure 2.3 Absolute value of error cost function
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Obviously, the inner integral and p(z) are not negative, so if the inner integral for x̂ becomes
minimum, the average cost will be minimum. �c x̂ zjð Þ is called the conditional average cost or the
conditional average risk, and thus the estimate x̂ making the average cost minimum is equivalent
to the estimation making the conditional average cost minimum.

2.3 Four Basic Parameter Estimation Techniques

According to the different principles, parameter estimation involves the following four basic
techniques [16]: MAP, ML, MMSE, and LS estimators, which are introduced as follows.

2.3.1 Maximum A Posteriori Estimator

When the uniform average cost function is substituted into the expression of the conditional average
cost function, we obtain the following:

�c x̂jZk
� �

=
ð + ∞

−∞
c x, x̂ð Þp xjZk

� �
dx

=
ð x̂−Δ2
−∞

p xjZk
� �

dx +
ð + ∞

x̂ +Δ2

p xjZk
� �

dx

=
ð + ∞

−∞
p xjZk
� �

dx−
ð x̂ +Δ2
x̂−

Δ
2

p xjZk
� �

dx

= 1−
ð x̂+Δ2
x̂−

Δ
2

p x Zk
��� �

dx

ð2:12Þ

If we want �c x̂ zjð Þ to be minimum, the integral part on the right-hand side of the equation must be
maximum. When Δ! 0, the maximization of the integral part is equivalent to choosing x̂ to maxi-
mize the posterior PDF p(x|z). So equivalently, the estimation rule of maximizing the posterior PDF
p(x|z) is called the MAP estimator.
For some random parameters, given the prior PDF p(x), we can obtain its posterior PDF using

Bayes’ formula:

p x Zk
��� �

=
p Zk xj� �

p xð Þ
p Zkð Þ ð2:13Þ

and the value of x that maximizes its posterior PDF is called the MAP estimate for the parameter x,
that is,

x̂MAP kð Þ= argmax
x

p x Zk
��� �

= argmax
x

p Zk xj� �
p xð Þ� � ð2:14Þ

Significance: When the measurement Zk is given, the probability of finding the parameter x in
the neighborhood of the MAP estimate x̂MAP is higher than that in any other neighborhood of
the same area, as shown in Figure 2.4.
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2.3.2 Maximum Likelihood Estimator

When the likelihood function p(Zk|x) reaches maximum, the value of x is called the maximum like-
lihood estimate for the parameter x, that is,

x̂ML kð Þ= argmax
x

p Zk xj� � ð2:15Þ

Significance:When x= x̂ML, the occurrence probability of the input cumulative measurement set Zk

reaches maximum. So when the input measurement set Zk is observed, it can be decided that the
measurements are caused by the parameter x̂ML which is most likely to result in its occurrence.
The MAP equation is

∂lnp x zjð Þ
∂x

����
x = x̂MAP

= 0 ð2:16Þ

or

∂p x zjð Þ
∂x

����
x = x̂MAP

= 0 ð2:17Þ

The estimate determined by the maximum posterior equation is the MAP estimate.
Similarly, the likelihood equation can be deduced as follows:

∂lnp z xjð Þ
∂x

����
x= x̂ML

= 0 ð2:18Þ

or

∂p z xjð Þ
∂x

����
x= x̂ML

= 0 ð2:19Þ

2.3.3 Minimum Mean Square Error Estimator

When the mean square error cost function is inserted into the conditional average cost function,
we get

0

p(x|Z k)

xx̂MAP

Figure 2.4 A posteriori probability density function
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�c x̂ Zk
��� �

=
ð + ∞

−∞
c x, x̂ð Þp x Zk

��� �
dx

=
ð + ∞

−∞
x− x̂ð Þ2p x Zk

��� �
dx =E x̂−xð Þ2 Zk

��h i ð2:20Þ

Choose x̂ to minimize �c x̂ Zk
��� �

, and the MMSE estimate can be obtained.
When the first-order derivative and the second-order derivative are taken for the conditional

average cost function in (2.20), we obtain

d
dx̂

ð + ∞

−∞
x− x̂ð Þ2p x Zk

��� �
dx

	 

= −2

ð + ∞

−∞
x− x̂ð Þp x Zk

��� �
dx

	 

= −2

ð + ∞

−∞
xp x Zk

��� �
dx+ 2x̂

ð + ∞

−∞
p x Zk

��� �
dx

ð2:21Þ

and

d2

dx̂2

ð + ∞

−∞
x− x̂ð Þ2p x Zk

��� �
dx

	 

= 2

ð + ∞

−∞
p x Zk

��� �
dx= 2 ð2:22Þ

Since the second-order derivative is greater than zero, the minimum value of the conditional aver-
age cost function exists. When the first-order derivative is equal to zero, we obtain

x̂=
ð + ∞

−∞
xp x Zk

��� �
dx ð2:23Þ

To sum up, when the mean square error

E x̂−xð Þ2 Zk
��h i

ð2:24Þ

reaches minimum, the estimation value of x is called the MMSE estimate, that is,

x̂MMSE kð Þ= argmin
x

E x̂−xð Þ2 Zk
��h i

ð2:25Þ

Its solution is a conditional average value, and can be expressed by a conditional PDF as follows:

x̂MMSE kð Þ =E x Zk
��� �

=
ð
xp x Zk

��� �
dx ð2:26Þ

Since the mean square error matrix in the MMSE estimator is smaller than or equal to that obtained
by any other estimation rule, the MMSE estimator has the smallest error estimation variance matrix
and is also called the “minimum variance estimator.”
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2.3.4 Least Squares Estimator

Among the estimation techniques mentioned above, the MAP and MMSE estimators require the
given prior probability density of the values to be estimated, and theML estimator requires the given
likelihood function. If the probability density or likelihood functions are unknown, these techniques
cannot be adopted. However, the LS estimator, which needs no assumption about statistic proper-
ties, is widely used.
For the measurements

z jð Þ= h j,xð Þ+w jð Þ, j= 1,2,…,k ð2:27Þ

the LS estimate of parameter x at time k refers to the value of x that minimizes the sum of error
squares at this time, that is,

x̂LS kð Þ= argmin
x

Xk
j = 1

z jð Þ−h j,xð Þ½ �2 ð2:28Þ

The LS estimator treats signal parameter estimation as deterministic optimization, requiring no
statistical knowledge of noises or parameters to be estimated.

2.4 Properties of Estimators

2.4.1 Unbiasedness

Unbiasedness is a basic and essential requirement for an estimator. For a non-random parameter x,
the estimator of x̂ is said to be unbiased if E x̂½ �= x0, where x0 is the true value of the parameter. If in
the limit case where k! ∞ , the above result still holds true, it can be called an asymptotic unbiased
estimator; otherwise, it is a biased estimator [16, 25].
For a random variable xwith a prior PDF p(x), if E x̂½ � =E x½ �, the estimator of x̂ is unbiased, where

E x̂½ � is the mathematical expectation of the joint PDF p(Zk, x) and E[x] is the mathematical expect-
ation of the prior PDF. If in the limit case where k! ∞ , the above result still holds true, it can be
called an asymptotic unbiased estimator; otherwise, it is a biased estimator.

2.4.2 The Variance of an Estimator

The quality of an estimator is often judged by its variance. The smaller the variance of an estimator,
the narrower the range in which its value fluctuates around the parameter to be measured, and thus
the more desirable the estimate.
For the unbiased estimator x̂ of a non-random parameter x with true value x0, its variance is

var x̂ð Þ =E x̂−x0ð Þ2
h i

. For the unbiased estimator x̂ of a random parameter x, its vari-

ance is var x̂ð Þ=E x̂−xð Þ2
h i

.

2.4.3 Consistent Estimators

An estimator is said to be a consistent estimator if the estimate converges to the true value with
increasing number of observations available, that is, the probability of the estimate being different
from the true value converges to zero.
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The consistency of estimators can be judged by the convergence in mean square criterion, that is,
if the non-random parameter satisfies the following:

lim
k!∞

E x̂ kð Þ−x0½ �2
n o

= 0 ð2:29Þ

then the estimator is a consistent one.
If the random parameter satisfies the following:

lim
k!∞

E x̂ kð Þ−x½ �2
n o

= 0 ð2:30Þ

then the estimator is a consistent one. In other words, the estimator of a non-random or random
parameter is consistent if the estimate converges to the true value in some stochastic sense.
Consistency is a basic requirement for estimators, however, its superiority is demonstrated only

when the sampling size is quite large (e.g., the ML estimator), which is hard to achieve in practice.
Thus, what is normally used in engineering is unbiasedness and efficiency (variance).

2.4.4 Efficient Estimators

In two unbiased estimators for the same parameter, the one with the smaller variance is better. How-
ever, how small can the variance of the estimator be? It can be proved that under some conditions a
lower limit exists in any estimator, and that the estimator variance cannot be smaller than, but equal
to or greater than the lower limit, which is called the Cramer–Rao lower bound (CRLB).
If the mean square error corresponding to the estimate of a parameter is not smaller than the

CRLB, it can be regarded as an efficient estimator. To be specific, if the estimator x̂ kð Þ of a
non-random parameter x is unbiased and the variance is bounded, that is,

E x̂ kð Þ−x0½ �2
n o

≥ J −1 ð2:31Þ

then the estimate of a non-random parameter x which reaches the lower bound J −1 is an efficient
estimator, where

J = −E
∂2lnΛk xð Þ

∂x2

" #
x = x0

= E
∂lnΛk xð Þ

∂x

� �2
x= x0

ð2:32Þ

is the Fisher information, Λk(x) is the likelihood function, and x0 is the true value of x.
If the estimator x̂ kð Þ of a random parameter x is unbiased and its variance is bounded, that is,

E x̂ kð Þ−x½ �2
n o

≥ J −1 ð2:33Þ

then the estimate of a random parameter x which reaches the lower bound J −1 is an efficient
estimator,

J = −E
∂2lnp Zk,x

� �
∂x2

" #
=E

∂lnp Zk,x
� �
∂x

� �2
ð2:34Þ

where J −1 is called the CRLB, which is a certain quantity related to the likelihood function.
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2.5 Parameter Estimation of Static Vectors

Since in the ML and MAP estimators we need to know the likelihood function p(Zk|x) and the prior
PDF p(x), which is hard to achieve in practice, in this section we extend only the LS and MMSE
estimators to static (time-invariant) vectors [15].

2.5.1 Least Squares Estimator

For vectors, the estimate X̂ kð Þ that minimizes the quadratic error

J kð Þ =
Xk
i= 1

z ið Þ−H ið ÞX½ �0 z ið Þ−H ið ÞX½ �= Zk −HkX
� �0

Zk −HkX
� � ð2:35Þ

is the LS estimate of the non-random vector X, where the measurement at time i is

z ið Þ=H ið ÞX +W ið Þ ð2:36Þ

Here, H(i) is the measurement matrix, W(i) is the measurement noise with covariance R(i), and

Zk =

z 1ð Þ

..

.

z kð Þ

266664
377775 Hk =

H 1ð Þ

..

.

H kð Þ

266664
377775 ð2:37Þ

W k =

W 1ð Þ

..

.

W kð Þ

266664
377775 Rk =

R 1ð Þ � � � 0

..

. . .
. ..

.

0 � � � R kð Þ

266664
377775 ð2:38Þ

The LS estimate of the non-random vector X can be obtained by setting its quadratic error
gradient with respect to X̂ kð Þ to zero, that is,

∇XJ kð Þ= 2 Hk
� �0

Zk −HkX
� �

= 0 ð2:39Þ

which yields

X̂ kð Þ = Hk
� �0

Hk
h i−1

Hk
� �0

Zk ð2:40Þ

Generally, since the covariance matrix R(i) of the measurement noise W(i) is not identically
distributed, the estimate X̂ kð Þ that minimizes the weighted sum of squares of the error

J kð Þ=
Xk
i= 1

z ið Þ−H ið ÞX½ �0R−1 ið Þ z ið Þ−H ið ÞX½ � = Zk −HkX
� �0

Rk
� �−1

Zk −HkX
� � ð2:41Þ
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is more reasonable, and X̂ kð Þ is called the weighted LS estimate of the non-random vector X, that is,

X̂ kð Þ= Hk
� �0

Rk
� �−1

Hk
h i−1

Hk
� �0

Rk
� �−1

Zk ð2:42Þ

From (2.40) and (2.42) it can be found that when the error covariance matrix Rk is the unit matrix,
the weighted LS estimate is then the LS estimate. Therefore, we simply discuss the weighted LS
estimate.
Since

E X̂ kð Þ� �
= Hk

� �0
Rk
� �−1

Hk
h i−1

Hk
� �0

Rk
� �−1

E HkX +W k
� �

=X ð2:43Þ

the weighted LS estimate of (2.42) for vectors is unbiased, whose estimation error is

eX kð Þ=X− X̂ kð Þ= − Hk
� �0

Rk
� �−1

Hk
h i−1

Hk
� �0

Rk
� �−1

W k ð2:44Þ

Based on (2.44), for vectors, the error covariance weighted LS estimate is

P kð Þ=E eX kð ÞeX0
kð Þ

h i
= Hk

� �0
Rk
� �−1

Hk
h i−1

Hk
� �0

Rk
� �−1

E W k W k
� �0h i

Rk
� �−1

Hk
� �

Hk
� �0

Rk
� �−1

Hk
h i−1

= Hk
� �0

Rk
� �−1

Hk
h i−1

ð2:45Þ

For Gaussian disturbances, the LS estimate and the ML estimate of the non-random vector X are
consistent. The LS estimates obtained from (2.40) and (2.42) are processing k data points simultan-
eously, that is, the batch processing mode, generally taking a lot of calculation. The following
presents the recursive form of the LS estimate.
When the new measurement z k + 1ð Þ is available, the measurements from time 1 to k + 1 are used

to construct the multi-vector matrix, the multi-measurement matrix, the measurement error multi-
vector matrix, and the corresponding block diagonal positive definite matrix, expressed as

Zk + 1 =
Zk

z k + 1ð Þ

" #
, Hk + 1 =

Hk

H k + 1ð Þ

" #
, W k + 1 =

W k

W k + 1ð Þ

" #
, Rk + 1 =

Rk 0

0 R k + 1ð Þ

" #

From (2.45) we get the inverse of the error covariance matrix at time k + 1,

P−1 k + 1ð Þ= Hk + 1
� �0

Rk + 1
� �−1

Hk + 1 = Hk
� �0

Rk
� �−1

Hk +H0 k + 1ð ÞR−1 k + 1ð ÞH k + 1ð Þ ð2:46Þ

Hence, the information in the sense of Fisher (inverse covariance matrix) at k + 1 is equal to the
sum of the information at k and the new information about vectorX from the measurements z k + 1ð Þ.
Using the matrix inversion lemma

P−1 +H0R−1H
� �−1

=P−PH0 HPH0 +Rð Þ−1HP ð2:47Þ
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the recursion for the error covariance can be rewritten as

P k + 1ð Þ =P kð Þ−P kð ÞH0 k + 1ð Þ H k + 1ð ÞP kð ÞH0 k + 1ð Þ +R k + 1ð Þ½ �−1H k + 1ð ÞP kð Þ ð2:48Þ

Defining

S k + 1ð Þ=H k + 1ð ÞP kð ÞH0 k + 1ð Þ +R k + 1ð Þ ð2:49Þ
K k + 1ð Þ=P kð ÞH0 k + 1ð ÞS−1 k + 1ð Þ ð2:50Þ

the recursion for the covariance can also be expressed as

P k + 1ð Þ=P kð Þ−K k + 1ð ÞH k + 1ð ÞP kð Þ
= I−K k + 1ð ÞH k + 1ð Þ½ �P kð Þ =P kð Þ−K k + 1ð ÞS k + 1ð ÞK0 k + 1ð Þ ð2:51Þ

Using (2.48), one has

Pðk + 1ÞH0ðk + 1ÞR−1ðk + 1Þ
= fPðkÞH0ðk + 1Þ−PðkÞH0ðk + 1ÞS−1ðk + 1ÞHðk + 1ÞPðkÞH0ðk + 1ÞgR−1ðk + 1Þ
=PðkÞH0ðk + 1ÞS−1ðk + 1ÞfSðk + 1Þ−Hðk + 1ÞPðkÞH0ðk + 1ÞgR−1ðk + 1Þ
=PðkÞH0ðk + 1ÞS−1ðk + 1Þ =Kðk + 1Þ

ð2:52Þ

which is the other expression for the gain K(k + 1).
From (2.40) one can obtain the recursion of the estimate

X̂ k + 1ð Þ = Hk + 1
� �0

Rk + 1
� �−1

Hk + 1
h i−1

Hk + 1
� �0

Rk + 1
� �−1

Zk + 1

=P k + 1ð Þ Hk
� �0

Rk
� �−1

Zk +P k + 1ð ÞH0 k + 1ð ÞR−1 k + 1ð Þz k + 1ð Þ
= I−K k + 1ð ÞH k + 1ð Þ½ �P kð Þ Hk

� �0
Rk
� �−1

Zk +K k−1ð Þz k + 1ð Þ
= I−K k + 1ð ÞH k + 1ð Þ½ �X̂ kð Þ +K k + 1ð Þz k + 1ð Þ
= X̂ kð Þ +K k + 1ð Þ z k + 1ð Þ−H k + 1ð ÞX̂ kð Þ� �

ð2:53Þ

The new estimate X̂ k + 1ð Þ is equal to the previous estimate X̂ kð Þ plus a correction term, which is
composed of the gain K(k + 1) and the new information.

2.5.2 Minimum Mean Square Error Estimator

Suppose that x is the vector to be estimated, z is the observation of the vector x, and both the random
vectors are of joint normal distribution, that is,

y =
x

z

" #
� N �y,Pyy

� � ð2:54Þ
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where

�y=
�x

�z

" #
, Pyy =

Pxx Pxz

Pzx Pzz

" #
ð2:55Þ

Here, �x,Pxx and �z,Pxx are the mean value and the autocovariance of the random vectors x and z,
respectively, and Pxz is the cross covariance. Since

p x,zð Þ = p yð Þ=N y;�y,Pyy
� �

= 2πPyy

�� ��−1
2 exp − 1

�
2 y−�yð Þ0P−1

yy y−�yð Þ
n o

ð2:56Þ

p zð Þ =N z;�z,Pzzð Þ = 2πPzzj j−1
2 exp − 1

�
2 z−�zð Þ0P−1

zz z−�zð Þ�  ð2:57Þ

one can obtain

p xjzð Þ = p x,zð Þ
p zð Þ =

2πPyy

�� ��−1
2

2πPzzj j−1
2

exp − 1
�
2 y−�yð Þ0P−1

yy y−�yð Þ− z−�zð Þ0P−1
zz z−�zð Þ

h in o
ð2:58Þ

Set

y−�y =
x− �x

z−�z

" #
=

ξ

η

" #
ð2:59Þ

Pyy
−1 =

Txx Txz

Tzx Tzz

" #
ð2:60Þ

From (2.55) and (2.60) it then follows that

Txx
−1 =Pxx−PxzPzz

−1Pzx, Pzz
−1 =Tzz−TzxTxx

−1Txz Txx
−1Txz = −PxzPzz

−1 ð2:61Þ

Now let

q = y−�yð Þ0P−1
yy y−�yð Þ− z−�zð Þ0P−1

zz z−�zð Þ

= ξ0Txxξ + η
0Tzxξ + ξTxzη+ η

0Tzzη−η
0P−1

zz η

= ξ0Txxξ + η
0Tzxξ + ξ

0Txzη+ η
0TzxTxx

−1Txzη+ η
0Tzzη−η

0TzxTxx
−1Txzη−η

0P−1
zz η

= ξ0 + η0TzxTxx
−1

� �
Txxξ + ξ0 + η0TzxTxx

−1
� �

Txzη+ η
0 Tzz−TzxTxx

−1Txz
� �

η−η0P−1
zz η

= ξ +Txx
−1Txzη

� �0
Txx ξ +Txx

−1Txzη
� � ð2:62Þ

Since q is the quadratic form of x, the conditional PDF of x for given z is also Gaussian. Another
reason is that

ξ +T −1
xx Txzη= x− �x−PxzP

−1
zz z−�zð Þ ð2:63Þ
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Thus we get the MMSE estimate of x in terms of z as

x̂ =E xjz½ �= �x +PxzP−1
zz z−�zð Þ ð2:64Þ

In Gaussian conditions, the MMSE estimate of x in terms of z is the conditional mean value of x
for a given z. The corresponding conditional error covariance matrix is

Pxxjz =E x− x̂ð Þ x− x̂ð Þ0jz� �
=T −1

xx =Pxx−PxzP−1
zz Pzx ð2:65Þ

2.5.3 Linear Minimum Mean Square Error Estimator

If the random vectors x and z are not jointly Gaussian, it is very difficult to obtain the conditional
mean value in general. However, we can deduce the optimal linear estimate of x in terms of z. The
orthogonal principle is the necessary and sufficient condition for the linear estimator to become the
optimal estimator [16]. According to the orthogonal principle, the estimation error ex of the optimal
linear estimate is unbiased, and is orthogonal to the observation z.
Assume that

x̂ =Az+ b ð2:66Þ

is the optimal linear estimate under non-Gaussian conditions. Because the estimation error ex of the
optimal linear estimate is unbiased, we can obtain

E ex½ � =E x− x̂½ �= �x− A�z + bð Þ= 0 ð2:67Þ

It follows that

b = �x−A�z ð2:68Þ

Here the estimation error can be expressed as

ex= x− x̂ = x−Az−b= x− �x−A z−�zð Þ ð2:69Þ

Because the optimal linear estimate must satisfy the condition that the estimation error ex and the
observation z are orthogonal, we find

E exz0½ �=E x− �xð Þ−A z−�zð Þ½ � z−�z + �zð Þ0� 
=E x− �xð Þ−A z−�zð Þ½ � z−�zð Þ0� 

=Pxz−APzz = 0 ð2:70Þ

From (2.70), the solution of A can be obtained as follows:

A=PxzP−1
zz ð2:71Þ

From the simultaneous equations (2.68) and (2.71), we can obtain the expression of the LMMSE
estimate
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x̂ =Az + b = �x+A z−�zð Þ = �x+PxzP−1
zz z−�zð Þ ð2:72Þ

This estimate is the optimal linear estimate that minimizes the mean square error

J =E x− x̂ð Þ0 x− x̂ð Þ� � ð2:73Þ

under non-Gaussian conditions. Note that the expression for (2.72) is identical to that for theMMSE
estimate (2.64) under Gaussian conditions, and that it is still the linear function of the measurement
z, instead of the conditional mean value.
From (2.69) we get the mean square error corresponding to (2.72):

E exex0� 
=E x− x̂ð Þ x− x̂ð Þ0� 
=E x− �x−PxzP

−1
zz z−�zð Þ� �

x− �x−PxzP
−1
zz z−�zð Þ� �0n o

=E x−�xð Þ−PxzP−1
zz z−�zð Þ� �

x− �xð Þ0− z−�zð Þ0P−1
zz

0
Pxz

0
h in o

=Pxx−PxzP−1
zz Pzx−PxzP−1

zz Pzx +PxzP−1
zz Pzx

=Pxx−PxzP
−1
zz Pzx ð2:74Þ

where

Pxx =E x− �xð Þ x−�xð Þ0� 
Pxz =E x− �xð Þ z−�zð Þ0� 

Pzz =E z−�zð Þ z−�zð Þ0� 
It has the same expression as (2.65), but (2.72) is not the conditional mean value, so strictly speak-

ing the above equation is not a covariance matrix.

2.6 Summary

This chapter discusses some basic parameter estimation techniques in radar data processing, includ-
ing the ML, MAP, LS, and MMSE estimators. For the ML estimator, only the likelihood function is
required; for the MAP estimator, we need to know the likelihood function and the prior PDF of the
parameter to be estimated; for theMMSE estimator, we are only required to know the first-order and
second-order statistical matrix of the related parameters, without any requirement for other prob-
ability assumptions. For the LS estimator, which excludes all probability assumptions, treating
the problem of estimation as a problem of deterministic optimization can be regarded as the last
step in constantly reducing statistical demands.
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3
Linear Filtering Approaches

3.1 Introduction

Time-invariant parameter estimation techniques are analyzed and discussed in Chapter 2, the sub-
ject of which is static estimation. This chapter starts to study the estimation of time-varying param-
eters, that is, state estimation, which refers to smoothing the past motion state (including the
location, velocity, acceleration, etc.) of a target, filtering the present motion state, and predicting
the future motion state of the target [20, 65–72]. For instance, the positioning of the stations in
a radar network or satellite orbits involves static estimation, while the tracking and interception
of a moving target involves dynamic estimation. Both parameter estimation and state estimation
calculate the values of unknown parameters in accordance with a set of measurements related to
unknown parameters. But when processing observations we must consider the time evolution of
the unknown parameters and the observed data, since the unknown parameters are time functions
in the state estimation. This chapter mainly covers the Kalman filter (KF), including system model
building, corresponding filtering models, filter initialization methods, the definition and judgment
methods of filter stability, the controllability and observability of stochastic linear systems, steady-
state Kalman filters, etc.

3.2 Kalman Filter

Kalman filters are the best not only among all linear filters, but also among all filters when the
noise process is Gaussian. Kalman filtering requires no conditions, except that the system noise
and the measurement noise be Gaussian white noise and that their secondary moments be given.
Therefore, it is fully applicable to the estimation of non-stationary, multi-dimensional random
sequences.
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3.2.1 System Model

The state variable method is a very valuable way of describing a dynamic system, where the relation
of system input and output is described by the state transition model and the output observation
model in a time domain. The input is expressed by the determined time function and the state equa-
tions composed of the unpredictable variables or the random processes of noises, while the output
(often disturbed by random measurement errors) is a function of the state vectors, and thus can be
described by measurement equations.

3.2.1.1 State Equation

Constant Velocity (CV) Model
The state equation is the assumption about the target motion laws, for example, assuming that the
target moves in a straight line with a constant velocity in a two-dimensional plane. Then, in the
discrete-time system, the target state (xk, yk) at time tk can be denoted as

xk = x0 + vxtk = x0 + vxkT ð3:1Þ
yk = y0 + vytk = y0 + vykT ð3:2Þ

where (x0, y0) is the target location at the initial moment, vx and vy are the velocity along the x axis
and the y axis, respectively, and T is the sampling interval.
Equations (3.1) and (3.2) can be denoted in the recursive form as

xk + 1 = xk + vxT = xk + _xkT ð3:3Þ
yk + 1 = yk + vyT = yk + _ykT ð3:4Þ

It is impossible to acquire an accurate model of targets, and there are plenty of unpredictable phe-
nomena. In other words, targets are unlikely to be in an absolute constant-velocity motion, and their
velocity must be experiencing some minor random fluctuations, for example, in the constant-
velocity motion of the target, the pilot or environmental disturbance, etc. can result in some unpre-
dictable changes in the velocity, such as the effects on a plane’s speed of clouds and gusts of wind
during flight. These minor changes in velocity can be seen as process noise when building a model.
So, with process noise introduced, (3.3) and (3.4) should be expressed as

xk + 1 = xk + _xkT +
1
2
vxT

2 ð3:5Þ

yk + 1 = yk + _ykT +
1
2
vyT

2 ð3:6Þ

Here we emphasize that vx and vy refer to the random changes of x axis velocity and y axis velocity
of the target. The velocity of the target can be described as

_xk + 1 = _xk + vxT ð3:7Þ
_yk + 1 = _yk + vyT ð3:8Þ
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In constant-velocity models, the state vector X(k) used to describe the system’s dynamic features
is X kð Þ = xk yk _xk _yk½ �0, so (3.5)–(3.8) can be represented in matrix form as

x k + 1ð Þ
y k + 1ð Þ
_x k + 1ð Þ
_y k + 1ð Þ

266664
377775=

1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

266664
377775

x kð Þ
y kð Þ
_x kð Þ
_y kð Þ

266664
377775+

0:5T2 0

0 0:5T2

T 0

0 T

266664
377775 vx

vy

" #
ð3:9Þ

That is, the target state equation is

X k + 1ð Þ=F kð ÞX kð Þ+Γ kð Þv kð Þ ð3:10Þ

where v kð Þ = vx, vy
� �0

is the process noise vector,

F kð Þ=

1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

266664
377775 ð3:11Þ

is the state transition matrix, and

Γ kð Þ=

0:5T2 0

0 0:5T2

T 0

0 T

266664
377775 ð3:12Þ

is the process noise distribution matrix.
If the target is three-dimensional with state vector X kð Þ= xk yk zk _xk _yk _zk½ �0, then its process

noise vector v kð Þ= vx, vy, vz
� �0

, while the state transition matrix and the process noise distribution
matrix of the system are

F kð Þ =

1 0 0 T 0 0

0 1 0 0 T 0

0 0 1 0 0 T

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

26666666664

37777777775
ð3:13Þ

Γ kð Þ =

0:5T2 0 0

0 0:5T2 0

0 0 0:5T2

T 0 0

0 T 0

0 0 T

26666666664

37777777775
ð3:14Þ
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Constant Acceleration (CA) Model
If the target moves with constant acceleration along a straight line in a two-dimensional plane,
considering the random changes in velocity, the location and velocity can be expressed in
recursive form as

xk + 1 = xk + _xkT +
1
2
€xkT

2 +
1
2
vxT

2 ð3:15Þ

yk + 1 = yk + _ykT +
1
2
€ykT

2 +
1
2
vyT

2 ð3:16Þ

_xk + 1 = _xk +€xkT + vxT ð3:17Þ
_yk + 1 = _yk +€ykT + vyT ð3:18Þ

€xk + 1 =€xk + vx ð3:19Þ
€yk + 1 =€yk + vy ð3:20Þ

So, the target state equation obtained from (3.15)–(3.20) has the same form as (3.10), but now

the state vector is X kð Þ = xk _xk €xk yk _yk €yk½ �0, the process noise vector is v kð Þ= vx, vy
� �0

, and the
corresponding state transition matrix and process noise distribution matrix are, respectively,

F kð Þ =

1 T
1
2
T2 0 0 0

0 1 T 0 0 0

0 0 1 0 0 0

0 0 0 1 T
1
2
T2

0 0 0 0 1 T

0 0 0 0 0 1

26666666666664

37777777777775
Γ kð Þ =

1
2
T2 0

T 0

1 0

0
1
2
T2

0 T

0 1

26666666666664

37777777777775
ð3:21Þ

Equally, when the target moves with constant velocity and constant acceleration in a three-
dimensional space, the corresponding state vector is X kð Þ= xk _xk €xk yk _yk €yk zk _zk €zk½ �0 and
the process noise vector is v kð Þ = vx, vy, vz

� �0
. Then, the system’s state transition matrix and process

noise distribution matrix are

F kð Þ=

1 T
1
2
T2 0 0 0 0 0 0

0 1 T 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 T
1
2
T2 0 0 0

0 0 0 0 1 T 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 T
1
2
T2

0 0 0 0 0 0 0 1 T

0 0 0 0 0 0 0 0 1

26666666666666666666664

37777777777777777777775

Γ kð Þ=

1
2
T2 0 0

T 0 0

1 0 0

0
1
2
T2 0

0 T 0

0 1 0

0 0
1
2
T2

0 0 T

0 0 1

26666666666666666666664

37777777777777777777775

ð3:22Þ
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Coordinate Turn (CT) Model
The principle of the CT model is shown in Figure 3.1.
We see that

vx = vcosφ vy = vsinφ ð3:23Þ
owing to the fact that

ω=
dφ
dt

ð3:24Þ
so

dvx
dt

= −vsinφ
dφ
dt

= −vyω ð3:25Þ

dvy
dt

= vcosφ
dφ
dt

= vxω ð3:26Þ

Then, we get

_x tð Þ
€x tð Þ
_y tð Þ
€y tð Þ

266664
377775=

0 1 0 0

0 0 0 −ω tð Þ
0 0 0 1

0 ω tð Þ 0 0

266664
377775

x tð Þ
_x tð Þ
y tð Þ
_y tð Þ

266664
377775+V tð Þ ð3:27Þ

where V(t) is the process noise, usually assumed as Gaussian white noise. After discrete treatment
and Laplace transform of the above equation, we obtain the system state matrix of the turn model as
follows [50, 51]:

F kð Þ =

1
sinωT
ω

0
cosωT −1

ω

0 cosωT 0 −sinωT

0
1−cosωT

ω
1

sinωT
ω

0 sinωT 0 cosωT

266666664

377777775
ð3:28Þ

when the rate of turn (ω) is given.

y

x

vy(t)

vx(t)au

at

φ

v(t)

Figure 3.1 Diagram of coordinate turn model
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When the rate of turn cannot be known accurately, the standard CT model should be extended to
have an additional element ω in the state vector, that is,

F kð Þ=

1
sinωT
ω

0
cosωT −1

ω
0

0 cosωT 0 −sinωT 0

0
1−cosωT

ω
1

sinωT
ω

0

0 sinωT 0 cosωT 0

0 0 0 0 1

266666666664

377777777775
ð3:29Þ

Now the corresponding process noise distribution matrix is

Γ kð Þ=
T2=2 T 0 0 0

0 0 T2=2 T 0

0 0 0 0 1

264
375
0

ð3:30Þ

In addition, it should be noted that the positions of the elements in the state vector X(k) can be
interchanged randomly, and that those of the elements in the state transition matrix and process
noise distribution matrix should be interchanged accordingly. As an increase in dimension of
the state vector will lead to an increase in calculation complexity as well as an increase in accuracy
of the estimation, simple mathematical models should be adopted as far as possible when the
requirements for model accuracy and tracking performance are met.
Considering that there can be some control signals during the target motion process, the state

equation is generally written as

X k + 1ð Þ=F kð ÞX kð Þ+G kð Þu kð Þ+V kð Þ ð3:31Þ

where G(k) is the input control matrix, u(k) is the known input or control signal, and V(k) is a white
Gaussian noise sequence with zero mean and covariance Q(k), that is, E V kð ÞV0 jð Þ½ �=Q kð Þδkj,
where δkj is the Kronecker delta function. This property shows that the process noises are mutually
independent at different times. If the process noise V(k) is replaced by Γ(k)v(k), then Q(k) will
change into Γ(k)q(k)Γ0(k).

3.2.1.2 Measurement Equation

The measurement equation is the hypothesis for a radar measurement process. For linear systems,
the measurement equation can be denoted as

Z k + 1ð Þ =H k + 1ð ÞX k + 1ð Þ+W k + 1ð Þ ð3:32Þ

where Z k + 1ð Þ is the measurement vector, H k + 1ð Þ is the measurement matrix, and W k + 1ð Þ is a
white Gaussian measurement noise sequence with zero mean and covariance R k + 1ð Þ, that is,
E W kð ÞW0 jð Þ½ �=R kð Þδkj. This property shows that measurement noises are divergent at different
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times, and it assumes that the process noise sequence, the measurement noise sequence, and the
target initial state are independent.
When modeling a target moving with constant velocity or constant acceleration in a

two-dimensional plane, the corresponding vectors are X kð Þ = xk yk _xk _yk½ �0 and X kð Þ =
xk _xk €xk yk _yk €yk½ �0, respectively. In these two conditions the measurement vectors are both
Z kð Þ = xk yk½ �0, and the measurement matrixes are, respectively,

H kð Þ = 1 0 0 0

0 1 0 0

" #
ð3:33Þ

H kð Þ = 1 0 0 0 0 0

0 0 0 1 0 0

" #
ð3:34Þ

When modeling a target moving with constant velocity or constant acceleration in a three-
dimensional space, the corresponding state vectors are, respectively, X kð Þ= xk yk zk _xk _yk _zk½ �0
and X kð Þ= xk _xk €xk yk _yk €yk zk _zk €zk½ �0. In these two conditions the measurement vectors
are both Z kð Þ = xk yk½ �0, and the measurement matrixes are, respectively,

H kð Þ =
1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

264
375 ð3:35Þ

H kð Þ =
1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

264
375 ð3:36Þ

When the CT model is applied, the state vectors are X kð Þ = xk _xk yk _yk½ �0 and X kð Þ=
xk _xk yk _yk ω½ �0, respectively. In these cases, the measurement vectors are both Z kð Þ = xk yk½ �0,
and the corresponding measurement matrixes are, respectively,

H kð Þ = 1 0 0 0

0 0 1 0

" #
ð3:37Þ

H kð Þ = 1 0 0 0 0

0 0 1 0 0

" #
ð3:38Þ

The above discrete-time linear system can also be denoted by the block diagram in Figure 3.2, and
the system contains the following prior information [16, 25]:

1. The initial state X(0) is Gaussian, with mean value X̂ 0j0ð Þ and covariance P 0j0ð Þ.
2. The initial state is unrelated to the process and measurement noise sequences.
3. The process and measurement noise sequences are not mutually related.

In the above hypothetical conditions, the linear property of the state equation [see (3.31)] and the
measurement equation [see (3.32)] can maintain the Gaussian property of states and measurements.
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If the estimation of the state X(k) made at time k is marked as X̂ k jjð Þ according to the known meas-
urements at time j and before time j, then the estimation can be summed up, in terms of the time
indicated by the state estimation, in the following three types:

1. Filtering if k = j, with X̂ k jjð Þ as the filtering value of the state X(k) at time k.
2. Prediction if k > j, with X̂ k jjð Þ as the predicted value of the state X(k) at time k.
3. Smoothing if k < j, with X̂ k jjð Þ as the smoothed value of the state X(k) at time k.

From now on, we discuss prediction and filtering rather than smoothing.

3.2.2 Filtering Model

In all linear filters, the linear mean square estimation filter is optimal [25]. Filters under the linear
mean square error criterion include the Wiener filter and the Kalman filter. These two filters are
consistent in static conditions, but the Kalman filter, applicable to the non-stationarity of finite
observation intervals, is a recursive algorithm for computation.
In Section 2.5.2 the MMSE estimate of the random vector x in the static (time-invariant)

condition is

x̂ =E xjz½ � = �x +PxzP−1
zz z−�zð Þ ð3:39Þ

with corresponding conditional error covariance matrix

Pxxjz =E x− x̂ð Þ x− x̂ð Þ0jz� �
=Pxx−PxzP

−1
zz Pzx ð3:40Þ

Similarly, the MMSE estimate in the dynamic condition can be defined as

x̂! X̂ kjkð Þ=E X kð ÞjZk
� � ð3:41Þ

Measurement
equation

Dynamic
equation 

V(k)
W(k)

F(k)
X(k) Z(k)X(k+1)

Γ(k)

G(k)

u(k)

H(k) Filter

Figure 3.2 Discrete-time linear system
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where

Zk = Z jð Þ, j= 1,2,…,kf g ð3:42Þ

The state error covariance matrix accompanying (3.41) can be defined as

P kjkð Þ=E X kð Þ− X̂ kjkð Þ� �
X kð Þ− X̂ kjkð Þ� �0jZk

n o
=E eX kjkð ÞeX0

kjkð ÞjZk
n o

ð3:43Þ

Applying the expectation operator with Zk as the condition in (3.31), we obtain the one-step
prediction of the state

�x! X̂ k + 1jkð Þ =E X k + 1ð ÞZk
� �

=E F kð ÞX kð Þ +G kð Þu kð Þ+V kð ÞjZk
� �

=F kð ÞX̂ kjkð Þ +G kð Þu kð Þ
ð3:44Þ

The error of the predicted value is

eX k + 1jkð Þ =X k + 1ð Þ− X̂ k + 1jkð Þ =F kð ÞeX kjkð Þ+V kð Þ ð3:45Þ

The one-step predicted covariance is

Pxx !P k + 1 kjð Þ =E eX k + 1jkð ÞeX0
k + 1jkð ÞjZk

h i
=E F kð ÞeX kjkð Þ+V kð Þ

h i eX0
kjkð ÞF0 kð Þ +V0 kð Þ

h i
jZk

n o
=F kð ÞP k kjð ÞF0 kð Þ+Q kð Þ

ð3:46Þ

Note: The one-step predicted covariance P k + 1 kjð Þ is a symmetric matrix, which can be used to
judge the prediction uncertainty, so the smaller P k + 1 kjð Þ is, the more accurate the prediction will
be.
By taking the expectation values of (3.32) with Zk as the condition at time k + 1, we can similarly

get the measurement prediction

�Z! Ẑ k + 1jkð Þ=E Z k + 1ð ÞjZk
� �

=E H k + 1ð ÞX k + 1ð Þ+W k + 1ð Þð ÞjZk
� �

=H k + 1ð ÞX̂ k + 1 kjð Þ
ð3:47Þ

It follows that we can acquire the difference between the predictions and the measurements, as

eZ k + 1jkð Þ=Z k + 1ð Þ− Ẑ k + 1jkð Þ =H k + 1ð ÞeX k + 1jkð Þ+W k + 1ð Þ ð3:48Þ

The prediction covariance (or innovation covariance) of the measurement is

Pzz ! S k + 1ð Þ=E eZ k + 1jkð ÞeZ0
k + 1jkð ÞjZk

h i
=E H k + 1ð ÞeX k + 1jkð Þ+W k + 1ð Þ

h i eX0
k + 1jkð ÞH0 k + 1ð Þ+W 0 k + 1ð Þ

h i
jZk

n o
=H k + 1ð ÞP k + 1jkð ÞH0 k + 1ð Þ+R k + 1ð Þ

ð3:49Þ
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Note: The innovation covariance S k + 1ð Þ is also a symmetric matrix, used to judge the uncertainty
of innovations, so the smaller the innovation covariance is, the more accurate the measurements
will be.
The covariance between the state and the measurement is

Pxz !E eX k + 1jkð ÞeZ0
k + 1jkð ÞjZk

h i
=E eX k + 1jkð Þ H k + 1ð ÞeX k + 1jkð Þ+W k + 1ð Þ

h i0
jZk

n o
=P k + 1jkð ÞH0 k + 1ð Þ

ð3:50Þ

The gain is

PxzP−1
zz !K k + 1ð Þ =P k + 1jkð ÞH0 k + 1ð ÞS−1 k + 1ð Þ ð3:51Þ

The amount of gain reflects the contribution of the recent measurement to the state estimate.
It follows that we can get the state updating equation at time k + 1:

X̂ k + 1jk + 1ð Þ= X̂ k + 1jkð Þ+K k + 1ð Þv k + 1ð Þ ð3:52Þ

where v k + 1ð Þ is the innovation or the measurement residual, that is,

v k + 1ð Þ = eZ k + 1jkð Þ=Z k + 1ð Þ− Ẑ k + 1jkð Þ ð3:53Þ

Equation (3.52) shows that the estimation X̂ k + 1 k + 1jð Þ at time k + 1 is equal to the state predic-
tion value X̂ k + 1 kjð Þ at this time plus a correction, which is related to the gain K k + 1ð Þ and the
innovation.
The covariance updating equation is

P k + 1jk + 1ð Þ=P k + 1jkð Þ−P k + 1jkð ÞH0 k + 1ð ÞS−1 k + 1ð ÞH k + 1ð ÞP k + 1jkð Þ ð3:54Þ
= I−K k + 1ð ÞH k + 1ð Þ½ �P k + 1jkð Þ ð3:55Þ
=P k + 1jkð Þ−K k + 1ð ÞS k + 1ð ÞK0 k + 1ð Þ ð3:56Þ
= I−K k + 1ð ÞH k + 1ð Þ½ �P k + 1jkð Þ I +K k + 1ð ÞH k + 1ð Þ½ �0

−K k + 1ð ÞR k + 1ð ÞK0 k + 1ð Þ ð3:57Þ

where I is the unit matrix with the same dimensions as the covariance. Equation (3.57) can guarantee
the symmetry and positive definiteness of the covariance matrix P.
Another form of the filter gain is

P k + 1jk + 1ð ÞH0 k + 1ð ÞR−1 k + 1ð Þ
= P k + 1jkð ÞH0 k + 1ð Þ−P k + 1ð jkÞH0 k + 1ð ÞS−1 k + 1ð ÞH k + 1ð ÞP k + 1jkð ÞH0 k + 1ð Þ½ �R−1 k + 1ð Þ
=P k + 1jkð ÞH0 k + 1ð ÞS−1 k + 1ð Þ S k + 1ð Þ−H k + 1ð ÞP k + 1jkð ÞH0 k + 1ð Þ½ �R−1 k + 1ð Þ
=K k + 1ð Þ

ð3:58Þ

Kalman filters are the best not only among all linear filters, but also among all filters when the
process noise is Gaussian. Kalman filtering requires no conditions, except that the system noise and
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the measurement noise be Gaussian white noise and that their secondary moments be known, so it is
fully applicable to the estimation for non-stationary, multi-dimensional random sequences.
Figure 3.3 shows the equations and filtering flow contained in the Kalman filter. Figure 3.4
illustrates one cycle of the Kalman filter; the rest of the cycles can be produced in the same way.

3.2.3 Initialization of Kalman Filters

The initialization of the state estimation discussed in this section is an important prerequisite for the
use of the Kalman filter. Only when initialization is done can the Kalman filter be used to track
targets.

3.2.3.1 Initialization of Two-Dimensional State Vector Estimation

The system’s state equation and measurement equation are the same as (3.31) and (3.32), where the
state vector is expressed as X = x, _x½ �0, the measurement noise asW kð Þ�N 0,rð Þ, and they are inde-
pendent of the process noise. In this case the initialization of state estimation can be achieved by the

Initial state estimation

State estimation at k
X̂(k ∣ k)

X̂(k + 1∣ k) = F(k)·

X̂(k ∣ k) + G(k) u(k)

One-step predicted of state
estimation

Initial covariance

P(k + 1∣ k ) = F(k)·
P(k ∣ k ) Fʹ (k) + Q(k)

One-step predicted of
covariance

Ẑ(k + 1∣ k ) =
H(k + 1)X̂ (k + 1∣ k )

Measurement predicted 

S(k + 1) = H(k + 1)P(k + 1∣ k )·
Hʹ(k + 1) + R(k + 1)

Innovation covariance

–Ẑ (k + 1∣ k )
v(k + 1) = Z(k + 1)

Innovation

K(k + 1) = P(k + 1∣ k )·
Hʹ(k + 1) S–1(k + 1)

Gain 

P(k + 1∣ k + 1) = P(k + 1∣ k)
–K(k + 1) S(k + 1)Kʹ(k + 1)

Covariance updating equation

X̂(k + 1∣ k + 1) = X̂(k + 1∣ k)
+K(k + 1) v (k + 1)

State updating equation

X(k + 1) = F(k) X(k)
+G(k) u(k) + V(k)

State equation

Z(k + 1) = H(k + 1).

X(k + 1) + W(k + 1)

Measurement equation

Covariance of state
estimation at k

P(k ∣ k)

Figure 3.3 Kalman filter algorithm
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difference method of two points, which only uses two measurements Z(0) and Z(1) at the first and
second time to make initialization, so the initial state is

X̂ 1j1ð Þ= x̂ 1j1ð Þ
_̂x 1j1ð Þ

" #
=

Z 1ð Þ
Z 1ð Þ−Z 0ð Þ

T

24 35 ð3:59Þ

where T is the sampling interval. The initial covariance is

P 1j1ð Þ = r r=T

r=T 2r=T2

" #
ð3:60Þ

Hence, the state estimation and filtering start from time k = 2.
When the algorithm goes through the Monte Carlo test many times, there must be new noises in

each test, and then the same method should be used for initialization. In Monte Carlo tests, the
repeated use of the same initial conditions will lead to biased estimation, so for each test the initial
state estimation should be randomly selected again. The two-dimensional Kalman filter is usually
used in conditions of x, y, and z axis decoupling filtering.

3.2.3.2 Initialization of Four-Dimensional State Vector Estimation

The initialization in this case is the processing of two-coordinate radar data. If the system’s state
vector is denoted as

X kð Þ= x _x y _y½ �0 ð3:61Þ

and the measurement Z(k) in the Cartesian coordinate system is

Z kð Þ= Z1 kð Þ
Z2 kð Þ

" #
=

x kð Þ
y kð Þ

" #
=

ρcosθ

ρsinθ

" #
ð3:62Þ

Measurement

Measure equation

State equation

Initial covariance

P(1∣ 1)X̂(1∣ 1)

X̂(2∣ 1)

X̂(2∣ 2)

Ẑ(2∣ 1)

P(2∣ 1)

P(2∣ 2)

K(2)v (2)

S(2)

Initial state

Figure 3.4 Single-cycle flow of Kalman filter algorithm
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where ρ and θ are, respectively, the target’s radial distance and the azimuth measurement data in
the polar coordinate system, then the system’s initial state can be determined by the measurements
Z(0) and Z(1) at the last two times, that is,

X̂ 1 1jð Þ= Z1 1ð Þ Z1 1ð Þ−Z1 0ð Þ
T

Z2 1ð Þ Z2 1ð Þ−Z2 0ð Þ
T

� �0
ð3:63Þ

The measurement noise covariance at time k in the Cartesian coordinate system is

R kð Þ = r11 r12

r12 r22

" #
=A

σ2ρ 0

0 σ2θ

" #
A0 ð3:64Þ

where σ2ρ and σ2θ denote the covariance of the distance and azimuth measurement error,
respectively, and

A=
cosθ −ρsinθ

sinθ ρcosθ

" #
ð3:65Þ

From the elements in the measurement noise covariance, we get the initial covariance matrix in
four-dimensional state vector conditions as

P 1j1ð Þ=

r11 1ð Þ r11 1ð Þ=T r12 1ð Þ r12 1ð Þ=T
r11 1ð Þ=T 2r11 1ð Þ=T2 r12 1ð Þ=T 2r12 1ð Þ=T2

r12 1ð Þ r12 1ð Þ=T r22 1ð Þ r22 1ð Þ=T
r12 1ð Þ=T 2r12 1ð Þ=T2 r22 1ð Þ=T 2r12 1ð Þ=T2

266664
377775 ð3:66Þ

3.2.3.3 Initialization of Six-Dimensional State Vector Estimation

This case describes the processing of three-coordinate radar data. If the system’s state vector is
denoted as

X kð Þ = x _x y _y z _z½ �0 ð3:67Þ

then the measurement Z(k) in the Cartesian coordinate system is

Z kð Þ =
Z1 kð Þ
Z2 kð Þ
Z3 kð Þ

264
375 =

x kð Þ
y kð Þ
z kð Þ

264
375 =

ρcosθcosε

ρsinθcosε

ρsinε

264
375 ð3:68Þ

where ρ and θ are defined as in four-dimensional vector conditions, and ε is the measurement data
of target pitching. So, the initial state of the system is determined by the two measurements Z(0)
and Z(1) at the last two times, that is,

46 Radar Data Processing with Applications



X̂
�
1
��1� = Z1 1ð Þ, Z1 1ð Þ−Z1 0ð Þ

T
, Z2 1ð Þ, Z2 1ð Þ−Z2 0ð Þ

T
, Z3 1ð Þ, Z3 1ð Þ−Z3 0ð Þ

T

� �0
ð3:69Þ

In this case, the measurement noise covariance at time k in the Cartesian coordinate system is

R kð Þ =
r11 r12 r13

r12 r22 r23

r13 r23 r33

264
375 =A

σ2ρ 0 0

0 σ2θ 0

0 0 σ2ε

264
375A0 ð3:70Þ

where σ2ρ and σ
2
θ are defined as in four-dimensional vector conditions, σ2ε is the variance of pitching

measurement error, and

A=

cosθcosε −ρsinθcosε −ρcosθ sinε

sinθcosε ρcosθcosε −ρsinθ sinε

sinε 0 ρcosε

264
375 ð3:71Þ

From the elements in the measurement noise covariance, we get the initial covariance matrix in
the six-dimensional vector condition

P 1j1ð Þ =

r11 1ð Þ r11 1ð Þ=T r12 1ð Þ r11 1ð Þ=T r13 1ð Þ r13 1ð Þ=T
r11 1ð Þ=T 2r11 1ð Þ=T2 r12 1ð Þ=T 2r12 1ð Þ=T2 r13 1ð Þ=T 2r13 1ð Þ=T2

r12 1ð Þ r12 1ð Þ=T r22 1ð Þ r22 1ð Þ=T r23 1ð Þ r23 1ð Þ=T
r12 1ð Þ=T 2r12 1ð Þ=T2 r22 1ð ÞT2 2r22 1ð Þ=T2 r23 1ð Þ=T 2r23 1ð Þ=T2

r13 1ð Þ r13 1ð Þ=T r23 1ð Þ r23 1ð Þ=T r23 1ð Þ r33 1ð Þ=T
r13 1ð Þ=T 2r13 1ð Þ=T2 r13 1ð Þ=T 2r13 1ð Þ=T2 r33 1ð Þ=T 2r13 1ð Þ=T2

26666666666664

37777777777775
ð3:72Þ

3.2.3.4 Initialization of Nine-Dimensional State Vector Estimation

In this case, the system state vector is denoted as

X kð Þ= x _x €x y _y €y z _z €z½ �0 ð3:73Þ

Compared with the six-dimensional case, only the acceleration item is added, so the target meas-
urement value Z(k) and the measurement noise covariance R(k) in the Cartesian coordinate system
are the same as those in six-dimensional conditions.
Because the acceleration is contained, the initial state of the system should be determined by the

measurement values Z(0), Z(1), and Z(2) at the last three times, that is,
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X̂ 2j2ð Þ=

Z1 2ð Þ
Z1 2ð Þ−Z1 1ð Þð Þ=T
Z1 2ð Þ−Z1 1ð Þð Þ=T − Z1 1ð Þ−Z1 0ð Þð Þ=T½ �=T

Z2 2ð Þ
Z2 2ð Þ−Z2 1ð Þð Þ=T
Z2 2ð Þ−Z2 1ð Þð Þ=T − Z2 1ð Þ−Z2 0ð Þð Þ=T½ �=T

Z3 2ð Þ
Z3 2ð Þ−Z3 1ð Þð Þ=T
Z3 2ð Þ−Z3 1ð Þð Þ=T − Z3 1ð Þ−Z3 0ð Þð Þ=T½ �=T

26666666666666666664

37777777777777777775

ð3:74Þ

The initial covariance matrix is

P 2j2ð Þ=
P11 P12 P13

P12 P22 P23

P13 P23 P33

264
375 ð3:75Þ

where P11, P12, P13, P22, P23, and P33 are block matrixes, and

Pij =

rij 2ð Þ rij 2ð Þ
T

rij 2ð Þ
T2

rij 2ð Þ
T

rij 2ð Þ+ rij 1ð Þ
T2

rij 2ð Þ+ 2rij 1ð Þ
T3

rij 2ð Þ
T2

rij 2ð Þ + 2rij 1ð Þ
T3

rij 2ð Þ+ 4rij 1ð Þ + rij 0ð Þ
T4

2666666664

3777777775
, i= 1,2,3, j= 1,2,3 ð3:76Þ

3.3 Steady-State Kalman Filter

In Section 3.2 we presented in detail the basic equations of Kalman filtering for linear systems. Since
the Kalman filter adopts a recursive calculation, the initial values of the state and the estimation error
variance matrix must be given when the algorithm starts to calculate. When X̂ 0j0ð Þ =E X 0ð Þ½ � and
E eX 0j0ð ÞeX0

0j0ð Þ
h i

, the filtering estimation is unbiased from the beginning, and the estimation error

covariance matrix is the least. However, in practical applications, the initial state estimation and the
initial covariance matrix of Kalman filters only make a hypothesis or estimation based on the meas-
urement data, in other words, the values used for the initial state estimation and the initial covariance
matrix are not the mean values and the corresponding estimation error covariance matrix. So how
does the deviation of the initial state estimation from the hypothetical case of the initial covariance
matrix affect the filtering results? Do these effects get stronger as the filtering time gets longer to
cause filtering divergence, or wear off when the filtering goes on? This section will study under what
conditions these effects weaken, that is, the effects of filtering initial values on Kalman filtering and
the steady-state Kalman filter.
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3.3.1 Mathematical Definition and Judgment Methods for Filter Stability

3.3.1.1 Mathematical Definition of Filter Stability

For any given positive number ε> 0, if another positive number δ > 0 can be found and the initial
states X̂ 0j0ð Þ, i = 1,2 satisfy [20]

X̂
1
0j0ð Þ− X̂2

0j0ð Þ
			 			< δ ð3:77Þ

then there exists

X̂
1
kjkð Þ− X̂2

kjkð Þ
			 			< ε 8k ð3:78Þ

and the filter is steady.
Since filter stability means that the effect of the initial estimation value selected on the filtering

value X̂ kjkð Þ lessens as the filtering time increases, in what conditions does the selection of the ini-
tial values of the filter gradually produce no effect on the filtering results? That is, in what conditions
is the filtering steady? How should we make a judgment? That is what we will discuss next.

3.3.1.2 Stability Judgment

If the random linear system is consistently and completely controllable and consistently and com-
pletely observable, then the Kalman filter is consistently asymptotically steady [20], that is, when
the filtering time is long enough, the Kalman filtering value will become asymptotically independ-
ent of the selection of the filtering initial value. The controllability of the random linear system is
used to describe the ability of the system random noise to affect the system state, and observability
means being able to obtain the target position information from observations by using a certain algo-
rithm. For a random linear definite constant system, being consistently and completely controllable
and consistently and completely observable can be thought of, respectively, as being completely
controllable and completely observable. What is it to be completely controllable? And what is it
to be completely observable? These questions will be discussed in the following section.

3.3.2 Controllability and Observability of Random Linear System

Definition (completely controllable): The necessary and sufficient conditions for the complete
controllability of the random linear discrete system are that there exists a positive integer N, which
makes the controllability matrix satisfy

Xk
i= k−N + 1

FikΓi−1Qi−1Γ0
i−1F

0
ik > 0 ð3:79Þ

where Fik is the state transition matrix from moment i to k, and Γi−1 is the simplified form of the
process noise distribution matrix Γði−1Þi.
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For a random linear definite constant system with identical sampling interval, the state transition
matrix Fki from time i to k can be expressed as (k− i) one-step state transition matrixes multiplied,
that is, Fki =Fk− i, so from (3.79) we get

Xk
i= k−N + 1

Fk− iΓQi−1Γ0 Fk− i
� �

> 0 ð3:80Þ

Definition (completely observable): The necessary and sufficient conditions for the random linear
discrete system to be completely observable are that there exists a positive integer N, which makes
the matrix satisfy Xk

i= k−N + 1

F0
jkH

0
jR

−1
j HjFjk > 0 ð3:81Þ

For a random linear definite constant system, the state transition matrix from time j to k can be
expressed as (k− j) one-step state transition matrixes multiplied, that is, Fjk =Fk− j, so from (3.81)
we get

Xk
j= k−N + 1

Fk− j
� �0

H0
jR

−1
j HjF

k− j > 0 ð3:82Þ

Equations (3.80) and (3.82) are to obtain a sum, and both (k− i) and (k− j) vary within 0 to (N−1),
so they can be further streamlined by taking common factors, which will not be stated in detail.
If a random system is observable, it is perfectly possible to obtain the target position information

from observations by using a certain algorithm.
For an ordinary system, if Qi−1 > 0 and Rj > 0, we can deduce that the necessary and sufficient

conditions under which the random linear definite constant system is completely controllable and
completely observable are Xn−1

l= 0

FlΓΓ0 Fl
� �0

> 0 ð3:83Þ

Xn−1
l= 0

Fl
� �0

H0HFl > 0 ð3:84Þ

where n is the dimension number of state variables.
From the above analysis, we find that the controllability of a random linear definite constant sys-

tem is related to its state transition matrix and process noise distribution matrix, while the observa-
bility is related to its state transition matrix and the observation matrix. When P 0j0ð Þ,Q(k), andR(k)
cannot be acquired accurately, if the possible range of their values is known, then we can use their
possible and larger values, that is, the conservative values, which can prevent the actual estimation
error variance matrix from diverging [20].

3.3.3 Steady-State Kalman Filter

When the observation time becomes longer and longer, steady-state Kalman filters can be used to
describe the characteristics of the one-step prediction covariance and the state updating covariance.
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In other words, when the observation time k!∞, the steady-state Kalman filter can be used to
describe whether the covariance has a definite limit value, and under what conditions the definite
limit value occurs. The one-step state prediction in (3.44) and the state updating equation in (3.52)
can be combined to create a single recursive formula of the one-step prediction of the state:

X̂ k + 1jkð Þ=F kð ÞX̂ kjkð Þ +G kð Þu kð Þ
=F kð Þ X̂ kjk−1ð Þ+K kð Þv kð Þ� �

+G kð Þu kð Þ
=F kð Þ X̂ kjk−1ð Þ+F kð ÞK kð ÞZ kð Þ−H kð ÞX̂ kjk−1ð Þ� �

+G kð Þu kð Þ
=F kð Þ I−K kð ÞH kð Þ½ �X̂ kjk−1ð Þ +F kð ÞK kð ÞZ kð Þ +G kð Þu kð Þ

ð3:85Þ

Similarly, we can obtain a single recursive formula of the one-step prediction covariance, that is,
the discrete-time matrix Riccati equation

P k + 1jkð Þ =F kð ÞP kjkð ÞF0 kð Þ +Q kð Þ
=F kð Þ P kjk−1ð Þ−P kjk−1ð ÞH0 kð ÞS−1 kð ÞH kð ÞP kjk−1ð ÞF0 kð Þ+Q kð Þ�
=F kð Þ P kjk−1ð Þ−P kjk−1ð ÞH0 kð Þ H kð ÞP kjk−1ð ÞH0 kð Þ½½
+R kð Þ�−1H kð ÞP kjk−1ð Þ�F0 kð Þ+Q kð Þ

ð3:86Þ

From (3.86) we find that the covarianceP k + 1jkð Þ at time (k + 1) predicted at time k is related only
to the one-step prediction covariance P kjk−1ð Þ at the last moment, the process noise covariance
matrix Q(k), and the measurement noise covariance matrix R(k), and is unrelated directly to the
measurement Z k + 1ð Þ. So, in some particular conditions the one-step prediction covariance matrix
can be calculated iteratively before the measurement.
If the system is time-invariant, that is, the state transition matrix F and the measurement matrix

H are constant matrixes, and since the input is generally believed to be zero, all that is typically
needed is that F and H are constant matrixes and the noise is steady, that is, Q and R are constant
matrixes, and satisfy the following conditions:

1. F and H are completely observable;
2. F and D (the standard deviation of the process noise, that is, Q=DD0) are completely

controllable.

Then, with k! ∞ , the solution to the Riccati equation [see (3.86)] converges to a definite posi-
tive matrix �P. To be specific, if the random linear system is consistently and completely controllable
and observable, the Kalman filter will be consistently and asymptotically steady, and there exists
only one definite positive matrix �P, so that starting from any initial covariance matrix,
P 0j0ð ÞP k + 1jkð Þ! �Pwhen k! ∞ . At the same time, the Kalman filter steady-state gain produced
by the constant covariance matrix �P is

�K = �PH0S−1

The solution to P k + 1jkð Þ determines the gain matrix of the discrete Kalman filter. So, when a
completely observable and controllable random linear definite constant system reaches steady state,
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P kjk−1ð Þ! �P, P k + 1jkð Þ! �P, K k + 1ð Þ!K. From (3.86) we find that the Riccati difference
equation degenerates to the Riccati algebraic equation

�P=F �P− �PH0 H�PH0 +R½ �−1H�P
h i

F0 +Q ð3:87Þ

Regardless of the value of P kjkð Þ, the system process noise variance matrix Q(k) always guar-
antees that a value is available for P k + 1jkð Þ, and the measurement noise variance matrix R(k)
always guarantees that a value is available for S k + 1ð Þ, thus ensuring that a value is available
for the gain K k + 1ð Þ and so the calculation at each step is able to correct the estimation of the prior
step with the observed update information and get a new real-time estimation. In addition, once the
system reaches steady state, it will be controlled by the time constant type of (3.85):

X̂ k + 1jkð Þ=F I− �KH½ �X̂ kjk−1ð Þ +F �KZ kð Þ +Gu kð Þ ð3:88Þ

Ideally, Kalman filtering is a linear unbiased estimation with minimum variance. According to
the filtering stability theory, for consistently and completely controllable and observable systems,
the steady filtering effect is irrelevant to the selection of the filtering initial values with the passage
of time and the increase in number of measurements. The filtering estimation precision becomes
higher, and the filtering error variance matrix tends to approach a steady-state value, or be bounded.
That is to say, the filter is steady. These conclusions are based on the precondition of accurate sys-
tem mathematical models. However, in practice, the state estimation obtained from filtering can be
biased, and the estimation error variance could be massive, considerably beyond the variance scope
given by the algorithm formula. Even worse, both the mean value and variance of the filtering error
can approach infinity, leading to a divergence in filtering. Apparently, the filtering loses its effect
when divergence occurs. Therefore, this must be restrained in practice.

3.4 Summary

This chapter focuses on the introduction of the Kalman filter in linear system conditions, including
system model building, related filtering models, filter initialization, definition and judgment
methods for filter stability, controllability and observability of random linear systems, steady-state
Kalman filtering, etc.
The Kalman filtering algorithm takes precise mathematical modeling as a precondition, which

requires the establishment of system equations and observation equations in the state space. Themost
difficult part of target tracking systemmodeling is building the system noise model, because the sys-
tem noise directly reflects the maneuver features of the target in the system equation. Therefore, in
practical applications, mismatches often occur between the model and the system. This type of dif-
ference between the theoretical model and the practical model is called “model error.”However, it is
not easy to set up precise mathematical models. Adaptive filtering theory has thus been created in
order to further approach precise matching between the model and the system. How can we judge
if the filter matches the systemwith observations?When the actual state changes, how canwemodify
the system model and filtering gain? This is what we need to solve by adaptive filtering theory.
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4
Nonlinear Filtering Approaches

4.1 Introduction

In Chapter 3 we discussed and analyzed the filtering methods in linear systems, but many modern
sensors such as infrared devices, electronic support measures (ESM), and passive sonar are passive
detection systems, whose models cannot be established with linear systems [73–75]. The methods
discussed in Chapter 3 cannot be used for nonlinear systems, so this chapter will introduce nonlinear
filtering techniques. We will focus on some commonly used nonlinear filtering methods, including
the extended Kalman filter (EKF), unscented Kalman filter (UKF), and particle filter (PF), and com-
pare and analyze the three nonlinear filtering methods mentioned above through some simulation
experiments [76–78].

4.2 Extended Kalman Filter

Kalman filters obtain dynamic estimation of targets under the linear Gaussian assumption by
using the MMSE criterion, but in many actual cases the relations between the observed data
and the dynamic parameters of targets are nonlinear. So far, perfect solutions remain to be found
for nonlinear systems. The usual approach is to turn nonlinear filtering into approximate linear
filtering using linearization techniques, and apply linear filtering theory to the suboptimal filter-
ing algorithms for the original nonlinear filtering problems. The most commonly used lineariza-
tion method is the Taylor series expansion, by which the filtering method of EKF [79–84] is
achieved.
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4.2.1 Filter Model

The state equation of the nonlinear system is

X k + 1ð Þ = f k,X kð Þð Þ +V kð Þ ð4:1Þ

For simplicity, assume that there is no control input item, and that the process noise is the additive
white noise with zero mean and variance

E V kð ÞV0 jð Þ½ �=Q kð Þδkj ð4:2Þ

The measurement equation is

Z kð Þ= h k,X kð Þ½ �+W kð Þ ð4:3Þ

where the measurement noise is also assumed to be the additive white noise with zero mean and
variance

E W kð ÞW 0 jð Þ½ �=R kð Þδkj ð4:4Þ

Assume that the process and measurement noise sequences are not correlated, and possess the
initial state estimation X̂ 0j0ð Þ and the covariance matrix P 0j0ð Þ. Just as under linear conditions,
we assume that the estimation at time k is

X̂ kjkð Þ≈E X kð ÞjZk
� � ð4:5Þ

This is an approximate conditional mean value, and its companion covariance matrix is P kjkð Þ.
Because X̂ kjkð Þ is not a precise conditional mean value, strictly speaking, P kjkð Þ is an approximate
mean square error instead of a covariance. But it is customarily regarded as a covariance.
In order to obtain the predicted state X̂ k + 1jkð Þ for the nonlinear function in (4.1), we conduct a

Taylor series expansion around X̂ kjkð Þ to get the first-order or second-order terms with the aim of
yielding a first-order or second-order EKF. The Taylor series expansion with second-order terms is

X k + 1ð Þ= f k, X̂ kjkð Þ� �
+ f X kð Þ X kð Þ− X̂ kjkð Þ� �

+
1
2

Xnx
i=1

ei X kð Þ− X̂ kjkð Þ� �0
f iXX kð Þ X kð Þ− X̂ kjkð Þ� �

+ higher-order termsð Þ+V kð Þ ð4:6Þ

where nx is the number of dimensions of the state vector X(k) and ei is the ith Cartesian basic vector.
For example, in the four-dimensional condition, there are four Cartesian basic vectors as follows:

e1 =

1

0

0

0

26666664

37777775 e2 =

0

1

0

0

26666664

37777775 e3 =

0

0

1

0

26666664

37777775 e4 =

0

0

0

1

26666664

37777775 ð4:7Þ
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In addition,

f X kð Þ = ∇X f
0 k,Xð Þ½ �0X = X̂ kjkð Þ =

∂=∂x1

..

.

∂=∂xn

2666664

3777775 f1 Xð Þ � � � fn Xð Þ½ �

2666664

3777775

0

X = X̂ kjkð Þ

=

∂f1 Xð Þ
∂x1

� � � ∂fn Xð Þ
∂x1

..

. � � � ..
.

∂f1 Xð Þ
∂xn

� � � ∂fn Xð Þ
∂xn

266666664

377777775

0

X = X̂ kjkð Þ

ð4:8Þ

is the Jacobian matrix of the vector f, taking values from the latest state estimation, where x1, x2,…, xnx
are the elements in the nx-dimensional vector X(k). Similarly, we get the Hessian matrix of the ith
component of the vector f as follows:

f iXX kð Þ = ∇X∇0
X f

i k,Xð Þ� �
X = X̂ kjkð Þ =

∂2f i Xð Þ
∂x1∂x1

� � � ∂2f i Xð Þ
∂x1∂xn

..

. � � � ..
.

∂2f i Xð Þ
∂xn∂x1

� � � ∂2f i Xð Þ
∂xn∂xn

26666664

37777775
X = X̂ kjkð Þ

ð4:9Þ

The prediction of the state from time k to (k + 1) is obtained by taking the expectation of (4.6)
conditional on Zk. Neglecting higher-order terms, we get

X̂ k + 1jkð Þ =E X k + 1ð ÞjZk
� �

= f k,X̂ k kjð Þ� �
+
1
2

Xnx
i= 1

eitr f iXX kð ÞP k kjð Þ� � ð4:10Þ

where we applied the identical equation

E X0AX½ �=E tr AXX0ð Þ½ � = tr APð Þ ð4:11Þ

From (4.6) and (4.10) we obtain the estimation error of the prediction of the state with higher-
order terms neglected, that is,

eX k + 1jkð Þ =X k + 1ð Þ− X̂ k + 1jkð Þ

= f X kð ÞeX kjkð Þ + 1
2

Xnx
i= 1

ei eX0
kjkð Þf iXX kð ÞeX kjkð Þ− tr f iXX kð ÞP kjkð Þ� �h i

+V kð Þ ð4:12Þ
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Based on (4.12), we get the covariance accompanying (4.10), represented as

P k + 1jkð Þ=E eX k + 1jkð ÞeX0
k + 1jkð ÞjZk

h i
= f X kð ÞP kjkð Þf 0X kð Þ+ 1

2

Xnx
i= 1

Xnx
j= 1

eie0j tr f iXX kð ÞP kjkð Þf jXX kð ÞP kjkð Þ� �
+Q kð Þ

ð4:13Þ

Here we applied the identical equation

E X0AX−E X0AXð Þ½ � X0BX−E X0BXð Þ½ �f g= 2 tr APBPð Þ ð4:14Þ

For the second-order EKF, the prediction of measurement is

Ẑ k + 1jkð Þ= h k + 1, X̂ k + 1jkð Þ� �
+
1
2

Xnz
i= 1

ei tr hi
XX k + 1ð ÞP k + 1jkð Þ� � ð4:15Þ

and the companion covariance (approximate mean square error) is

S k + 1ð Þ= hX k + 1ð ÞP k + 1jkð Þh0X k + 1ð Þ

+
1
2

Xnz
i= 1

Xnz
j= 1

eie0j tr hi
XX k + 1ð ÞP k + 1jkð Þhj

XX k + 1ð ÞP k + 1jkð Þ
h i

+R k + 1ð Þ ð4:16Þ

where hX k + 1ð Þ is the Jacobian matrix, that is,

hX k + 1ð Þ = ∇Xh
0 k + 1,Xð Þ½ �0X = X̂ k + 1jkð Þ ð4:17Þ

The Hessian matrix of the ith component is

hi
XX k + 1ð Þ= ∇X∇0

Xh
i k + 1,Xð Þ� �0

X = X̂ k + 1jkð Þ ð4:18Þ

The gain is

K k + 1ð Þ=P k + 1jkð Þh0X k + 1ð ÞS−1 k + 1ð Þ ð4:19Þ

The state update equation is

X̂ k + 1jk + 1ð Þ = X̂ k + 1jkð Þ+K k + 1ð Þ Z k + 1ð Þ−h k + 1, X̂ k + 1jkð Þ� �� � ð4:20Þ

The covariance update equation is

P k + 1jk + 1ð Þ = I−K k + 1ð ÞhX k + 1ð Þ½ �P k + 1jkð Þ I +K k + 1ð ÞhX k + 1ð Þ½ �0
−K k + 1ð ÞR k + 1ð ÞK0 k + 1ð Þ

ð4:21Þ

where I is the unit matrix.
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Equations (4.10), (4.13), (4.16), and (4.19)–(4.21) constitute the formula system for the second-
order EKF. From (4.19)–(4.21) we can see that in nonlinear conditions the gain, the state update
equation, and the covariance update equation are similar to those in linear conditions, except that
the measurement matrix H k + 1ð Þ is replaced by the Jacobian hX k + 1ð Þ in this case. The way to
obtain the first-order EKF formulas is similar to that for the second-order case, except that here
Taylor series expansion is reserved only for first-order terms, that is,

X k + 1ð Þ = f k,X̂ kjkð Þ� �
+ f X kð Þ X kð Þ− X̂ kjkð Þ� �

+ higher-order termsð Þ+V kð Þ ð4:22Þ

So, the first-order EKF formulas include:

• The one-step prediction of state, given by

X̂ k + 1jkð Þ= f k, X̂ kjkð Þ� � ð4:23Þ

• The one-step prediction of covariance, given by

P k + 1jkð Þ= f X kð ÞP kjkð Þf 0X kð Þ+Q kð Þ ð4:24Þ

• The prediction of measurements, given by

Ẑ k + 1 kjð Þ= h k + 1, X̂ k + 1 kjð Þ� � ð4:25Þ

• The companion covariance, given by

S k + 1ð Þ= hX k + 1ð ÞP k + 1jkð Þh0X k + 1ð Þ+R k + 1ð Þ ð4:26Þ

• The gain, given by

K k + 1ð Þ=P k + 1jkð Þh0X k + 1ð ÞS−1 k + 1ð Þ ð4:27Þ

• The state update equation, given by

X̂ k + 1jk + 1ð Þ = X̂ k + 1jkð Þ+K k + 1ð Þ Z k + 1ð Þ−h k + 1, X̂ k + 1jkð Þ� �� � ð4:28Þ

• The covariance update equation, given by

P k + 1jk + 1ð Þ = I−K k + 1ð ÞhX k + 1ð Þ½ �P k + 1jkð Þ I +K k + 1ð ÞhX k + 1ð Þ½ �0
−K k + 1ð ÞR k + 1ð ÞK0 k + 1ð Þ

ð4:29Þ

where I is the unit matrix with the same number of dimensions as the covariance.

The covariance prediction formula for the first-order EKF is similar to that in linear filtering, but
the Jacobian fx(k) is similar to the system state transition matrix F(k) [85, 86]. If the Taylor
series expansion is reserved for third and fourth-order terms, we have the third and fourth-order
EKFs. R. J. Phanenf carried out a simulation analysis on the performance of EKFs with different
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orders [87]. The simulation results showed that the performance of the second-order EKF is much
better than that of the first-order one, but the performance of EKFs with higher orders is not obvi-
ously better than that of the second-order one, so EKFs with higher orders are not generally used.
Although the second-order EKF is superior to the first-order one in performance, the amount of
calculation required is huge, so we usually use the first-order EKF algorithm.

4.2.2 Some Problems in the Application of Extended Kalman Filters

Extended Kalman filtering is a widely used nonlinear filtering method, in which the existence of
some nonlinear factors has a powerful influence on the filter stability and state estimation accuracy,
and the filtering results have a lot to do with the statistical features of the process noise and the
measurement noise [83]. Because in EKFs the pre-estimated process noise covariance Q(k) and
the measurement noise covariance R(k) remain unchanged during filtering, the inaccurate estima-
tion of these two noise covariance matrixes can lead to error accumulation and divergence in the
filtering process. Additionally, for nonlinear systems with many dimensions, anomalies are likely
to arise in the estimated process noise covariance matrix and measurement noise covariance matrix,
that is, Q(k) loses half positive definiteness and R(k) loses positive definiteness, which can also
cause filtering divergence. As for the use of EKFs in tracking a target, only when both the dynamic
model and the observation model of the system are close to being linear (i.e., the error in the lin-
earized model is very small) can EKF results be close to the true value. Another disadvantage of the
EKF is that it is not easy to determine the initial values of the state, so if the errors in the hypothetical
state initial value and the initial covariance are quite large, the filter will end up with divergence.

4.3 Unscented Kalman Filter

The basic idea behind the EKF algorithm is that through the first-order linearization truncation of the
Taylor series expansion of a nonlinear function, nonlinear problems are transformed into linear
ones, and then various linear estimation methods are adopted to achieve a suboptimal filtering algo-
rithm of the original nonlinear filtering problem. Although widely used, EKFs still have some short-
comings: when the higher-order terms of a Taylor series expansion of the nonlinear function cannot
be ignored, the model linearization error caused by linearization in the system tends to affect the
final filtering precision, or even give rise to filter divergence. Additionally, the model linearization
process is very complicated, and hard to achieve in practical applications. For this reason, this
section will discuss the UKF [88], whose principle is displayed in Figure 4.1.
The UKF uses limited parameters to approximate the statistical characteristics of random vari-

ables, that is, a group of accurately selected δ points are mapped by nonlinear models to transmit
the statistical characteristics of random variables, and these δ sampling points fully represent the
actual mean value and covariance of Gaussian density. Then, the weighted statistical linear regres-
sion method is used to estimate the mean value and covariance of random variables, so the UKF
does not need to calculate the Jacobian matrix. When these δ points are transmitted by any nonlinear
system, the posterior mean value and covariance can be accurate to second-order level (i.e., insensi-
tive to the system nonlinear intensity). Since there is no need to linearize the nonlinear system, and it
can easily be applied to the state estimation of nonlinear systems [89–91], the UKF method is used
widely in many fields, such as model parameter estimation [92], azimuth tracking of a man’s head or
hand, the state or parameter estimation of an aircraft [93], azimuth tracking of a target, etc.

58 Radar Data Processing with Applications



4.3.1 Unscented Transformation

The UKF was developed on the basis of unscented transformation (UT). The basic idea of UT was
first put forward by Julier and Uhlmann [42, 88], and it is a new method used in working out the
statistical characteristics of random variables with nonlinear transformations. With no need to lin-
earize the nonlinear state and the measurement model, UT approximates the PDF of the state vector.
The approximated PDF is still Gaussian, but is represented as a series of selected δ sampling points.
Suppose that X is an nx-dimensional random vector, g :Rnx !Rny is a nonlinear function, and

y = g xð Þ. The mean value and the covariance of X are, respectively, X and Px. The steps to work
out the UT are described as follows [94, 95].

1. First, calculate 2nx + 1ð Þ δ sampling points ξi and the corresponding weight Wi:

ξ0 =X i= 0

ξi =X +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx + κð ÞPx

p� �
i i = 1,…,nx

ξi+ nx =X −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx + κð ÞPx

p� �
i

i= 1,…,nx

8>><>>: ð4:30Þ

In this form, the number of δ sampling point sets should be 2nx and they should be distributed
symmetrically around the mean value of x, so it can possess a higher precision when dealing with
randomvariables that satisfy various unimodal symmetric distributionswhich aremostlyGaussian.

W0 =
κ

nx + κð Þ , i= 0

Wi =
1

2 nx + κð Þ½ � , i= 1,…,nx

Wi+ nx =
1

2 nx + κð Þ½ � , i= 1,…,nx

8>>>>>>><>>>>>>>:
ð4:31Þ

Mean value

Variance

Mean value

Variance

Estimation
variance

True mean
value

True
variance

Estimation
mean value

Estimation
variance

True
variance

True mean
value

EKF

Estimation
mean value

UKF

δ Point after
the nonlinear
mapping

Figure 4.1 Principles of extended and unscented Kalman filters

59Nonlinear Filtering Approaches



where κ is a scalar parameter and could be any value as long as nx + κð Þ 6¼ 0.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx + κð ÞPx

p� �
i
is the

ith row or ith column in the mean root matrix nx + κð ÞPx, and nx is the number of dimensions of
the state vector.

2. Each δ sampling point transmits through a nonlinear function, so we obtain

yi = g ξið Þ, i= 0,…,2nx ð4:32Þ

3. The estimation mean value and covariance estimation of y are as follows:

y =
X2nx
i= 0

Wiyi ð4:33Þ

Py =
X2nx
i= 0

Wi yi−yð Þ yi−yð Þ0 ð4:34Þ

4.3.2 Filtering Model

Assume that at time k the state estimation vector and state estimation covariance of the tracking
system are, respectively, X̂ kjkð Þ and P kjkð Þ, then we can make use of (4.30) and (4.31) to work
out the relative δ point ξi kjkð Þ and its corresponding weight Wi. From the state equation (4.1),
we can obtain the one-step prediction of the δ point:

ξi k + 1jkð Þ= f k,ξi kjkð Þð Þ ð4:35Þ

Using the one-step prediction δ point ξi k + 1jkð Þ and the weightWi according to (4.32) and (4.33),
we obtain the state prediction estimation and the state prediction covariance:

X̂ k + 1jkð Þ=
X2nx
i= 0

Wiξi k + 1jkð Þ ð4:36Þ

P k + 1jkð Þ=
X2nx
i= 0

WiΔXi k + 1jkð ÞΔX0
i k + 1jkð Þ +Q kð Þ ð4:37Þ

where

ΔXi k + 1jkð Þ = ξi k + 1jkð Þ− X̂ k + 1jkð Þ ð4:38Þ

Based on the measurement equation (4.3), we obtain the predicted measurement δ point

ςi k + 1jkð Þ= h k + 1,ξi k + 1jkð Þð Þ ð4:39Þ

So, the predicted measurement and the corresponding covariance are

Ẑ k + 1jkð Þ=
X2nx
i= 0

Wiςi k + 1jkð Þ ð4:40Þ
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Pzz =R k + 1ð Þ+
X2nx
i= 0

WiΔZi k + 1jkð ÞΔZ0
i k + 1jkð Þ ð4:41Þ

where

ΔZi = ςi k + 1jkð Þ− Ẑ k + 1jkð Þ ð4:42Þ

Equally, we obtain the interaction covariance of the measurement and the state vector

Pxz =
X2nx
i= 0

WiΔXi k + 1jkð ÞΔZ0
i ð4:43Þ

If the measurement provided by the sensor at time (k + 1) is Z k + 1ð Þ, then the state update and the
state update covariance can be denoted as

X̂ k + 1 k + 1jð Þ= X̂ k + 1jkð Þ +K k + 1ð Þ Z k + 1ð Þ− Ẑ k + 1jkð Þ� � ð4:44Þ

P k + 1 k + 1jð Þ =P k + 1 kjð Þ−K k + 1ð ÞS k + 1ð ÞK0 k + 1ð Þ ð4:45Þ

K k + 1ð Þ =PxzP−1
zz =

X2nx
i= 0

WiΔXi k + 1jkð ÞΔZ0
i½R k + 1ð Þ+

X2nx
i= 0

WiΔZi k + 1jkð ÞΔZi
0 k + 1jkð Þ�−1

ð4:46Þ

4.3.3 Simulation Analysis

The simulation and analysis are carried out on target tracking by three-dimensional (3D) radars in
the hypothetical Gaussian noise condition. Assume that the target is a plane with a velocity of
360 m/s and an altitude of 8 km, and that the initial distance between the target and the 3D radar
is about 305 km. The target is flying at the same altitude, the angle between its horizontal direction
and the x axis is −120�, the standard deviation of the distance measurement errors is 60 m, and the
standard deviations of the azimuth and pitching angle measurement errors are both 1�. Here we
compare the tracking errors of the KF, EKF, UKF, and unbiased converted measurements Kalman
filter (UCMKF) when tracking the same target in the same environment. The initial state and the
initial covariance of the KF, EKF, UKF, and UCMKF are given by (3.69) and (3.72) in Chapter 3.
The KF, which has been discussed in detail in Chapter 3, will not be discussed in this section. The
principle of the UCMKF is the same as that of the KF, except that two unbiased coefficients are
added in the transformation of the measurement data from polar coordinates to Cartesian coord-
inates. Details of the UCMKF are given in Section 5.3.4 of Chapter 5. Here, we use the first-order
EKF model. All four filtering models select constant velocity models, so the state equation of the
target is

X k + 1ð Þ=F kð ÞX kð Þ+Γ kð Þv kð Þ ð4:47Þ
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where the state vector X kð Þ¼ x _x y _y z _z½ �0, and

F kð Þ =

1 T 0 0 0 0

0 1 0 0 0 0

0 0 1 T 0 0

0 0 0 1 0 0

0 0 0 0 1 T

0 0 0 0 0 1

26666666664

37777777775
ð4:48Þ

Γ kð Þ =

0:5T2 0 0

T 0 0

0 0:5T2 0

0 T 0

0 0 0:5T2

0 0 T

26666666664

37777777775
ð4:49Þ

where v(k) is the Gaussian process noise with zero mean, whose covariance is σv
2.

The measurement equation is

Z kð Þ= h X kð Þ½ �+W kð Þ ð4:50Þ

where Z kð Þ= ρ kð Þ θ kð Þ γ kð Þ½ �0 and W(k) is assumed to be zero mean Gaussian noise, mutually

independent of V(k), and its covariance matrix is R= diag σ2ρ,σ
2
θ,σ

2
γ

	 

, where σ2ρ, σ

2
θ, σ

2
γ are, respect-

ively, the measurement error covariances of distance, azimuth, and pitching, and the one-step
prediction of the state

h X kð Þ½ �=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 kð Þ + y2 kð Þ+ z2 kð Þp
arctan y kð Þ=x kð Þ½ �

arctan z kð Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 kð Þ+ y2 kð Þph i

2664
3775 ð4:51Þ

is

X̂ k + 1jkð Þ =F kð ÞX̂ kjkð Þ ð4:52Þ

The one-step prediction of covariance is

P k + 1 kjð Þ=F kð ÞP k kjð ÞF0 kð Þ +Γ kð Þσ2vΓ0 kð Þ ð4:53Þ

The innovation covariance is

S k + 1ð Þ= hX k + 1ð ÞP k + 1jkð Þh0X k + 1ð Þ+R k + 1ð Þ ð4:54Þ
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where the Jacobian matrix is

hX k + 1ð Þ = ∇Xh
0 k + 1,Xð Þ½ �0X = X̂ k + 1jkð Þ

=

x̂ k + 1jkð Þ
r̂

0
ŷ k + 1jkð Þ

r̂
0

ẑ k + 1jkð Þ
r̂

0

−
ŷ k + 1jkð Þ

r̂2xy
0

x̂ k + 1jkð Þ
r̂2xy

0 0 0

−
x̂ k + 1jkð Þẑ k + 1jkð Þ

r̂xyr̂
2 0 −

ŷ k + 1jkð Þẑ k + 1jkð Þ
r̂xyr̂

2 0
r̂xy
r̂2

0

26666666664

37777777775
ð4:55Þ

where

r̂xy =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂2 k + 1jkð Þ+ ŷ2 k + 1jkð Þ

q
, r̂ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2xy + ẑ

2 k + 1jkð Þ
q

ð4:56Þ

The filter gain is

K k + 1ð Þ=P k + 1 kjð Þh0X k + 1ð ÞS−1 k + 1ð Þ ð4:57Þ

The state update equation is

X̂ k + 1jk + 1ð Þ = X̂ k + 1jkð Þ+K k + 1ð Þ Z k + 1ð Þ−h k + 1, X̂ k + 1jkð Þ� �� � ð4:58Þ

where

h k, X̂ k + 1jkð Þ� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + z2

p
arctan y=x½ �

arctan z=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
Þ

h i
26664

37775
X̂ k + 1jkð Þ

ð4:59Þ

The covariance update equation is

P k + 1jk + 1ð Þ = I−K k + 1ð ÞhX k + 1ð Þ½ �P k + 1jkð Þ I +K k + 1ð ÞhX k + 1ð Þ½ �0
−K k + 1ð ÞR k + 1ð ÞK0 k + 1ð Þ

ð4:60Þ

where I is the unit matrix.
For the selection of all the parameters in the UKF, see Ref. [96]. The sampling point ξi is

ξ0 =X i = 0

ξi =X +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx + kð Þp ffiffiffiffiffi

Px
p� �

i i= 1,…,nx

ξi+ nx =X −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx + kð Þp ffiffiffiffiffi

Px
p� �

i
i= 1,…,nx

8>><>>: ð4:61Þ

where X and Px are, respectively, the initial state and the initial covariance matrix; nx is the number
of dimensions of the state vector, nx = 6, κ = nx α2−1ð Þ, and the parameter α ranges from 0.0001 to 1,
that is, 0:0001 ≤ α ≤ 1 [96]. Here, α= 0:01.
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The corresponding weight Wi is

W mð Þ
0 =

λ

nx + λð Þ , i= 0 ð4:62Þ

W cð Þ
0 =

λ

nx + λð Þ + 1−α
2 + β, i= 0 ð4:63Þ

W mð Þ
i =W cð Þ

i =
1

2 nx + λð Þ½ � , i= 1,…,2nx ð4:64Þ

where the parameter β is optimal when it takes 2 in the Gaussian noise condition [96], so we take
β = 2. Superscriptm denotes the weight in the state updating, and superscript c denotes the weight in
the covariance updating. Hence, we can use (4.35)–(4.46) to conduct unscented Kalman filtering.
Figure 4.2 shows the target position mean root errors of the above four filtering algorithms after
50 Monte Carlo experiments, and Figure 4.3 displays the amount of calculation required for the
above four filtering algorithms.
From Figure 4.2 we see that in the simulation environment, KF, EKF, UKF, and UCMKF algo-

rithms can fulfill the job of tracking the targets. As shown in Figure 4.3, KF requires the smallest
amount of computation, followed by EKF and UCMKF, between which there is no distinct differ-
ence in amount, while UKF needs far more computation than the other three filtering algorithms.
The reason for this is that EKF performs nonlinear filtering estimation by linearization, while UKF
approximates the PDF of the state by samples. In terms of calculation speed, EKF has obvious
advantages, but its performance will drop greatly as the nonlinear intensity increases. This problem
can be solved satisfactorily by UKF, which does not use linearization. Whether by EKF or UKF, the
Gaussian distribution is eventually adopted to approximate the state posterior possibility density. If
the posterior possibility density function of the system state is non-Gaussian, both will generate
substantial errors. Related to this problem, we discuss the particle filter next.
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4.4 Particle Filter

The particle filter (PF) is a type of nonlinear filtering algorithm [60, 97–122] which has emerged in
recent years. It is an optimal recursive Bayesian filtering algorithm based on Monte Carlo simula-
tion. The state vectors concerning this algorithm are denoted as a group of random samples with
relative weights, and the state estimation can be worked out according to these samples and weights.
Compared with other nonlinear filtering algorithms, such as EKF and UKF, this method is not con-
fined by linearization errors or Gaussian noise hypothesis, so it can be applied to any state trans-
formation or measurement model in any environment.
The system state equation and sensor measurement model are the same as (4.1) and (4.3), but the

process noise vector V(k) and the measurement noise vector W(k) in (4.1) and (4.3), respectively,
belong to non-Gaussian, independent, identically distributed noise sequences.

4.4.1 Filtering Model

Assume that at time k a group of random samples Xi
0:k,q

i
k

� �Ns

i= 1 are the samples obtained on the basis

of posterior probability density p X0:kjZ1:kð Þ, where Xi
0:k is the ith sample set from time 0 to k, that is,

the particle set; qik is the relative weight, which satisfies
XNs

i= 1

qik = 1; Ns is the sampling number, that

is, the number of particles; Z1:k represents the measurement set at time k; X0:k = Xj, j= 0,…,k
� �

represents all the state vector sets from time 0 to k. So at time k the posterior probability density
can be denoted approximately as

p X0:kjZ1:kð Þ≈
XNs

i= 1

qikδ X0:k −X
i
0:k

� � ð4:65Þ
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Since it is hard to draw samples directly from p X0:kjZ1:kð Þ, we usually use an importance prob-
ability density π XjZð Þ to obtain the sampling value [107]. So, the weight qik can be obtained
by sequential importance sampling. If Xi

0:k is the sample from π XjZð Þ, then according to

Ref. [107], the non-normalized weight eqik can be defined as

eqik = p Z1:kjXi
0:k

� �
p Xi

0:k

� �
π Xi

0:kjZ1:k
� � ð4:66Þ

If the selected importance probability density satisfies

π Xi
0:kjZ1:k

� �
= π Xi

kjX i
0:k−1,Z1:k

� ��π Xi
0:k−1jZ1:k−1

� � ð4:67Þ

then when (4.67) is substituted into (4.66), we obtain

eqik = p Z1:kjXi
0:k

� �
p X i

0:k

� �
π X i

kjXi
0:k−1,Z1:k

� � � 1

π Xi
0:k−1jZ1:k−1

� �
=
p ZkjXi

k

� �
p Xi

kjXi
k−1

� �
π Xi

kjXi
0:k−1,Z1:k

� � �p Z1:k−1jX i
0:k−1

� �
p Xi

0:k−1

� �
π Xi

0:k−1jZ1:k−1
� �

=
p ZkjXi

k

� �
p Xi

kjXi
k−1

� �
π Xi

kjXi
0:k−1,Z1:k

� � eqik−1
ð4:68Þ

In order to conveniently use the recursive Bayesian filtering algorithm, we hope that the import-
ance probability density is related only to the measurement and state at the last time, that is,

π Xi
kjX i

0:k−1,Z1:k
� �

= π Xi
kjXi

k−1,Zk

� � ð4:69Þ

By combining (4.68) and (4.69), the non-normalized weight eqik can be denoted as

eqik = p ZkjXi
k

� �
p Xi

kjXi
k−1

� �
π Xi

kjXi
k−1,Zk

� � �eqik−1 ð4:70Þ

In the particle filtering algorithm, the weight of most particles will approach zero after several
iterative cycles, that is, particle attenuation occurs [107]. This phenomenon is inevitable because
the particle weight covariance becomes larger with increased time. The most direct way of reducing
this effect is to use a large number of particles. Certainly, this is usually unrealistic. So at present,
two methods are used: (1) choose optimal importance probability density; (2) conduct resampling.
According to Ref. [108], the optimal importance probability density is

π Xi
kjXi

k−1,Zk

� �
= p X i

kjXi
k−1,Zk

� � ð4:71Þ

The optimal importance probability density can minimize the covariance of the sampling weight.
Nowadays it is adopted commonly in the case where Xk is a finite set, for example, the hopping
Markov system used for tracking maneuvering targets in Ref. [103]. Also, in the case of nonlinear
state equations and linear measurement equations [109]. For most systems, it is impossible to realize
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the optimal importance probability density, so the linearization technique is usually used to make
a suboptimal approximation to the optimal importance probability density. For example, in
Ref. [101], UT is used to conduct Gaussian approximation to the optimal importance probability
density.
The basic idea of resampling is to reduce the small-weight particles and concentrate the larger-

weight particles. Frequently used resampling methods include stratified sampling, residual sam-
pling [123], and system resampling [124]. Resampling decreases the effect of attenuation on the
system; meanwhile, it creates other problems. For one thing, all the particles must be rearranged,
which hinders the system from parallel calculation. For another, the larger-weight particles could be
selected multiple times, so that the existing particles cannot represent the current probability density.
Hence, when the system process noise is quite weak, all the particles can possibly turn into a single
point, which is often called “sampling depletion.”

4.4.2 Examples of the Application of EKF, UKF, and PF

Assume that in a station there is a passive sensor tracking a target in uniform motion and that the
dynamic equation of the target is

X k + 1ð Þ=F kð ÞX kð Þ+Γ kð Þv kð Þ ð4:72Þ

where

X kð Þ = x y _x _y½ �0 ð4:73Þ

F kð Þ=

1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

266664
377775 ð4:74Þ

Γ kð Þ =

0:5T2 0

0 0:5T2

T 0

0 T

266664
377775 ð4:75Þ

Assume that the process noise is a two-dimensional Gaussian noise vector with zero mean, whose
covariance isQ = qI2 × 2, where I2 × 2 is a 2 × 2 unit matrix. There are two cases for the initial states of
the target:

1. X 0ð Þ= −10 000 m, 100 m=s, 20 000 m, −200 m=s½ �0.
2. X 0ð Þ= 30000 m, −200 m=s, 20 000 m, 150 m=s½ �0.

Suppose that the measurement equation of the infrared sensor is

Z kð Þ= h X kð Þð Þ+W kð Þ ð4:76Þ
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whereW(k) is assumed to be Gaussian white noise with zero mean and independent of V(k), and its
covariance is R = σ2α. What is detected by the passive sensor is the azimuth of the target, that is,

Z kð Þ= α kð Þ = arctan x kð Þ
y kð Þ

� �
ð4:77Þ

Then we obtain

H kð Þ= ∂h
∂X


X = X̂ k k−1jð Þ

=
ŷ kjk−1ð Þ

r̂2xy
, −

x̂ kjk−1ð Þ
r̂2xy

, 0, 0

" #
ð4:78Þ

where

r̂xy =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂ kjk−1ð Þ½ �2 + ŷ kjk−1ð Þ½ �2

q
ð4:79Þ

Suppose that the sampling interval of the sensor is 2 s, and the standard deviation of the azimuth
measurement error is 0.00175 rad. Here, in the same environment, we track the same target with
EKF, UKF, and PF, and compare the tracking results. In addition, notice that EKF takes the
first-order model, whose details can be seen in Sections 4.2.1 and 4.3.3. 50Monte Carlo simulations
are conducted, and in each simulation the scanning time is 60 s.
In cases 1 and 2, the initial state estimations of the target are as follows.

1. X̂ 0 0jð Þ= −10 200 m, 100 m=s, 20 300 m, −200 m=s½ �0.
2. X̂ 0 0jð Þ= 30000 m, −200 m=s, 20 000 m, 150 m=s½ �0.

Assume that the corresponding state estimation covariance in both cases is

P 0 0jð Þ=

50000 0 0 0

0 800 0 0

0 0 50 000 0

0 0 0 800

266664
377775 ð4:80Þ

Figure 4.4(a) shows the target trajectory in case 1, and Figure 4.4(b) illustrates the x-axis root
mean square (RMS) comparison of all the algorithms in case 1. Figure 4.5(a) shows the target tra-
jectory in case 2, and Figure 4.5(b) shows the x-axis RMS comparison of all the algorithms in case 2.
In case 1, when the target trajectory passes the proximity of the detection station (the 50th step),

the tangential change in measurement angle increases, and the non-linearization of the measurement
equation has already intensified, so the linearization error of the model increases gradually, thus
causing drop and divergence in the estimation precision of the first-order EKF. For UKF and
PF, the system measurement equation does not need to be linearized, so the estimation precision
is not affected by the linearization error. The precisions of UKF and PF near the measurement point
drop to some degree, mainly because the measurement point is easy to hop here.
In case 2, when the target trajectory is far away from the measurement point, the tangential of the

measurement angle does not change greatly, the non-linearization degree of the measurement equa-
tion is low, and so the linearization error of the model is quite small. Now the first-order EKF, UKF,
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and PF present nearly identical precision, which shows that the estimation precision of the three
algorithms is close when the non-linearization degree of the system is low (see Figure 4.5).
A comprehensive comparison of calculation speed, storage amount, environmental adaptability,

etc. of EKF, UKF, and PF algorithms is given in Table 4.1, where the calculation speed refers to the
calculation time used in each of the algorithms to calculate 60 time steps. The time does not concern
the production, motion, and measurement of the target, but represents the time that each of the three
algorithms spends on calculation.
From the results in Table 4.1, we see that EKF is the fastest of the three estimation algorithms,

followed by UKF, and PF is the slowest (the number of particles is 5000). The storage requirements
in Table 4.1 are just an approximate estimation in terms of the calculation process and complexity in
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the algorithms. According to the analysis of the algorithms, the storage amount for PF is quite large,
and increases with increasing number of particles; the storage amount for UKF stays in between;
and that of EKF is quite small. In Table 4.1, environmental adaptability refers to the environmental
noise (including measurement noise and state process noise) requirement. Nonlinear intensity
means the requirement for nonlinear intensity in the system.
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Table 4.1 Comprehensive comparison of the three algorithms

Algorithm Calculation speed
(case 1)

Calculation speed
(case 2)

Storage
amount

Environmental
adaptability

Nonlinear
intensity

EKF 0.039 s 0.038 s low Gaussian weak
UKF 1.040 s 1.040 s medium Gaussian not limited
PF 140.5164 s 40.5141 s high not limited not limited
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How do we make an overall assessment of the algorithms? First, EKF possesses apparent super-
iority in terms of calculation speed, and should be of top priority for practical engineering applica-
tions if other factors (system nonlinear intensity, environmental requirements, etc.) are not
considered, However, from the simulation results in case 1, we see that when the nonlinear intensity
increases and causes the linearization error to increase, the estimation precision of EKF drops sig-
nificantly and divergence occurs. So, for such systems, we need to consider other filtering methods.
UKF and PF have similar performance in terms of estimation precision, but the latter involves a
much greater amount of calculation. Thus, UKF should be used in some ordinary nonlinear Gauss-
ian environments. However, UKF is suitable only for Gaussian white noise environments and not
more complicated non-Gaussian environments. PF, therefore, has good prospects in broad applica-
tions as the capability of computers improves.

4.5 Summary

In this chapter we have discussed nonlinear filtering techniques in radar data processing, including
EKF, UKF, PF, etc. Finally, we have reached relative conclusions. We have also compared and
analyzed the tracking precision and calculation amount of the same target with nonlinear algorithms
(i.e., EKF, UKF, and PF) in the same simulation environment, and made a comprehensive assess-
ment of their advantages and disadvantages. In 2002 Farina and Ristic [108] used CRLBmethods to
analyze EKF, the covariance analysis describing function technique (CADET), UKF, and PF. The
simulation results show that EKF exhibits a better effect, because it possesses the advantages of
small calculation amount and statistical effectiveness. We should notice that all these conclusions
are reached in the simulation condition (quite ideal).
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5
Measurement Preprocessing
Techniques

5.1 Introduction

Target parameter estimation methods in linear and nonlinear systems have been analyzed and dis-
cussed in previous chapters. In modern complicated electronic environments, the precondition for
processing radar data correctly is the preprocessing of measurements. Effective measurement pre-
processing techniques can reduce computational complexity and improve tracking accuracy in radar
data processing. This chapter mainly discusses time registration, space registration, outlier elimin-
ation [125–129], radar error calibration, and data compression in measurement preprocessing
techniques.
In a multi-target tracking system, any observation model is established according to state-space

models, therefore, proper selection of coordinate systems is very important, which directly affects
tracking accuracy and computational complexity. In many radar tracking systems, the coordinate
system of target measurements is inconsistent with that of data processing. In this case coordinate
transformation techniques [17, 39, 40, 46, 130–139] are used to integrate all data formats into the
same coordinate system.
In radar data processing systems, techniques like radar error calibration and data compression are

closely associated with practical engineering [19, 39, 140–142]. Effective radar error calibration and
data compression techniques can increase target tracking accuracy and reduce the computational
complexity of the system.

5.2 Time Registration

Time registration, also called time synchronization, refers to the process by which the remaining
time deviation is kept within the allowed range after the time alignment of many measurement
units, including synchronization with astronomical time (absolute registration) and that with a
high-precision master clock (relative registration). Time registration mainly solves the time
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synchronization problem in multi-sensor data fusion. For example, when radar and data links are
used in target tracking fusion, due to the difference in data links between the two devices, time
registration is necessary before fusion. During the registration process, radar measurements can
be adopted as the benchmark against which the measurements of the radar link are calibrated.
Registration methods include interpolation (extrapolation) methods, least-squares algorithms,
and Lagrange methods, among which the interpolation (extrapolation) method uses the velocity.

5.2.1 Interpolation/Extrapolation Method Using Velocity

If the data rates of two different sensors (such as a data link and a radar) are inconsistent, time regis-
tration will be the first step. Here, radar measurements are viewed as the benchmark against which
the time registration of data link tracks is implemented by the interpolation/extrapolation method.
The specific steps are described below.

1. Assume that the first measurement of the data link and that of the radar are obtained at the same
time, that is, Ta1 =Tb1, as shown in Figure 5.1.

2. Estimate the times corresponding to the subsequent interpolation points of the data link. There
are three cases.
i. If the time difference between the corresponding time of the interpolation point and its pre-

vious sampling time is less than the sampling interval of the data link, then extrapolation
should be done based on the data of the data link at the previous time. For example, the meas-
urement of the data link corresponding to the measurement of the radar at time Tb2 should be

Xab2 =Xa1 +Va1 Tb2−Ta1ð Þ ð5:1Þ

where Va1 is the velocity.
ii. If the time difference between the corresponding time of the interpolation point and its pre-

vious sampling time used for making a judgment is greater than the sampling interval of the
data link, then extrapolation should be done from the data of the data link at the corresponding
time which is nearest to the interpolation point. For example, the measurement of the data link
corresponding to that of the radar at Tb3 should be

Xab3 =Xa2 +Va2 Tb3−Ta2ð Þ ð5:2Þ

Ta1

Tb1 Tb2 Tb3 Tb4 Tb5

Ta2 Ta3 Ta4 Tan

Data link a

Radar b

Tbm

Figure 5.1 Time registration
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iii. If the time difference between the corresponding time of the interpolation point and its
previous sampling time used for making a judgment is equal to the sampling interval of
the data link, then the data at that time should be kept unchanged (e.g., Xab4 =Xa3).

3. By analogy, conduct time synchronization of the data from the two different sensors so as to form
target observations corresponding to the same time.

Additionally, when different sensors are used to track moving targets, time registration can be
conducted of the state and corresponding covariance for tracks corresponding to the same target
by the following method: take a certain sensor’s state and corresponding covariance at different
times as the benchmark, extrapolate the other sensors’ states and corresponding covariances, and
adopt the predicted state value and predicted covariance at the extrapolation time as the correspond-
ing sensor’s information at this time, that is,

X̂ k + 1 kjð Þ =F kð ÞX̂ kjkð Þ
P k + 1 kjð Þ=F kð ÞP k kjð ÞF0 kð Þ+Q kð Þ

(
ð5:3Þ

where X̂ kjkð Þ is the target state filtering value at different times, similar to Xak, P(kjk) is the esti-
mation error covariance matrix corresponding to X̂ kjkð Þ, and Q(k) is the process noise covariance
matrix.

5.2.2 The Lagrange Interpolation Algorithm

The principle of the Lagrange interpolation algorithm is described as follows.
Suppose that the measurements at time tk −1, tk, tk + 1 are, respectively, Xk −1, Xk, Xk + 1, then the

measurement value at time ti tk −1 < ti < tk + 1ð Þ is

Xi =
ti− tkð Þ ti− tk + 1ð Þ

tk−1− tkð Þ tk−1− tk + 1ð Þ ×Xk−1 +
ti− tk−1ð Þ ti− tk + 1ð Þ
tk − tk−1ð Þ tk − tk + 1ð Þ ×Xk +

ti− tk−1ð Þ ti− tkð Þ
tk + 1− tk−1ð Þ tk + 1− tkð Þ ×Xk + 1

ð5:4Þ

5.2.3 Least-Squares Curve-Fitting Algorithm

In the case of curve fitting of given measurements (tk, Xk) (k = 1,2,…,n), the principle of the least-
squares algorithm is to minimize the quadratic sum of deviations between measurements and fitted
curves, so that the fitted curve is closer to the real function. The specific steps are described as
follows.
Suppose that the unknown function is close to a linear function, and select

X tð Þ = a � t + b ð5:5Þ

as its fitted curve. Assume that the obtained measurements are (tk, Xk) (k = 1,2,…,n), then the
deviation between each observation data point and the fitted curve is

X tkð Þ−Xk = a � tk + b−Xk k = 1,2,…,n ð5:6Þ
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The quadratic sum of deviations is

F a,bð Þ=
Xn
k = 0

a � tk + b−Xkð Þ2 ð5:7Þ

According to the principle of least squares, a and b should minimize F(a, b), that is, a and b
should satisfy

∂F a,bð Þ
∂a

= 2
Xn
k = 0

a � tk + b−Xkð Þ� tk = 0

∂F a,bð Þ
∂b

= 2
Xn
k = 0

a � tk + b−Xkð Þ= 0

8>>>><>>>>: ð5:8Þ

That is,

a
Xn
k = 0

t2k + b
Xn
k = 0

tk =
Xn
k = 0

tkXk

a
Xn
k = 0

tk + bn=
Xn
k = 0

Xk

8>>>><>>>>: ð5:9Þ

Solve the equation group above, to get the value of a and b.

5.3 Space Registration

5.3.1 Coordinates

For radar, target measurement is usually implemented in space polar coordinate systems, while the
subsequent target measurement processing is conducted in rectangular coordinate systems. Further-
more, when radars are installed on different carriers (aircraft, ships, etc.), the coordinate systems
used by different radar systems can be divided, according to their definitions, into the following
categories: the north east down (NED) coordinate system, the carrier coordinate system, the radar
antenna coordinate system, and the sight of target coordinate system, etc. This section will mainly
introduce some frequently used coordinate systems related to radar measurement or data processing.

5.3.1.1 Descartes Rectangular Coordinate System

Choose three axes (that is, straight lines with positive direction) in space, which intersect at the same
point and are perpendicular to each other. Customarily, one is the front–rear axis, called the hori-
zontal axis (i.e.,OX axis – X axis for short), whose positive direction is from rear to front. Another is
the left–right axis, called the longitudinal axis (i.e., OY axis – Y axis for short), whose positive
direction is from left to right. Still another is the up–down axis, called the vertical axis (i.e.,
OZ axis – Z axis for short), whose positive direction is from down to up. The X, Y, and Z axes
are known collectively as the coordinate axes, whose point of intersection is called the origin, often
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represented by the letter O. Planes YOZ, ZOX, and XOY are known collectively as the coordinate
planes – YZ, ZX, and XY for short.
A supplementary explanation is given below of the rule of directions of coordinate systems. If the

thumb and forefinger of the right hand, respectively, point in the directions of axes X and Y, and the
direction of the middle finger is the same as that of the Z axis, then the coordinate system is called a
right-hand coordinate system, as shown in Figure 5.2; otherwise, it is called a left-hand coordinate
system, as shown in Figure 5.3. In order to be consistent with practical engineering applications, this
book adopts right-hand coordinate systems. What’s more, the axes in space coordinate systems are
not necessarily required to be perpendicular to each other, they can cross obliquely, and this kind of
coordinate system is called the Descartes oblique coordinate system. In practice, it is rather incon-
venient and difficult to use oblique coordinate systems in equation deduction and application, so we
usually choose right-hand rectangular coordinate systems.
As shown in Figure 5.2, suppose that P is a known point in space. Construct, through P,

planes parallel to YZ, ZX, and XY, respectively, which cross X, Y, and Z at points A, B, and C.

Z

C H

Y

P

BO

A

K

X

Figure 5.2 Right-hand space rectangular coordinate system

O
X

Y

Z

Figure 5.3 Left-hand space rectangular coordinate system
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The coordinates of A, B, C are a, b, c. The array (a, b, c) consisting of the three numbers is
called the rectangular coordinates of the point P. a, b, c are the X, Y, Z coordinates of the
point P, respectively.

5.3.1.2 Space Polar Coordinate System

In radar data processing, the advantage of rectangular coordinate systems lies in the fact that the
filtering, interpolation, and extrapolation processes can be conducted in linear models. Normally,
the measurement value of such sensors as radar is obtained in a space polar coordinate system,
which is also called a spherical coordinate system. Definitions of coordinate axes and planes in
space polar coordinate systems are the same as those in Descartes rectangular coordinate systems.
The polar coordinate system is different from the rectangular coordinate system in that the coord-
inate definitions of spatial points are different in their respective coordinate system.
Assume that P is a known point in space, a vertical line is made from P to plane XY, and

the perpendicular foot is L, r represents the radial distance, θ (elevation) and φ (azimuth)
represent ∠POB and ∠XOB, respectively. The three numbers r, θ, and φ determine the position
of P. Therefore, array (r, φ, θ) is the spherical coordinates or space polar coordinates of the point
P, as shown in Figure 5.4.

5.3.1.3 Earth Coordinate System

The earth coordinate system is an inertial coordinate system [132], whose origin lies at the earth’s
center. Axis Xg is the earth’s spin axis, with direction from the earth’s center to the North Pole. Axis
Yg is defined as the axis in the equatorial plane, with direction from the earth’s center to the merid-
ians. Axis Zg is the orthogonal result of Xg and Yg, as shown in Figure 5.5. It should be noticed that
definitions of each coordinate axis in the earth coordinate system may be inconsistent in different
practical implementations.
Usually, the target coordinates in this coordinate system are expressed by longitude, latitude,

and altitude, therefore it is also called a geographical coordinate system. When the radar reports

Z

Y

X

L

B

O

φ

r
P

θ

Figure 5.4 Space polar coordinate system
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the detected target information, the position information of the target is usually shown in
geographical coordinates.

5.3.1.4 NED Coordinate System

The NED coordinate system, whose origin is at the carrier’s mass center, is a local coordinate system
[17, 39, 40, 46, 128]. As shown in Figure 5.6, N is the compass’s direction, E is the tangential
direction of the earth’s rotation, and D is the direction from the carrier’s mass center to the earth’s
center. For shipborne or ground sensors, the direction of axis D in the NED coordinate system
should be from the earth’s center to the carrier’s mass center (O).
The NED coordinate system is a locally stable coordinate system. Technically, it is not an inertial

coordinate system, because axis D will slowly change its pointing direction in space when the
motion platform passes the surface of the earth. However, the influence of such movement can
be ignored except when it moves near the North Pole. So, NED is an approximate inertial coordinate
system for a motion platform. This coordinate system is suitable not only for airborne systems, but
also for ground or shipborne tracking systems.

5.3.1.5 The Carrier Coordinate System

The origin of the carrier coordinate system [132] is the carrier’s mass center. For shipborne sensors,
axis Xd is the positive direction of the bow, axis Zd is the plumb line of the deck plane, pointing to the
sky, and axis Yd is the positive direction of the starboard, as shown in Figure 5.7. For airborne sen-
sors, Xd is the carrier’s longitudinal axis, whose positive direction is head, axis Yd is the positive
direction of the right wing, and axis Zd is determined by the right-hand spiral rule, pointing to
the bottom of the fuselage.

The earth’s

spin axis

Xg

Zg

Yg

The

earth’s

center

Figure 5.5 Earth coordinate system
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The carrier coordinate system is usually used in shipborne or airborne radars to measure space
positions of targets.

5.3.1.6 Radar Antenna Coordinate System

The origin of the radar antenna coordinate system is the intersection of the pitching and beam axes
of the radar. Axis R is the aiming direction of the beam axis, while E and D are a pair of orthogonal
axes perpendicular to R. R, E, and D constitute a right-hand relationship in turn.

Target 

N
η

R

O

D

E

The

earth’s

center

Distance of vector’s 

projection on horizontal

ε

Figure 5.6 NED coordinate system

Zd

Xd

Yd

Figure 5.7 Shipborne carrier coordinate system
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5.3.1.7 The Sight of Target Coordinate System

The sight of target coordinate system has the same origin as the radar antenna coordinate system.
Axis R0 is the linking line direction from the focal point of the antenna to the target. E0 andD0 are a
pair of orthogonal axes perpendicular to R0. R0, E0, and D0 in turn constitute a right-hand relation-
ship. The relationship between the radar antenna and the sight of target coordinate system is
shown in Figure 5.8. These two coordinate systems are also often used to measure space positions
of targets.

5.3.2 Coordinate Transformation

In radar tracking systems, coordinate transformation [130] refers to the following process: if two
coordinate systems are known, the positional relation of two groups of coordinates of the same point
can be determined based on their positional relation; according to this relation equation, the same
target’s space position can be expressed by different space coordinate systems, which is convenient
for the target measurement and data processing of the whole radar tracking system.
Methods for coordinate transformation [130] fall into two classes: translation transformation and

rotation transformation. The former changes the position of the origin with the axis direction kept
unchanged, while the latter changes the axis direction instead of the origin position. The coordinate
transformation of any system can be realized by both or either of these two methods.

5.3.2.1 Translation Transformation

As shown in Figure 5.9, the coordinate system is moved parallel from the first position OX, OY, OZ
to the second positionO0X0,O0Y0,O0Z0, that is,O0X0,O0Y0,O0Z0 are, respectively, parallel toOX,OY,
OZ. This method is called “translation of coordinate systems.”
Suppose that the coordinates of the new originO0 in the old coordinate system are (a, b, c), and that

the coordinates of P in the old and new coordinate systems are, respectively, (x, y, z) and (x0, y0, z0).
According to the spatial geometry relation in Figure 5.9, we obtain

–D′
–D

R′

R

EE′

O
εe

εd

Figure 5.8 ORED and O0R0E0D0
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x = x0 + a

y = y0 + b

z= z0 + c

8><>: ð5:10Þ

or

x0 = x−a

y0 = y−b

z0 = z−c

8><>: ð5:11Þ

Equations (5.10) and (5.11) are called coordinate transformation equations under the translation
of coordinate axes, “translation equations” for short.

5.3.2.2 Rotation Transformation

The rotation of space coordinate systems is a motion that preserves the origin and unit segment
while changing the direction of the coordinate axes. In order to elaborate on the equation deduc-
tion process of rotation transformation, we first study a rather simple case, in which one coord-
inate axis is kept fixed while the other two rotate around it, as shown in Figure 5.10. In this figure,
OX and OY rotate around OZ in the same direction at angle θ, then we obtain OX0 and OY0, while
OZ keeps fixed, which means that the coordinate systemOX0Y0Z0 is obtained afterOXYZ is rotated
counterclockwise.
If the coordinates ofP in the old and new coordinate systems are, respectively, (x, y, z) and (x0, y0, z0),

then obviously the Z coordinate is unchanged while the Y coordinate and X coordinate are changed.

Z

Z′

P

Y′

X'

X

Y

O′

O

c

b

a

Figure 5.9 Coordinate translation transformation
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According to the geometrical relationship between the points in Figure 5.10, the following can
be obtained:

x0 = xcosθ + ysinθ

y0 = −xsinθ + ycosθ

z0 = z

8><>: ð5:12Þ

Likewise, when the coordinates make a counterclockwise rotation around X or Y, similar
equations can be obtained:

x0 = x

y0 = ycosθ + zsinθ

z0 = −ysinθ + zcosθ

8><>: ð5:13Þ

x0 = xcosθ−zsinθ

y0 = y

z0 = xsinθ + zcosθ

8><>: ð5:14Þ

In radar data processing systems, for convenience of expression, the vector is customarily used
to indicate the position of a target in space. If a coordinate system in space is defined as
OXaYaZa, then the coordinate Xa of any point P in this system can be expressed by the vector

equationXa = Xxa Xya Xza

� �0
, where Xxa, Xya, Xza, respectively, represent the corresponding positions

of P on the axes. Equations (5.12) and (5.14) can be expressed as

Xb =L1Xa ð5:15Þ
Xb =L2Xa ð5:16Þ

Z

Y′

X′

O θ

θ

Y

X

Figure 5.10 Rotation of single coordinate axes
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Xb =L3Xa ð5:17Þ

where

L1 θð Þ=
cosθ sinθ 0

−sinθ cosθ 0

0 0 1

264
375 ð5:18Þ

L2 θð Þ=
1 0 0

0 cosθ sinθ

0 −sinθ cosθ

264
375 ð5:19Þ

L3 θð Þ=
cosθ 0 −sinθ

0 1 0

sinθ 0 cosθ

264
375 ð5:20Þ

which are called basic rotation matrixes around axes Z, X, and Y. The transformation relation
between any two coordinate systems can be realized by the combination of basic rotation
matrixes.
If coordinate systemOXbYbZb is obtained afterOXaYaZa rotates counterclockwise around axes X,

Y, and Z, respectively, at angle φ1, φ2, and φ3, and the coordinate vector of point P in the new

coordinate system is expressed as Xb = Xxb Xyb Xzb

� �0
, then the rotation transformation relation

between Xa and Xb is

Xb =LbaXa ð5:21Þ

where

Lba =L1 φ1ð Þ�L2 φ2ð Þ �L3 φ3ð Þ ð5:22Þ

which is called the transformation matrix from coordinate system a to b.
It is not difficult to demonstrate that the coordinate transformation matrix Lbameets the following

reversible and orthogonal condition:

L0
ba =L

−1
ba =Lab ð5:23Þ

5.3.3 Transformation of Several Common Coordinate Systems

5.3.3.1 Rectangular Coordinate System and Polar Coordinate System

The geometrical relation of space point P in the two coordinate systems is shown in Figure 5.4.
If the target position of point P is denoted as (r , φ , θ) in the space polar coordinate system and the

position of its coordinates as (x , y , z) in the rectangular coordinate system, then the transformation
relation between the polar and the rectangular coordinate system of the sensor is
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x= rcosφcosθ

y= r sinφcosθ

z= r sinθ

8><>: ð5:24Þ

or

r =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + z2

p
φ= tan−1 y

x

� �
θ = sin−1 z

r

� �
8>>>><>>>>: ð5:25Þ

5.3.3.2 NED Coordinate System and Shipborne Coordinate System

Suppose that the rolling angle of a ship is R (starboard rolling is the positive direction), the pitching
angle is P (the pitch-up direction of the bow is positive), the angle between the course and due
north is an (when the course makes starboard deviation from due north, an is positive). The rotation
relation between the axes of the two coordinate systems is shown in Figure 5.11.
Hence, three basic rotation matrixes can be determined:

L1 Rð Þ =
1 0 0

0 cosR sinR

0 −sinR cosR

264
375 ð5:26Þ

L2 Pð Þ =
cosP 0 −sinP

0 1 0

sinP 0 cosP

264
375 ð5:27Þ

L3 anð Þ =
cosan sinan 0

−sinan cosan 0

0 0 1

264
375 ð5:28Þ
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Figure 5.11 Transformation of NED coordinate and shipborne coordinate system
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Eventually we get the coordinate transformation matrix L:

L=L1 Rð ÞL2 Pð ÞL3 anð Þ=
T11 T12 T13

T21 T22 T23

T31 T32 T33

264
375 ð5:29Þ

where

T11 = cosan cosP

T12 = sinan cosP

T13 = −sinP

T21 = cosan sinPsinR−sinan cosR

T22 = sinan sinPsinR+ cosan cosR

T23 = cosPsinR

T31 = cosan sinPcosR+ sinRsinan

T32 = sinan sinPcosR−sinRcosan

T33 = cosPcosR

The shipborne coordinate system is one type of carrier coordinate system. The transformation
between the other types and NED coordinate systems can also be implemented by the methods
mentioned above.

5.3.3.3 NED Coordinate System and Earth Rectangular Coordinate System

As indicated in Figure 5.12, assume that the longitude, latitude, altitude, and geodetic azimuth of
the radar are, respectively, L, B, H, and A, then its coordinates in the earth rectangular coordinate
system [130] are

xo = NR 1−e21
� �

+H
� �

sinB

yo = NR +Hð ÞcosBcosL
zo = NR +Hð ÞcosBsinL

8><>: ð5:30Þ

where e21 =
a2−b2ð Þ
a2

is the first eccentricity, NR =
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−e21sin
2B

q , a is the major semi-axis, and b is the

short semi-axis. If coordinate system WGS-84 is adopted, then a = 6378137m, b = 6356752m.
Assume that the coordinate parameters of a target point in the NED and the earth rectangular

coordinate system are, respectively, Xl = xl,yl,zlð Þ and Xg = xg,yg,zg
� �

. According to Figure 5.12,
the transformation relation between the two systems can be written as

Xg =TXl +Xo ð5:31Þ
where

T =Rx −Lð ÞRz Bð ÞRy Að Þ
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with

Rx θð Þ =
1 0 0

0 cosθ sinθ

0 −sinθ cosθ

264
375, Ry θð Þ=

cosθ 0 −sinθ

0 1 0

sinθ 0 cosθ

264
375, Rz θð Þ =

cosθ sinθ 0

−sinθ cosθ 0

0 0 1

264
375

5.3.3.4 Antenna Coordinate System and the Sight of Target Coordinate System

When the target is tracked correctly, the antenna and the sight of target coordinate system
coincide completely. When the target is not tracked correctly, the elevation angle error on plane
R0OD0 is εe and the azimuth error on plane R0OE0 is εd, and the angle is positive, as shown in
Figure 5.8. Assume that the target’s coordinate parameters in the antenna and the sight of target
coordinate system are, respectively, XR = xr,er ,drð Þ, XR0 = xr0 ,er0 ,dr0ð Þ, then the transformation
relation between them is

XR0 =Trr0XR ð5:32Þ
where Trr0 =RE εeð ÞRD εdð Þ and

RE εeð Þ =
cosεe 0 −sinεe

0 1 0

sinεe 0 cosεe

264
375, RD εdð Þ=

cosεd sinεd 0

−sinεd cosεd 0

0 0 1

264
375

5.3.3.5 The Transformation of NED Coordinate Systems

For a radar network system, the data detected by all the radars should be transformed to one coord-
inate system in order to make full use of them. This process is the so-called “space registration” in

The earth’s

spin axis

Xg

Zg

Yg

Xl

Yl

ZlA

B

H

L

The

earth’s

center

Figure 5.12 Transformation of NED coordinate and earth rectangular coordinate system
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radar network systems. The space registration method most frequently used is first to transform the
measurement coordinate systems of all the radars to their respective NED coordinate systems, and
then use the NED systems in the conversion between the different radar units. The transformation
between the measurement coordinate system of different radars and the NED systems can be imple-
mented by the methods introduced in Section 5.3.4. We focus on the NED coordinate transform-
ation between different radar units here.
Assume that the longitude, latitude, altitude, and geodetic azimuth of the origins of the measure-

ment coordinate systems of radars i and j are, respectively, Li, Bi, Hi, Ai and Lj, Bj, Hj, Aj. Assume
also that the position parameters of the target point in the two measurement coordinate systems are,
respectively, Xli = xli,yli,zlið Þ and Xlj = xlj,ylj,zlj

� �
. From (5.30), we obtain the earth rectangular

coordinates of radars i and j, represented respectively as Xoi and Xoj. From (5.31), we get the trans-
formation relations between NED and earth rectangular coordinate systems of radars i and j, which
are respectively

Xg =TiXli +Xoi

Xg =TjXlj +Xoj

According to the above equation, the transformation relation of the NED coordinate systems
between radar i and radar j is

Xlj =T −1
j TiXli +T −1

j Xoi−Xoj

� � ð5:33Þ

In many engineering applications, some simple transformation methods can be used (as the situ-
ation dictates). For example, when the distance between radars is rather short, their NED coordinate
systems are deemed to be approximately parallel with each other, so the coordinate transformation
between them can be made with the translation transformation method. In the case of fixed
ground radars, coordinate transformation relations of different radars can be calculated before
the operation of the systems so as to reduce the computational amount required.

5.3.4 Selection of Tracking Coordinate Systems and Filtering State Variables

The design of tracking filters is greatly influenced by the mathematical models of the following [39]:

1. measurements (observations) provided by detectors;
2. movement of tracked targets.

Both models rely on the coordinate system adopted. Generally, we can use any type of tracking
coordinate system. However, in terms of operating environments and convenience, rectangular,
NED, or polar coordinate systems are usually used in the tracking of single targets in clutter-free
environments. Mixed coordinate systems are more convenient in tracking multiple targets in multi-
echo environments and in tracking single ones with multiple platforms. In any case, the coordinate
system adopted should be:

• easy to use in describing the movement of the target;
• able to meet the bandwidth requirement of filters;
• convenient in state coupling and decoupling;
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• small in dynamic and static deviation;
• able to reduce the computational complexity but not at the expense of tracking accuracy.

The general rule for state variables is to select a set of variables which have minimum dimensions
but can fully describe the dynamic characteristics of targets in case the computational complexity
increases with the number of state variables. It should be noted that state variables are directly
related to the selection of tracking coordinate systems. Johson [136] proved that the choice of a
proper coordinate system would reduce the calculating cost of state estimation considerably. More-
over, the introduction of velocity measurements in PD radars is an effective way to improve the
tracking accuracy. This method can not only increase the bandwidth of the system, but also decrease
its dynamic errors efficiently.

5.4 Radar Error Calibration Techniques

In the multi-radar fusion tracking process, even the best fusion method has its limitations when
employed in directly fusing the information with errors collected from each radar, as proved in their
military applications. For example, when a shipborne airplane takes off, three different routes are
provided by three radars at a station, and the maximum error is greater than 10 km, in which case the
fusion result of such data is certainly misleading. It is necessary, therefore, to make calibrations
before the fusion so as to eliminate the errors in the ranging and angle measurement of the
radar units.
Radar calibration methods widely adopted include static active and passive cooperative cali-

bration, and non-cooperative calibration. These methods, however, require laser ranging and
optical angle measuring sensors to acquire true values for calibrations. Active and passive calibra-
tions are suitable for two-dimensional radars, while the use of optical measurement is limited to
three-dimensional radars, which are relatively sophisticated and whose calibration structure (which
is hard to put up) is subject to space restrictions.
The radar calibration unit incorporating the ADS-B system developed by Naval University of

Aeronautics and Astronautics receives in real time the position data broadcast by civil aircraft,
including information such as longitude, latitude, velocity, altitude, and type. Then, it compares
those data with the three-dimensional information of the same batch of targets recorded by the
radars. According to the comparison and analysis results, the unit testifies and evaluates whether
the target detection performance of the radars reaches the required standard.
The ADS-B system has three main characteristics. Firstly, it provides real-time data.

ADS-B obtains the information about its own position through the GNSS positioning sys-
tem, and then transmits the real-time data to the ground receiving equipment and other
neighboring civilian aircraft in the airspace. Secondly, the data which it sends are reliable.
To be more exact, these data are highly accurate, because what the system provides is the
GNSS navigation and positioning information, and the parameters acquired from other
sophisticated avionic equipment. Thirdly, its data are convenient for reception. Since
ADS-B transmits information by means of broadcasting, the ground receiving equipment
can be simplified, that is to say, it is unnecessary for the ground equipment to send inquiry
information to the target plane.
Radar calibration systems incorporating ADS-B are of modular design, and thus able to emendate

the tactical performance of the radars by combination and extension of the modules. They are com-
posed of seven software and hardware modules: ADS-B data receiving modules, GPS receiving

88 Radar Data Processing with Applications



modules, radar data real-time feed modules, ADS-B and radar target monitoring platforms, ADS-B
and radar data comparing and processing modules, error analysis and calibration advice modules,
and calibration report generating modules of radar performance. On the premise of not influencing
the radars’ performance, radar data are fed, through the data reporting access, into the ADS-B tac-
tical performance calibration system, which provides the tactical performance assessment report
of the radars by the data comparing and processing software. These ADS-B incorporating systems
also have the function of tracking and directing radars, radar range assessment, radar target aided
identification, and monitoring the intelligence quality.

5.5 Data Compression Techniques

In current data processing techniques, there are two types of data compression: one refers to com-
pressing data at different times into the data at one time in the data processing system of a monostatic
radar [39]; the other refers to compressing multiple-radar data into monostatic radar data [18, 143,
144] in the multi-radar (radar network) data processing system.

5.5.1 Data Compression in Monostatic Radar

Currently, the data rate of sensors of various types is becoming higher and higher, more and more
motion information on targets can be obtained, so the tracking accuracy naturally becomes higher.
The increase in filtering sampling rate, however, sets higher requirements for the computational
speed and increases the tracking cost. Therefore, data compression techniques are frequently used
in practical engineering to solve the contradictions between the filtering precision and the quantity
of data [39]. The data compression techniques for monostatic radars can be divided into two groups:
equal-weighted average preprocessing of measurements and variable-weighted average preprocess-
ing of measurements.

5.5.1.1 Equal-Weighted Average Measurement Preprocessing

Suppose that the discrete state and the measurement equation of the target are, respectively,

X k + 1ð Þ =F k + 1,kð ÞX kð Þ +V kð Þ ð5:34Þ

Z k + 1ð Þ =H k + 1ð ÞX k + 1ð Þ+W k + 1ð Þ ð5:35Þ

whereF k + 1,kð Þ andH k + 1ð Þ are, respectively, the state transformation and the observationmatrix,
V(k) andW k + 1ð Þ are mutually independent Gaussian white process noise and measurement noise
vector.
Suppose that the filtering rate is k (1/s). Measure the targetM times in each sampling period, then

the measurement sequence is

Z k +
1
M

	 

,…,Z k +

i

M

	 

,…,Z k + 1ð Þ

� �
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Define the equal-weighted average residual of the M measurements as vpm k + 1ð Þ, then from the
standard Kalman filter equations in Section 3.2, we get the following relation:

vpm k + 1ð Þ= 1
M

XM
i= 1

v k +
i

M

	 


=
1
M

XM
i= 1

Z k +
i

M

	 

−H k +

i

M

	 

�X̂ k +

i

M
jk

	 
 �

=
1
M
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i= 1

H k +
i
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X k +

i
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+W k +
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−H k +

i
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i
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X̂ kjkð Þ
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1
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i= 1
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ð5:36Þ

where

Wpm k + 1ð Þ= 1
M

XM
i= 1

W k +
i

M

	 

is the equal-weighted average measurement noise, and its covariance matrix is

Rpm k + 1ð Þ=E Wpm k + 1ð ÞW 0
pm k + 1ð Þ

h i
=E

1
M2

XM
i= 1

XM
j= 1

W k +
i

M

	 

W 0 k +

j

M

	 
" # ð5:37Þ

where R k + 1ð Þ is the covariance matrix of measurement noiseW k + 1ð Þ. Obviously, the influence
of random measurement noise in the equal-weighted average residual has greatly reduced.
The basic idea of equal-weighted average measurement preprocessing is to replace the

one-step measurement residual v k + 1ð Þ with the equal-weighted average residual vpm k + 1ð Þ
containing more target information but with less influence of measurement noise to calculate the
target state estimation, which will undoubtedly increase the tracker’s estimation precision
substantially.

5.5.1.2 Variable-Weighted Average Measurement Preprocessing

Likewise, the core of variable-weighted average measurement preprocessing is to replace the one-
step measurement residual v k + 1ð Þ with the variable-weighted average residual vpm k + 1ð Þ contain-
ing more target information but with less influence of measurement noise in target state estimation,
so as to enhance the effect of the latest measurement data on filtering.
The variable-weighted average residual of M measurements is defined as
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where Wvm k + 1ð Þ is the variable-weighted average measurement noise

Wvm k + 1ð Þ =

XM
i= 1

i �W k +
i

M

	 

XM
i= 1

i

ð5:39Þ

and its covariance matrix is

Rvm k + 1ð Þ =E Wvm k + 1ð ÞW 0
vm k + 1ð Þ� �

=
1XM
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ð5:40Þ

5.5.2 Data Compression in Multistatic Radar

The centralized structure is a data processing structure [18] commonly used in multistatic radar
systems. This structure transmits the observations acquired by the sensors to the data processing
center of the system for direct fusion. The computational complexity of this kind of system obvi-
ously increases with the number of targets. Therefore, data compression methods are frequently
used to increase the real-time processing speed in many practical systems.
The data compression of radar network systems falls into two types [18]: measurement synthesis

and serial combination. Measurement synthesis is to combine several radars’ measurements of the
same target at the same time and combine several detected data into one. Serial combination is to
integrate multistatic radar data into detection measurements similar to those of monostatic radar
instead of synthesizing many detection data into one.

5.5.2.1 Measurement Synthesis

Take the dual-radar system as an example. Assume that each radar can provide information about
the range and angle of the target, so the process of data compression is as follows.
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Assume that Z1
k = z11,k,…,z1N1,k,k

n o
and Z2

k = z21,k,…,z2N2,k,k

n o
are, respectively, the measurement

set of radar 1 and radar 2 at time k, where N1,k and N2,k are the number of measurements obtained

by radar 1 and radar 2 at time k, and z1i,k = ρ1i,k,θ
1
i,k

� �T
(i= 1,…,N1,k) and z2j,k = ρ2j,k,θ

2
j,k

� �T
( j= 1,…,N2,k) represent the ith and jth measurement of radar 1 and radar 2 at time k. If

ρ1i,k −ρ
2
j,k

��� ��� ≤ ρT
θ1i,k −θ

2
j,k

��� ��� ≤ θT , i= 1,…,N1,k, j= 1,…,N2,k

8><>: ð5:41Þ

then the measurement z1i,k of radar 1 and the measurement z2j,k of radar 2 are believed to be
associated; ρT and θT are thresholds of correlated wave gates, whose values are related to sensors’
measurement errors. If a certain measurement of radar 1 is associated with several measurements
of radar 2, then the nearest measurement point is chosen to make an association by the nearest-
neighborhood algorithm.
For any pair of associated measurements z1i,k and z2j,k, make data compression according to the

following equation:

ρ̂ =
1

σ21,ρ + σ
2
2,ρ

σ22,ρ �ρ1i,k + σ21,ρ �ρ2j,k
� �

θ̂ =
1

σ21,θ + σ
2
2,θ

σ22,θ �θ1i,k + σ21,θ �θ2j,k
� �

8>>><>>>: ð5:42Þ

Then we can obtain an equivalent measurement and an equivalent measurement error:

σ̂2ρ =
1

σ21,ρ
+

1

σ22,ρ

 !−1

σ̂2θ =
1

σ21,θ
+

1
σ22,θ

 !−1

8>>>>><>>>>>:
ð5:43Þ

where σ2i,ρ and σ2i,θ are, respectively, the ranging and angle measuring variance of the ith (i= 1,2)

radar and σ̂2ρ and σ̂2θ are the range and angle variance after compression.
From (5.42) and (5.43) we see that the nature of data compression is to conduct measurement

weighting according to the precision, and the equivalent measurement after compression improves
the precision, that is,

σ̂2ρ ≤min σ21,ρ,σ
2
2,ρ

n o
σ̂2θ ≤min σ21,θ,σ

2
2,θ

n o
8><>: ð5:44Þ
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The above-mentioned algorithm can also be applied to multistatic radar systems consisting of
more than three radars. Assume that these radars’ measurement vectors about the same target at
the same time are, respectively, Z1, Z2, …, ZN, and that the corresponding measurement error
covariances are, respectively,R1,R2,…,RN, then we canmake data compression with the following
equation:

Z=R
XN
i= 1

R−1
i Zi ð5:45Þ

R =
XN
i= 1

R−1
i

" #−1

ð5:46Þ

From (5.45) and (5.46) it can be found that the estimation result is weighting the measurements of
each radar according to the precision [18].

5.5.2.2 Serial Combination

Serial combination, also known as measurement track synthesis, is widely used in practice. The
principle of measurement data flow synthesis is shown in Figure 5.13 (taking the single target
as an example), where the horizontal axis represents the time, and the point represents the detected
measurement.
As can easily be seen from Figure 5.13, an outstanding characteristic of serial combination is that

the rate of data flow increases after synthesis, which means an improvement in tracking accuracy,
especially in the case of maneuvering targets. Moreover, the overall increase in data rate brings
about an increase in the initial speed of tracks, which is especially important to low-altitude
anti-penetration and low-altitude anti-missile operations. Meanwhile, it should be noted that in
a radar system with a high data rate, the serial combination method makes no sense and measure-
ment synthesis is the best choice.

5.6 Summary

Measurement preprocessing is a vital technical link in the chain of radar data processing. Efficient
techniques for this stage can reduce computational complexity and improve target tracking preci-
sion, which will be a great help in improving the overall system performance. So, measurement
preprocessing techniques are the main topic of this chapter, which starts with time registration

Measurement of radar 1t

t

t

Measurement of radar 2

Synthesis measurement

Figure 5.13 Synthesis measurement of centralized radars
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and space registration problems and their corresponding solutions. Space registration involves the
selection of coordinate systems, which directly influences the tracking result of the whole system.
This chapter then presents some common coordinate systems, and the transformation relation of
different coordinate systems. Finally, it analyzes and discusses the radar error calibration and data
compression techniques. These techniques work well in reducing computational complexity and
improving tracking efficiency.
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6
Track Initiation in Multi-target
Tracking

6.1 Introduction

Previous chapters have focused on filtering in radar data processing, whose essence is to solve the
problem of the effect of noise on useful signals. In modern complex electromagnetic environments,
however, this entails not only distinguishing wanted signals from noise (picking out desired signals
from noise), but also correctly matching the measurements at adjacent moments. In other words, it
involves solving the problem of the effects of clutter, false targets, or other targets on a certain target.
The following three chapters (Chapters 6, 7, and 8) will discuss the problem of measurements
matching. This chapter will mainly study track initiation, that is, the correct measurement-to-
measurement association. To be more specific, it will focus on single-sensor multi-target tracking
or single-sensor single-target tracking in a cluttered environment.
Track initiation is the first issue of multi-target tracking. Correct track initiation will effectively

reduce the computational burden caused by the combinatorial explosion inherent in multi-target
tracking. If track initiation is not correct, target tracking cannot be carried out at all, thus leading
to the loss of targets. The old Chinese saying “A minimal error or deviation may result in wide
divergence” best demonstrates the importance of track initiation. Additionally, track initiation is
difficult to deal with due to factors like the greater range of targets, lower detecting resolution
of sensors, lower accuracy of measurement, as well as the absence of real statistical rules on the
occurrence of true and false targets. Multi-target track initiation in noisy environments is the most
complex to handle, chiefly due to the complexity of track processing itself and the status of track
initiation [145]. The formation of the correlated wave gate and confirmation area is the first issue in
multi-target tracking. The correlated wave gate refers to a domain [17, 19, 145, 146] with the pre-
dicted position of the target being tracked as the center, used to determine the possible range of the
observed value of the target. The size of this area is determined by the probability of correctly
receiving the echo. That is to say, when determining the shape and size of the wave gate, true meas-
urements should fall within the wave gate with high probability while there should be few unrelated
measurements in this gate. The correlated wave gate is the decision threshold used to judge whether
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the measurements originate from the target. The echoes falling within the correlated wave gate are
called “candidate echoes.” Once the shape and size of the gate are determined, the detection prob-
ability (i.e., the probability of true target measurements being correctly detected) and the false alarm
probability (i.e., the probability of false target measurements being falsely detected) are also deter-
mined. Owing to the fact that the detection probability and false alarm probability are often contra-
dictory, choosing an appropriate correlated wave gate is very important. This chapter will discuss
the formation of correlated wave gate and track initiation algorithms.

6.2 The Shape and Size of Track Initiation Gates

The correlated wave gate is the decision threshold used to judge whether measurements originate
from the target. It is an area with the predicted position of the target being tracked as the center, used
to determine the likely range of the observed values of the target at the next moment. The size of the
gate is determined by:

• prediction errors (track extrapolation errors);
• probability of correctly receiving echoes (threshold probability);
• radar measurement errors;
• target moving (maneuvering) features;
• the choice of coordinate systems;
• antenna scanning periods.

The echoes which fall within the correlated wave gates are called “candidate echoes.” Here we
mainly discuss such frequently used correlated wave gates as the annular gate, the elliptic/ellipsoidal
gate, the rectangular gate, and the sector gate in the polar coordinate system [14, 39, 147] (for other
gates, see Ref. [39]). For the sake of convenience, the measurement equation, innovation (measure-
ment residual), and innovation covariance discussed in Chapter 3 are presented again below.
The measurement equation is

Z k + 1ð Þ=H k + 1ð ÞX k + 1ð Þ +W k + 1ð Þ ð6:1Þ

where H k + 1ð Þ is a measurement matrix, X k + 1ð Þ is a state vector, and W k + 1ð Þ is a zero-mean
Gaussian white noise sequence with covariance R k + 1ð Þ.
The innovation is

v k + 1ð Þ =Z k + 1ð Þ− Ẑ k + 1jkð Þ ð6:2Þ

The innovation covariance is

S k + 1ð Þ=H k + 1ð ÞP k + 1jkð ÞH0 k + 1ð Þ+R k + 1ð Þ ð6:3Þ

where P k + 1jkð Þ is the one-step prediction of the covariance.

6.2.1 The Annular Gate

The annular gate usually serves as the initial gate in track initiation. It is a 360� large annular gate
centering the track head, whose size is determined by the maximum and minimum movement
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velocity of the target as well as the sampling interval. The initial gate needs to be large due to the
greater range of the target, the lower detecting resolution of the sensor, and the poorer measurement
accuracy. The inner and outer diameter of the gate should satisfy R1 =VminT and R2 =VmaxT , as
illustrated in Figure 6.1, where Vmin and Vmax are the maximum and minimum velocity, respect-
ively, and T is the sampling interval.

6.2.2 The Elliptic/Ellipsoidal Gate

If the converted measurement Zc k + 1ð Þ of a target in the rectangular coordinate system measured
by the sensor satisfies

eVk + 1 γð Þ≜ Zc k + 1ð Þ− Ẑc k + 1 kjð Þ� �0
S−1 k + 1ð Þ Zc k + 1ð Þ− Ẑc k + 1 kjð Þ� �

= vc0 k + 1ð ÞS−1 k + 1ð Þvc k + 1ð Þ ≤ γ
ð6:4Þ

then, the converted measurement is called the candidate echo. Formula (6.4) is called the “rule of the
ellipsoidal gate,” where the parameter γ can be obtained from the distribution table of χ2. If the

measurement Zc k + 1ð Þ is nz-dimensional, then eVk + 1 γð Þ is the χ2 distributed random variable with
nz degrees of freedom. The square root of the parameter (g=

ffiffiffi
γ

p
) is called the “σ number” of the

gate. When nz = 2, the shape of the correlated ellipsoidal gate is as depicted in Figure 6.2.
The probability PG that converted measurements fall within the gate varies with the value of γ and

the measurement dimension nz. Thus, PG is defined as follows:

PG = Pr Zc k + 1ð Þ 2 eVk + 1 γð Þ� � ð6:5Þ

The relationship between PG and the measurement dimension nz, as well as the parameter γ, can
be found in Ref. [39]. Table 6.1 presents the probabilities corresponding to different γ when the
measurement dimension nz ranges from 1 to 3.

R2

R1

Z(1)

Z(0)

Figure 6.1 The annular gate
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The area/volume [39] of the nz-dimensional elliptic/ellipsoidal gate is

Velliptic nzð Þ= cnzγ
nz
2 jS k + 1ð Þj12 ð6:6Þ

where

cnz =

π
nz
2

nz=2ð Þ! , nz is even

2nz + 1
nz + 1
2

� �
!π

nz −1
2

nz + 1ð Þ! , nz is odd

8>>>>>><>>>>>>:
ð6:7Þ

When nz = 1, 2, 3, cnz = 2, π, 4π=3, respectively.
After normalizing the nz-dimensional elliptic/ellipsoidal gate using the standard deviation of

innovation covariance, we get the volume of the gate:

Velliptic nzð Þ = cnzγ
nz
2 ð6:8Þ

The rectangular gate

O

The elliptic gate

x

y

Ẑc(k +1|k)

Figure 6.2 Correlated wave gate in the rectangular coordinate system

Table 6.1 The probability PG that nz-dimensional measurements fall within the gate

γ 1 4 9 16 25

g=
ffiffiffi
γ

p
1 2 3 4 5

nz = 1 0.683 0.954 0.997 0.99994 1.0
nz = 2 0.393 0.865 0.989 0.9997 1.0
nz = 3 0.199 0.739 0.971 0.9989 0.99998
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6.2.3 The Rectangular Gate

The simplest method of setting up a correlated wave gate is to define a rectangular area in the track-
ing region, namely the rectangular gate [14, 39]. Assume that vci k + 1ð Þ, zci k + 1ð Þ, and ẑci k + 1jkð Þ
represent the ith component of the innovation vc k + 1ð Þ, the converted measurement Zc k + 1ð Þ, and
the predicted value of the measurement Ẑc k + 1jkð Þ, respectively, and that Sij represents the element
in the ith row and jth column of innovation covariance S k + 1ð Þ. When all components of the meas-
urement Zc k + 1ð Þ satisfy

vci k + 1ð Þj j = Zci k + 1ð Þ− Ẑci k + 1 kjð Þ		 		 ≤KG

ffiffiffiffiffi
Sii

p
, i= 1,2,…,nz ð6:9Þ

then the converted measurement Zc k + 1ð Þ is said to fall within the rectangular gate, and the meas-
urement is a candidate echo, whereKG is a gate constant, often taking a biggerKG value (KG ≥ 3:5) in
practical implementations.
The area/volume of the nz-dimensional rectangular gate is

Vrectangular nzð Þ = 2KGð Þnz
Ynz
i= 1

ffiffiffiffiffi
Sii

p
ð6:10Þ

After normalizing the nz-dimensional rectangular gate using the standard deviation of innovation
covariance, we get the area/volume of the gate:

Vu
rectangular nzð Þ = 2KGð Þnz ð6:11Þ

If the corresponding gate constant KG varies with different components, then (6.10) and (6.11)
are, respectively, changed as follows:

Vrectangular nzð Þ= 2nz
Ynz
i= 1

KGi

ffiffiffiffiffi
Sii

p
ð6:12Þ

Vu
rectangular nzð Þ = 2nz

Ynz
i= 1

KGi ð6:13Þ

From (6.8) and (6.11), it follows that when KG is the same, the ratio of the area/volume of the
elliptic/ellipsoidal gate to that of the rectangular gate is

ratio nzð Þ = Vu
elliptic nzð Þ

Vu
rectangular nzð Þ =

cnzγ
nz=2

2KGð Þnz ð6:14Þ

With the gate constantKG and parameters γ and nz given, the ratio between the area/volume of the
elliptic/ellipsoidal gate and that of the rectangular gate obtained from (6.14) is shown in Table 6.2.

6.2.4 The Sector Gate

The target measurements ρ and θ detected by the sensor can be said to fall within a sector gate, and
the measurements are called candidate echoes, if the data is associated in the measurement coord-
inate system (polar coordinates) and ρ and θ satisfy
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ρ k + 1ð Þ− ρ̂ k + 1 kjð Þj j ≤Kρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ρ + σ

2
ρ̂ k + 1 kjð Þ

q
ð6:15Þ

θ k + 1ð Þ− θ̂ k + 1 kjð Þ		 		 ≤Kθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2θ + σ

2
θ̂ k + 1 kjð Þ

q
ð6:16Þ

where Kρ and Kθ refer to the square roots of parameters obtained from the χ2 distribution table, σ2ρ
and σ2θ denote the variances of measurement errors of ρ and θ in polar coordinates, respectively, and
σ2ρ̂ k + 1 kjð Þ and σ2

θ̂ k + 1 kjð Þ are the variances of the corresponding predicted values, respectively. The

shape of the sector gate is depicted in Figure 6.3, and its size is connected to the parameters obtained
from the χ2 distribution table, σ2ρ and σ2θ as well as σ

2
ρ̂ k + 1 kjð Þ and σ2

θ̂ k + 1 kjð Þ.

6.3 Track Initiation Algorithms

The existing track initiation algorithms can be categorized into two types: sequential processing tech-
niques and batch processing techniques. Sequential processing techniques generally apply to target
track initiation in the environment of comparatively weak clutter, while batch processing techniques
prove highly effective in initiating tracks in a strongly cluttered environment, but at the cost of
increasing the computational burden. This section covers several frequently used track initiation
algorithms including the logic-basedmethod,modified logic-basedmethod, Hough transform-based

Table 6.2 The ratio between the area/volume of the elliptic/ellipsoidal gate and that of the rectangular gate

KG 2.8 3.0 3.5

γ 9 16 25 9 16 25 9 16 25

nz = 1 0.9333 0.7000 0.5600 1.0000 0.7500 0.6000 1.1667 0.8750 0.7000
nz = 2 1.1091 0.6239 0.3993 1.2732 0.7162 0.4584 1.7330 0.9748 0.6239
nz = 3 1.5528 0.6551 0.3354 1.9099 0.8057 0.4125 3.0328 1.2795 0.6551
nz = 4 2.4604 0.7785 0.3189 3.2423 1.0259 0.4202 6.0067 1.9006 0.7785
nz = 5 6.3056 1.0217 0.3348 6.0793 1.4426 0.4727 13.1397 3.1181 1.0217

Sector gate

Ẑ(k + 1|k)

O x

y

Figure 6.3 Shape of the sector gate
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method, modified Hough transform-based method, Hough transform and logic-based method, and
formation target method based on clustering and Hough transform.

6.3.1 Logic-Based Method

The logic-based method [16, 17, 145, 148] applies to the whole process of track processing, and thus
certainly to track initiation. Logic-based methods and direct-vision methods are both concerned
with the processing of sequential observations received from consecutive radar scans. The obser-
vation sequence represents the input of the sliding window containing N scans. When the detection
number of the sliding window reaches a specified threshold, a track is initiated successfully. Other-
wise, the sliding window will be moved forward (time increase direction) one. The difference
between the two methods is that the direct-vision method reduces a possible track by two simple
rules, of velocity and acceleration, while the logic-based method predicts and identifies a possible
track by multiple hypotheses and correlated wave gates. A detailed discussion of logic-based
methods follows.
Let zli kð Þ be the lth component of measurement i at time k, where l = 1,…,p, i= 1,…,mk. Then, the

lth component of the distance vector dij between observations Zi(k) and Zj k + 1ð Þ can be defined as

dlij tð Þ =max 0,zlj k + 1ð Þ−zli kð Þ−vlmaxt
h i

+max 0, −zlj k + 1ð Þ + zli kð Þ+ vlmint
h i

ð6:17Þ

where t denotes the time interval between two scans. Suppose that the observation error is independ-
ent Gaussian distributed with zero mean, and that the covariance is Ri(k), then the square of the
normalized distance is

Dij kð Þ≜ d0ij Ri kð Þ+Rj k + 1ð Þ� �−1
dij ð6:18Þ

where Dij(k) is a random variable following a χ2 distribution with p degrees of freedom. The thresh-
old γ can be obtained from the χ2 distribution table with p degrees of freedom by the given threshold
probability. If Dij(k) ¡ Üγ, then it is determined that the two measurements Zi(k) and Zj k + 1ð Þ are
associated.
The search program is executed in the following steps.

1. Set up a threshold with the measurements from the first scan as the track head, and an initial
correlated wave gate with the velocity method, creating possible tracks for the second scan meas-
urements falling within this gate.

2. Extrapolate every possible track. The subsequent correlated wave gate is centered with the
extrapolated point, and its size is determined by the track extrapolation error covariance. Asso-
ciate the third scan measurements falling within the subsequent correlated wave gate and closest
to the extrapolated point.

3. If there is nomeasurement in the subsequent correlated wave gate, then cancel this possible track,
or use the expanded gate limited by acceleration to check whether the measurements from the
third scan fall within it.

4. Continue the steps above until a stable track is created, at which time the track initiation is
completed.

5. In each scan, use the measurements that do not fall within the correlated wave gate to engage in
data association discrimination as new track heads and turn to step 1.
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When will a stable track be created by means of the logic-based method? It depends on the com-
promise between the complexity analysis of track initiation and its performance; to be more exact, it
is determined by the performance of true and false targets, the density and distribution of these tar-
gets, the resolution and measurement error of searching sensors, etc. The commonly used method is
the m/n logic of sliding window [17, 145], as shown in Figure 6.4.
The sequence (z1, z2,…, zi,…, zn) denotes the input into the time window including n radar

scans. If there are measurements in the correlated wave gate at the ith scan, the element zi equals 1,
otherwise it equals 0. When the number of detections in the time window reaches a certain value
m, then track initiation is deemed successful, or else the sliding window moves to the right
once, whichmeans expanding the window time. The number of detections in track initiation and that
of successive events in the sliding window together constitute the track initiation logic.
According to Ref. [145], it is most suitable to use 3/4 logic in the background simulation of mili-

tary aircraft formation flying, for if n = 5, it will not produce a remarkable improving effect. To bal-
ance the effectiveness and computational complexity, 1=2 <m=n < 1 is appropriate in several time
scans, form=n > 1=2 indicates that the number of associated measurements is more than half, or else
it is not dependable as a possible track; if m=n= 1, it means that there are measurements associated
with each scan, that is, overconfidence in a quiet environment. Therefore, only the following two
values are chosen in engineering:

1. 2/3 ratio, used in fast initiation;
2. 3/4 ratio, used in normal track initiation.

6.3.2 Modified Logic-Based Method

In practical applications, the logic-based method can effectively initiate a target track only in
the case of low false alarm probability. In order to fast initiate a track under circumstances of high

Sliding window including N times scanning

Sliding window moves 
to the right 

... ... ... ...

k ⩾ m

m

Z1Z0 Zi ZN–1 ZN

Yes

No

+

Track is initiated 

Sliding window 
moves to the right 

once

Figure 6.4 The m/n logic of sliding window method
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false alarm probability, we can employ the modified logic-based method [149, 150]. This method
has great practical value in engineering applications, for it has the same order of magnitude in
terms of computational load as the logic-based method and is able to effectively initiate a tar-
get track.
Fundamentally, this algorithm is about adding a limiting condition to the measurements falling

within the correlated wave gate in the track initiation period, so as to eliminate the measurements
which, to some degree, are in a V-shape with the track. The algorithm search is carried out in
five steps.

1. Let the measurement set obtained from the first scan be Z 1ð Þ= Z1 1ð Þ,…,Zm1 1ð Þf g, and that from
the second scan be Z 2ð Þ= Z1 2ð Þ,…,Zm2 2ð Þf g. 8Zi 1ð Þ 2Z 1ð Þ (i= 1,2,…,m1), 8Zj 2ð Þ 2Z 2ð Þ
( j= 1,2,…,m2), find dij andDij(1) by (6.20) and (6.21), respectively, and ifDij 1ð Þ ≤ γ, then create
a possible track os1, s1 = 1,…,q1.

2. Extrapolate every possible track os1 with the linear extrapolation method, and build a subsequent
correlated wave gate Ωj(2) with the extrapolated point as the center, the gate size being deter-
mined by the track extrapolation error covariance. We can judge whether the measurement Zj(3)
falling within Ωj(2) is associated with the track in the following way: let the included angle
between this track and the line connecting Zj(3) and the second point of track os1 be α, if
α ≤ σ (where σ is determined by measurement error – a bigger σ can be selected to ensure a high
probability of target track initiation), then it is believed that zj(3) is associated with this track.

3. If there are no measurements in the subsequent correlated wave gate Ωj(2), then continue
extrapolating the possible track os1, s1 = 1,…,q1 mentioned above with the linear extrapolation
method. Build the subsequent correlated wave gate Ωh(3) with the extrapolated point as the cen-
ter, and the gate size determined by the track extrapolation error covariance. As for the meas-
urement Zh(4) falling within the subsequent correlated wave gate Ωh(3) during the fourth
scan, if the included angle β between this track and the line connecting Zh(4) and the first point
of track os1 is less than σ, then it is believed that the measurement is associated with the track.

4. If there is no measurement in the subsequent correlated wave gate Ωh(3) during the fourth scan,
then terminate this possible track.

5. Use measurements not associated with any track in every period to initiate a new possible track,
and turn to step 1.

When σ is chosen to be 360�, the modified logic-based method is simplified to the logic-based
method. Generally speaking, when the target moves in a straight line, a smaller σ can be chosen to
reduce the computational load and initiate target tracks effectively. When the target is maneuvering,
σ should be properly amplified so as not to miss the target in track initiation. If the target’s type of
motion is not clear, then σ should be bigger.

6.3.3 Hough Transform-Based Method

Originally used in image processing, the Hough transform is a basic method of detecting image
characteristics in image space [151, 152]. It mainly applies to the detection of straight lines in image
space. Since the data obtained from several scans of a radar can be seen as an image, the method
can be used to detect the target track. Now the Hough transform has been widely used in radar
data processing, and has become an important method of multiple-sensor track initiation and
low observable target detection [153]. In 1995, Carlson et al. [154–156] applied this method to
search radars in the detection of low observable targets in linear motion or approximate linear
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motion. Reference [157] applies the method to track initiation, but initiating a track with it is slow,
so Chen et al. [158] proposed the modified Hough transform to fast initiate a track.
The Hough transform method is to transform observed data (x, y) in the Cartesian coordinate

system to (ρ, θ) in the parameter space, that is,

ρ= xcosθ + ysinθ ð6:19Þ

where θ2 0,180�½ �. For a point (xi, yi) on a line, there must be only two parameters ρ0 and θ0
satisfying

ρ0 = xi cosθ0 + yi sinθ0 ð6:20Þ

As illustrated in Figure 6.5, a straight line in Cartesian space can be defined by the distance ρ0
from the origin to this straight line, and the included angle θ0 between ρ0 and the x axis.
Convert the points on the straight line in Figure 6.5 into curved lines in the parameter space, as

illustrated in Figure 6.6.
Figure 6.6 clearly shows that the curved lines in the parameter space converted from the points on

the straight line in Figure 6.5 intersect at a common point, which means that the coordinates in the
Cartesian coordinate system corresponding to the curved lines that intersect at a common point must
be in the same straight line.
In order to detect the target from the received radar data, plane ρ−θ needs to be discretely sep-

arated into several small checks, and the common intersecting point can be judged by detecting the
peak value of the 3D histogram. The center of every check in the histogram is

θn = n−
1
2

� �
Δθ, n= 1,2,…,Nθ ð6:21Þ

ρn = n−
1
2

� �
Δρ, n= 1,2,…,Nρ ð6:22Þ

Y

X

θ

ρ

Figure 6.5 Straight line in the Cartesian coordinate system
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where Δθ = π=Nθ, Nθ denotes the number of segments of parameter θ, and Δρ =L=Nρ. Nρ denotes
the number of segments of parameter ρ, and L is twice as much as the radar measurement range.
When there are a number of points that can be connected with a straight line, they will cluster in

the corresponding checks of the ρ−θ plane. After several scans, the number of points in a certain
unit will be accumulated for a target in linear motion. For example, in the histogram of the parameter
space illustrated in Figure 6.7, the peak values suggest tentative tracks, but some of them are not
yielded by the target track, but by clutter.
There are many ways to define data space. For example, a data image plane can be a 2D RT plane

constituted of slope distance R and scanning time T, or a 2D XY plane constituted of the target coord-
inates (x, y) worked out with slope distance R and azimuth angle β. The 2D RT plane has the fol-
lowing characteristics: the track of a stationary or slow-speed target displays as a straight line
perpendicular to the R axis; for a target with infinite velocity in the data image space, the slope
of the track approximates to zero, but the track of a target moving with acceleration is a curved line.
The 2D XY plane has the following characteristics: the track of a target moving with acceleration

θ

ρ

Figure 6.6 Hough transform
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Figure 6.7 Histogram in the parameter space
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is still a straight line, but for a stationary target, it is a fixed point. Therefore, the ways to define a data
space can be chosen according to practical need.
Carlson et al. [154] proposed a method of converting points in the Cartesian coordinate system to

curved lines in the parameter space by using a simple multi-dimensional matrix.
The Hough transform applies to track initiation of targets in linear motion in a cluttered envir-

onment. The quality of initiating a track with this technique depends on the time of track initiation
and the parametersΔθ andΔρ. The longer it takes to initiate a track, the better the initiated track will
be. Similarly, the quality of the initiated track improves with decreasing value of the parameters Δθ
andΔρ, but this tends to cause false dismissal of alarms. The values ofΔθ andΔρ should be chosen
according to the actual radar measurement error. In the case of larger measurement errors, larger
values should be assigned to the parameters Δθ and Δρ lest alarms be falsely dismissed. The track
of a maneuvering target is difficult to initiate with the Hough transform owing to the limitations
inherent in the characteristics of the technique. It can be initiated with the generalized Hough trans-
form, which, due to the heavy computational loads involved, is less applicable in reality and will not
be elaborated on here.

6.3.4 Modified Hough Transform-Based Method

The classical Hough transform works effectively in track initiation only after many scans, which is
not practical in engineering [158]. To tackle the slow track initiation and heavy computational loads
involved in this method, Ref. [158] comes up with a modified Hough transform method, which can
significantly increase the speed of track initiation. This modified technique, for example, can be
employed in the fast track initiation for ballistic missiles, which proves very difficult otherwise,
chiefly because of their massive acceleration in the initiation stage. The difficulty is further multi-
plied by their fast speed and high maneuverability.
Suppose that a radar receives three groups of data, rn, rn + 1, and rn+ 2, at the nth, n + 1ð Þth, and

n + 2ð Þth scan times, respectively. These data can be converted by (6.19) into three groups of curves
ρn, ρn+ 1, and ρn+ 2 in the parameter space, whereby the difference function is obtained as follows:

Δρn = ρn−ρn+ 1 ð6:23Þ
Mark the zero crossing point Δρn as Δρn(0). Δρn(0) provides the θ coordinates corresponding to

the crossing points ρn and ρn + 1, marked as θΔρn 0ð Þ. If considering the points in Cartesian coordinates,
the sign of θΔρn 0ð Þ is determined by the direction of the vector rn−rn + 1ð Þ. Based on the two pieces of
information above, two criteria can be obtained.

1. Zero crossing points θΔρn 0ð Þ and θΔρn + 1 0ð Þ must be very close, that is,

jθΔρn 0ð Þ−θΔρn + 1 0ð Þj ≤ σ0 ð6:24Þ

where Δθ ≤ σ0 ≤mΔθ is the permissible error and m is any positive integer.
2. The signs of slopes at zero crossing points θΔρn 0ð Þ and θΔρn + 1 0ð Þ have to be the same.

Criterion 1 can be used to judge whether data points are collinear. If the data of three consecutive
scans received by a radar are collinear, then there should be a common intersection point in the
parameter space. In practice, however, discrete intervals in the parameter space must be adjusted
according to the margin of measurement error due to the presence of measurement noise, so that
the intersecting points of most curved lines are in the same check. Criterion 2 can be used to deter-
mine the target moving direction to avoid the formation of an impractical track like a V-shaped one.
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When both criteria are satisfied, we should also judge whether the tracks formed at the nth,
n + 1ð Þth, and n + 2ð Þth times are collinear with those at the n + 2ð Þth, n + 3ð Þth, and n + 4ð Þth
times. Define the distance between rn + 1 and rn + 2 as dn + 1,n+ 2, the included angle between vectors
(rn + 1, rn + 2) and (rn + 2, rn + 3) as αn + 2.
Since a target’s acceleration is restricted by its maximal acceleration, then

jdn+ 1,n + 2j ≤ c × dn+ 2,n + 3 ð6:25Þ

where c is determined by the maximal acceleration.
As illustrated in Figure 6.8, the included angle αn + 2 between tracks has to satisfy

β1 ≤ αn+ 2 ≤ β2 ð6:26Þ

Here, β1 and β2 should be properly chosen to avoid initiating a V-shaped track.
If the assumed track satisfies (6.25) and (6.26), then rn, rn+ 1, rn+ 2, rn + 3, and rn+ 4 can form

a track.
To enable it to initiate a track faster, Ref. [159] adds a condition to the modified Hough transform:

it can be used to convert measurements to the parameter space only if they satisfy the condition of
velocity gating below:

vmin ≤
xi−xi−1
ti− ti−1

				 				 ≤ vmax ð6:27Þ

By using the condition of velocity gating, the number of measurements being transformed with
the modified Hough transform can be reduced by a large margin, so that a fast track initiation can be
realized.

6.3.5 Hough Transform and Logic-Based Method

The Hough transform-based track initiation algorithm can effectively initiate a target track in a
densely cluttered environment, but it takes a long time and the parameters Δθ and Δρ are hard
to select. The logic-based track initiation algorithm can initiate a target track in a short time, but
it is hard to do that effectively in a densely cluttered environment. These problems can be handled
effectively with the track initiation algorithm based on the Hough transform and logic, which com-
bines the two algorithms. Track initiation with this algorithm is divided primarily into two steps:
preliminary measurement association and association fuzziness elimination.

αn + 2

Figure 6.8 Angle restriction in track initiation
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Basically, the first step is about eliminating, with the Hough transform, as many false clutter
measurements as possible according to the difference in kinetic characteristics between the clutter
and the target. In the initiation of tracks with the Hough transform, the selection of the value of Δθ
and that of the threshold, due to the effect of the clutter, has a direct influence on the properties of the
initiated track. At present, no general standard for selecting the two parameters is known. The prin-
ciple of selecting the two parameters is to choose a bigger Δθ to ensure a higher probability of
detecting all the true tracks. In this way, there are still some clutter measurements exceeding the
threshold to yield fuzzy track initiation, but the clutter density has decreased substantially.
After a large number of clutter measurements have been eliminated at the first stage, the fuzzy

associations between measurements can be eliminated with the m/n logic-based method.

6.3.6 Formation Target Method Based on Clustering and Hough Transform

This subsection combines the Hough transform mentioned above and the k-means clustering
method to deal with formation target track initiation. The detailed procedure is as follows [146].

1. Let the sensor echoes at time k be separated into m formations, with Nik ≥ 3,
i= 1,…, m; k = 1,…,n members in each formation. If the number of formation i’s members is
Nik < 3 (i.e., the number of target members in this formation is less than 3), then this formation
is made up of points by default, which will be dismissed. This process eliminates most clutters or
false measurements, and the m remaining formations serve as initialized particle points of the

cluster. First, randomly select r r <
Xm
i= 1

Nik

 !
particles x1, x2,…, xr from all formation members

Gk ið Þ, i= 1,…,m formed by the cycle threshold segmentation at time k as the initial points of
k-means clusters Cl l= 1,2,…,rð Þ. The center of every cluster Cl might as well be marked
as ol = xl l = 1,2,…,kð Þ.

2. For any particle xt 2Gk ið Þ, i= 1,…,m, calculate d xt,olð Þ= xt −olk kp l= 1,2,…,rð Þ. If

d xt,olð Þ= min
l2 1,2,…,rf g

d xt,olð Þ ð6:28Þ

then distribute individual xt to the lth cluster Cl. Follow this rule until all the particles in
xt 2Gk ið Þ, i = 1,…,m are distributed to different clusters Cl l= 1,2,…,rð Þ.

3. Recalculate to get the new center of every cluster Cl i= 1,2,…,rð Þ:

�ol =
1
Nlk

X
xt2Cl

xt t = 1,2,…,Nlkð Þ ð6:29Þ

where Nlk denotes the number of particles in Cl.
4. If �oi = oi, i= 1,2,…,r, output r clusters Ci i= 1,2,…,rð Þ or let oi = �oi and turn to step 2. The

cluster centroid of the formation at each time is obtained by the procedures above, including
the center of the true target and the centroid of the false target.

5. In the background of sparse formation, the formation structure can be judged from the measure-
ments, so formations at adjacent times can be associated by judging the similarity in structure
between them, requiring no linear judgment by the initial associated center with the Hough
transform. Meanwhile, against the background of dense formation, the formation structure
cannot be judged by the measurements, so it is necessary, after judging the distance of the
formation clustering center and forming the initial association formation, to accomplish the
formation track initiation by using the linear identification function of the Hough formation.
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Substitute the coordinates of the initial association formation centers into (6.19) one by one. Con-
vert the formation center points at the first three times into curved lines in the parameter space. If the
curve lines in the parameter space intersect at a common point, the formation target is initiated
successfully.

6.4 Comparison and Analysis of Track Initiation Algorithms

In order to demonstrate the effectiveness of the track initiation algorithms described in Section 6.3
more directly, this section makes a simulation comparison of the track initiation algorithms above
in the same environment. The simulation is based on the assumption that five targets moving with
constant velocity in a straight line are being tracked with a 2D radar, whose sampling period T,
direction finding error σθ, and range error σr are 5 s, 0.3�, and 40 m, respectively (i.e., T = 5 s,
σθ = 0:3�, and σr = 40m), and which identifies the initial positions of the targets, respectively, as
(55 000 m, 55 000 m), (45 000 m, 45 000 m), (35 000 m, 35 000 m), (45 000 m, 25 000 m), and
(55 000 m, 15 000 m), and their velocities as vx = 500 m=s, vy = 0 m=s.
The number of clutters in every period is determined by the Poisson distribution according to the

method described in Ref. [160]. That is, with a given parameter λ, first yield the random number r
uniformly distributed in section (0,1), then determine J from

e−λ
XJ−1
j= 0

λj

j!
< r ≤ e−λ

XJ
j= 0

λj

j!
, J = 1,2,… ð6:30Þ

where J is the number of clutters to be produced. After J is determined, J clutters of every period are
randomly distributed in the radar field of vision according to the uniform distribution.
When λ = 50, the situation of clutter measurements and true measurements of the target pro-

duced in four consecutive scan periods is illustrated in Figure 6.9, where ○ denotes the true track
measurements, ∗ denotes clutter measurements in the first scan, □ in the second scan, + in the

10

8

6

4

2

2 4 6 8 10
×104

×104

0

Figure 6.9 Situation map of clutter measurements and true measurements
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third scan, and • in the fourth scan. Four scan periods are used for the situation map shown in
Figure 6.9. The track initiated with the direct-vision method is illustrated in Figure 6.10; the track
initiated with the 3/4 logic-based method in Figure 6.11; the track initiated with the modified 3/4
logic-based method in Figure 6.12; the track initiated with the Hough transform-based method in
Figure 6.13, where Nθ = 90, Nρ = 90, and the threshold value of the parameter space is 4; the track
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Figure 6.10 Chart of the track initiated with direct-vision method
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Figure 6.11 Chart of the track initiated with 3/4 logic-based method
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initiated with the modified Hough transform method in Figure 6.14, where Nθ = 90, Nρ = 90, and the
threshold value of the parameter space is 4; and the track initiated with the Hough transform and
logic-based method in Figure 6.15, where Nθ = 90, Nρ = 90, and the threshold value of the Hough
transform method is also 4 and the 3/4 logic-based method is used to initiate the track.
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Figure 6.12 Chart of the track initiated with modified logic-based method
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Figure 6.13 Chart of the track initiated with Hough transform-based method
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Comparing Figures 6.10–6.15, we find that it is the least effective to initiate a track with the
Hough transform-based method, which cannot initiate a target track correctly at all, while in
sparsely cluttered environments the performances of the other five track initiation algorithms are
almost the same.
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Figure 6.14 Chart of the track initiated with modified Hough transform method

10
×104

×104

8

6

4

2

0
2 4 86 10

Figure 6.15 Chart of the track initiated with Hough transform and logic-based method

112 Radar Data Processing with Applications



To further demonstrate the effectiveness of track initiation with the algorithms above, let λ = 100,
with simulation conditions the same as those mentioned above. The situation map under such con-
ditions is illustrated in Figure 6.16. The track initiated with the direct-vision method is illustrated in
Figure 6.17; the track initiated with the 3/4 logic-based method in Figure 6.18; the track initiated
with the modified 3/4 logic-based method in Figure 6.19; the track initiated with the Hough
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Figure 6.16 Situation map of clutter measurements and true measurements
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Figure 6.17 Chart of the tracks initiated with direct-vision method
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transform-based method in Figure 6.20, where Nθ = 90, Nρ = 90, and the threshold value of the par-
ameter space is 4; the track initiated with the modified Hough transform method in Figure 6.21,
where Nθ = 90, Nρ = 90, and the threshold value of the Hough transform method is also 4 and
the 3/4 logic-based method is used to initiate the track.
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Figure 6.18 Chart of the tracks initiated with 3/4 logic-based method
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Figure 6.19 Chart of the tracks initiated with modified 3/4 logic-based method

114 Radar Data Processing with Applications



Comparing Figures 6.17–6.21, we find that in a densely cluttered environment false alarms occur
in all tracks initiated with the algorithms discussed above. Among them, the Hough transform-based
algorithm involves the largest number of false tracks, the modified logic-based method is the most
effective, the modified Hough transform method and the method based on the Hough transform and
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Figure 6.20 Chart of the tracks initiated with Hough transform-based method
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Figure 6.21 Chart of the tracks initiated with modified Hough transform-based method
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logic rank second in terms of effectiveness, the logic-based and the direct-vision method are the
least effective.

6.5 Discussion of Some Issues in Track Initiation

As the first step in target tracking, track initiation is a decision-making technique to create a new
target file, which principally involves temporary track formation and trajectory determination. The
two basic requirements of track initiation are: (1) initiating true target tracks in every possible way;
(2) initiating as few false target tracks as possible. There are usually two criteria of track initiation:
track initiation probability and track false alarm probability. The former refers to the ratio of the
number of correctly initiated tracks to the number of target tracks in existence, while the latter refers
to the probability of forming false alarms. Track initiation involves an optimal compromise between
fast track initiation and track initiation accumulation, which refers to the number of scans required to
create a true track. Obviously the two considerations are contradictory: the longer the initiation
takes, the less likely the false tracks will be initiated, and the greater the time lag of the true track
initiation. Thus, in the case of a target moving with high velocity, it is required to initiate its tracks as
quickly as possible.
Any automatic track initiation method aims to create the true tracks of targets as soon as they enter

the radar power range, while avoiding the creation of false tracks due to the existence of inevitable
false measurements. False tracks will reduce the confidence level of track data to a large extent, so
track logic confirmation definitely takes some time. The fast speed and high probability of success
required for track initiation are contradictory, because highly reliable detection of the true target
track demands adequate information, which inevitably leads to a lag in reaction time of track ini-
tiation. A good track initiation method thus should strike the best balance between the capacity for
fast track initiation and avoiding false tracks [145].

6.5.1 Main Indicators of Track Initiation Performance

Track reaction time. This mainly refers to the interval of time between the target’s entrance into the
radar power range and the creation of its track. As a random variable, it is often represented by the
average scan times and the average rate of false association, particularly with the number of radar
scan times as the unit.
Track quality.A number signifying track quality. It can be measured by the scoring method, or by

the error of location speed, or represented by the accuracy of target indication. Additionally, it can
also be represented by the average track purity. Chapter 11 will present a detailed discussion of track
quality management methods.
The amount of computation and computation time.Here, “computation time” refers to the amount

of time taken by all the programs to execute a period, a different notion from reaction time.

6.5.2 Demonstration of Track Initiation Scan Times

Track processing is often artificially divided into three stages such as track initiation, track main-
tenance, and track termination. In fact, the three stages have much in common. Track confirmation
depends on high-quality track initiation, while accurate track initiation depends on correct choice of
track heads. To fast initiate a track with high quality, the appropriate number of track initiation scan
periods should be four according to theoretical analysis and practical engineering experience.
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In actual environments, whether four scans can create stable tracks depends on the number of targets
and their relative positions, the detection probability, measurement resolution, and false alarm prob-
ability. If four scans during one period cannot initiate a track, the data can still be processed for track
initiation during the next period with many techniques.

6.6 Summary

Track initiation is of paramount importance in multi-target track processing. Its quality has a direct
effect on the processing of subsequent tracks. This chapter has discussed techniques of multi-target
track initiation, divided into two types: target-oriented sequential processing techniques and
measurement-oriented batch processing techniques. The former, demanding a small amount of
computation, is easy to carry out in engineering, but is suitable only in environments with sparse
echoes and bad at identifying targets and false alarms, while the latter can yield satisfactory results,
reducing false alarm probability effectively, but it is difficult to implement for the computational
burden in the dense-echo environment. The track initiation algorithms introduced in this chapter
(except the Hough transform algorithm) are all very effective at initiating tracks of targets moving
in straight lines. They are also effective at initiating targets moving in non-straight lines, the tracks
of which can be initiated within a matter of scanning periods and thus approximated as straight lines.
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7
Maximum Likelihood Class
Multi-target Data Association
Methods

7.1 Introduction

Track initiation in the multi-target case of Chapter 6, which mainly attacks associations between
measurements, is to be followed by associations between measurements and tracks. For one thing,
initiated tracks may be false ones, which need to be affirmed or negated constantly by the
subsequent measurements for confirmation or cancellation. For another, many measurements will
be generated in an environment where a radar is operating in the presence of multiple targets and
false alarms. Thus it is essential to decide which measurement should be used to update the state of a
certain target at a given time, that is, to tackle the uncertainty of the measurements to be used for
filtering. This results in association between measurements and tracks, the primary subject of this
chapter and the following one.
The basic approaches to data association between measurements and tracks in multi-target

tracking fall broadly into two categories [14, 17, 29, 40, 158, 161, 162]: maximum likelihood
and Bayesian data association algorithms. The former, based on the likelihood ratio of the observa-
tion sequence, mainly include: manual plottingmethods, track-splitting algorithms [16, 25, 40, 163],
joint maximum likelihood algorithms [25, 163], integer programming algorithms [164–170], and
generalized correlation algorithms [45, 171]. This chapter deals mostly with the last four
algorithms. The latter category, which is based on the Bayesian principle [172–174], mainly
includes: nearest-neighborhood algorithms, probability data association algorithms, united probabil-
ity data association algorithms, optimal Bayesian algorithms, and multiple hypothesis tracking
algorithms. These algorithms will be addressed in Chapter 8.

7.2 Track-Splitting Algorithm

The track-splitting algorithm, which was first proposed by Sitter in the early 1960s and then devel-
oped by Smith and Buechler in 1975, is a data association method based on likelihood function
testing. The basic principles are described as follows.
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1. Set up a correlated wave gate centering the predicted position of the target at a certain moment,
when the track has been initiated.

2. Choose from the measurement data by means of the correlated wave gate and identify the
candidate measurements within the correlated wave gate as the effective measurements of
targets at the moment.

3. Update the original target state and covariance by using each effective measurement value.
Split the original target tracks into new tracks whose number corresponds to that of the
original ones.

4. Calculate the likelihood function of each track.
5. The track with likelihood function lower than a certain threshold should be deleted, while

the rest should be kept.

For the track-splitting algorithm, if many candidate echoes fall within the correlated wave gate,
then an exponential increase may arise in the number of split tracks or a calculation explosion may
even be caused. Therefore, pruning is needed in the process. A brief introduction to the algorithm
will be given below.

7.2.1 Calculation of Likelihood Functions

In case of a constant choice of candidate echoes of the target by means of the correlated wave gate,
denote the lth sequence of measurements beginning at time k as

Zk, l≜ zi1l 1ð Þ,…,zik l kð Þf g ð7:1Þ

where zijl jð Þ is the ijth measurement of the lth sequence of measurements at time j.
Denote the event that the measurements of the sequence are from the same target by

θk, l≜ Zk, l represents a true track
� � ð7:2Þ

Then, the likelihood functions can be expressed as

Λ θk, l
� �

= p Zk, ljθk, l� �
= p zi1l 1ð Þ,…zik l kð Þjθk, l� �

= p zik l kð Þ,Zk−1, ljθk, l� �
= p zik l kð ÞjZk−1, l,θk, l
� �

p Zk−1, ljθk, l� � ð7:3Þ

Likewise, p Zk−1, l θk, l
��� �

can be expressed as the multiplication of two conditional probability
density functions, and then the following equation can be deduced by analogy:

Λ θk, l
� �

=
Yk
j= 1

p zijl jð ÞjZj−1, l,θk, l
� � ð7:4Þ

Note: The likelihood function contains the underlying assumption that the detection probability of
the target is PD = 1. If PD 6¼ 1, then the equation of the above likelihood function is written

Λ θk, l
� �

=
Yk
j= 1

PDp zijl jð Þ Zj−1, l,θk, l
��� �� �1−δ0ij 1−PD½ �δ0ij ð7:5Þ
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where

δ0ij =
1, omit detect

0, other

(
ð7:6Þ

Under the linear Gaussian or approximate Gaussian assumptions, the conditional probability
density function of the measurement z(j) at time j can be expressed as

p z jð Þ Zj−1,θk, l
��� �

=N z jð Þ;̂z j j−1jð Þ,S jð Þ½ �=N v jð Þ;0,S jð Þ½ �

=
1

2πð Þnz=2 ffiffiffiffiffiffiffiffiffiffiffiffi
S jð Þj jp exp −

1
2
v0 jð ÞS−1 jð Þv jð Þ


 � ð7:7Þ

where nz is the number of dimensions of the measurements, ẑ j j−1jð Þ is the predicted measurement at
time j, v( j) is the innovation, and S(j) is the innovation covariance.
From (7.7), the likelihood functions of (7.4) and (7.5) become

Λ θk, l
� �

=
Yk
j= 1

1

2πð Þnz=2 ffiffiffiffiffiffiffiffiffiffiffiffi
S jð Þj jp exp −

1
2
v0ijl jð ÞSl −1 jð Þvijl jð Þ

� 

=
Yk
j= 1

1

2πð Þnz=2 ffiffiffiffiffiffiffiffiffiffiffiffi
S jð Þj jp" #

exp −
1
2

Xk
j= 1

v0ijl jð ÞSl −1 jð Þvijl jð Þ
" # ð7:8Þ

Λ θk, l
� �

=
Yk
j= 1

PD
1

2πð Þnz=2 ffiffiffiffiffiffiffiffiffiffiffiffi
S jð Þj jp exp −

1
2
v0 jð ÞS−1 jð Þv jð Þ


 �( )1−δ0ij

1−PD½ �δ0ij ð7:9Þ

where vijl jð Þ is the innovation of the ij measurements corresponding to the lth sequence of meas-
urements at time j, and S(j) is the innovation covariance corresponding to the lth sequence of
measurements at time j.
For simplicity, assuming that PD = 1 (where PD is the detection probability of the target), a

modified logarithm likelihood function is defined as

λ kð Þ= −2ln
Λ θk, l
� �

Yk
j= 1

1

2πnz=2
ffiffiffiffiffiffiffiffiffi
S jð Þp =

Xk
j= 1

v0ijl jð ÞS−1 jð Þvijl jð Þ ð7:10Þ

which can also be computed recursively as follows:

λ kð Þ= λ k−1ð Þ+ v0ijl kð ÞS−1 kð Þvijl kð Þ ð7:11Þ

7.2.2 Threshold Setting

Since the innovation vijl jð Þ follows the Gaussian distribution with zero mean and variance S(j),
and when nz > 1 (where nz is the number of dimensions of the innovations), the innovation is
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denoted by vectors, v0ijl jð ÞS−1 jð Þvijl jð Þ is a random variable subject to the χ2 distribution with nz
degrees of freedom. Because the innovation is independent, the test statistic λ(k) is a random vari-
able subject to the χ2 distribution with knz degrees of freedom. For a given confidence, its threshold
value a can be obtained from the χ2 distribution table, expressed as follows:

Pr χ2knz > a
n o

= α ð7:12Þ

where α is the probability that a true track will be rejected. If the modified logarithm likelihood
function λ(k) satisfies

λ kð Þ ≤ a ð7:13Þ

then the above sequences of measurements belong to the same track, and the latest measurements in
the sequence can be used to update the state of the corresponding target, otherwise the above
sequences of measurements may be regarded as false tracks, which will be discarded. In the pres-
ence of dense multiple echoes, this method demands a large amount of computation and memory,
and may give rise to misjudgments.

7.2.3 Modified Likelihood Function

The track-splitting algorithm cannot be used to test a sequence of measurements with long time
histories, because the likelihood function test equation given by (7.13) then becomes dominated
by old measurements and responds very slowly to the latest ones. The usual solution to this
problem is to replace the modified logarithm likelihood function λ(k) with the fading-memory or
finite-memory likelihood function to test the sequence, so that the new measurements containing
much current information are strengthened, and the useless old measurements are weakened or
abandoned.
The fading-memory likelihood function is

ρ kð Þ = μρ k−1ð Þ + v0 kð ÞS−1 kð Þv kð Þ =
Xk
i= 1

μk− iv0 ið ÞS−1 ið Þv ið Þ ð7:14Þ

where μ is a discount factor and μ< 1.
The effective memory or window length of the fading-memory likelihood function ρ(k) is

1−μð Þ−1. In the steady-state situation, the fading-memory likelihood function ρ(k) is approximately
considered as a random variable subject to the χ2 distribution with nz 1 + μð Þ= 1−μð Þ degrees of free-
dom, the mean value and variance of which are nz= 1−μð Þ and 2nz= 1−μ2ð Þ, respectively. If a con-
fidence level is given, its threshold aρ can be obtained from the χ2 distribution table as follows:

Pr χ2nz 1 + μð Þ= 1−μð Þ > aρ
n o

= α ð7:15Þ

If

ρ kð Þ ≤ aρ ð7:16Þ
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then the above sequences of measurements belong to the same track, otherwise the above sequences
of measurements may be false tracks, which should be deleted.
The finite-memory likelihood function is

ξ kð Þ = ξ k−1ð Þ+ v0 kð ÞS−1 kð Þv kð Þ−v0 k− lð ÞS−1 k− lð Þv k− lð Þ=
Xk

i= k− l+ 1

v0 ið ÞS−1 ið Þv ið Þ ð7:17Þ

where l is the sliding-window length of the finite memory, which is generally 4 to 8.
Likewise, the finite-memory likelihood function ξ(k) is a χ2-distributed random variable with lnz

degrees of freedom, the mean value and variance of which are lnz and 2lnz, respectively. If a con-
fidence level is given, its threshold aξ can be obtained from the χ2 distribution table as follows:

Pr χ2lnz > aξ
n o

= α ð7:18Þ

Likewise, if

ξ kð Þ ≤ aξ ð7:19Þ

then the above sequences of measurements belong to the same track, otherwise the above sequences
of measurements may be false tracks, which should be deleted.

7.2.4 Characteristics of Track-Splitting Algorithm

The track-splitting algorithm chooses from the candidate echoes by means of the correlated wave
gate. The number of new tracks into which the previous target track will be split is the same as that of
the candidate echoes within the correlated wave gate of each target at the current moment. The prin-
ciple followed by the target data association using the track-splitting algorithm is to maximize the
likelihood function. This algorithm is a non-Bayesian method, which does not yield the probability
that a sequence is correct. Therefore, it must be pruned by independently computing the likelihood
function of each track. The track with likelihood function lower than a certain threshold should be
deleted, while that with a higher one should be kept.
Strictly speaking, the track-splitting algorithm is not a perfect data association method. It is suit-

able in single-target environments, and in multi-target ones where no wave gates intersect or where
no echo is available in the intersection of the wave gates, but not in multi-target environments where
echoes are found within that of different targets. Besides, even in the environments where it applies,
this method has some inherent weaknesses. Conditioned by the correlated wave gates and the loga-
rithm likelihood function threshold, it associates one track with more than one measurement point in
order to maximally associate the measurements of the real target at each time. As a result, one track
is split into many possible tracks (only one of which is the correctly associated track, i.e., the real
target track). And, at the next time when there are common echoes in the overlaps of some of the
split tracks’ correlated wave gates, these tracks will most probably be associated with the same
measurement point, which will inevitably lead to competition between many split tracks for the
same measurement.
Therefore, in practice, it is necessary to improve the track-splitting algorithm and expand its

scope of application so as to make it more appropriate to single-target or multi-target environments.
The handiest approach to solving the problems of maximal branching in the single-target
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environment and of competition for the same measurement between many of the real tracks in the
multi-target one (i.e., the problem of assignment of the same measurement to different branches) is
to calculate the likelihood function of the measurement corresponding to each possible branch
when competition occurs, and to select that which minimizes the modified logarithm likelihood
function as the effective association measurement. Additionally, feasible alternative schemes for
measurement assignment and multi-target data association can be worked out by utilizing the joint
maximum likelihood and the 0–1 integer programming algorithm as well, which will be discussed
in Sections 7.3 and 7.4.

7.3 Joint Maximum Likelihood Algorithm

As mentioned in Section 7.2, the means of pruning entailed in the track-splitting method is applic-
able only in the single-target environment or the multi-target one where no intersecting wave gate is
present or where no echo is found in the intersection of wave gates. It is inappropriate where echoes
are detected in the overlaps of wave gates of different targets, causing competition for the same
measurement between several branches. In this case, an alternative to this classical means of
track splitting – the joint maximum likelihood algorithm [25, 163] – can be used to assign multiple
measurements to multiple tracks effectively.

7.3.1 Establishment of Feasible Partitions

Assume that there are multiple targets in the surveillance region, each target’s state is given by
the state equation (3.31), the corresponding measurement of a target is given by the measurement
equation (3.32), and the set of candidate echoes which fall into all the correlated wave gates at
time k is

Z kð Þ= zi kð Þf gmk
i= 1 ð7:20Þ

where mk is the number of candidate echoes within the correlated wave gates.
Hence, the cumulative set of confirmed measurements up to time k is expressed as

Zk = Z jð Þf gkj= 1 ð7:21Þ

The total number of measurements in the set Zk is

Nk =
Xk
j= 1

mj ð7:22Þ

Similar to (7.1), the lth sequence of measurements up to time k is denoted

Zk, l = zi1l 1ð Þ,…,zik l kð Þf g ð7:23Þ

where zijl jð Þ is the ijth measurement which belongs to the lth sequence of measurements at time j.
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Denote the event that the measurements of this sequence are from the same target by

θk, l = Zk, l represents a true trackg� ð7:24Þ

then use the modified logarithm, fading-memory, or finite-memory likelihood function discussed in
Section 7.2 to test the measurement sequence Zk,l. Only sequences below the testing threshold are
retained, while those above the testing threshold are deleted. Denote the retained sequences by γi
(i= 1,2,…,m) and divide them into multiple feasible partitions. Assume that

τ = γlf gnl= 0 ð7:25Þ

is one of those feasible partitions. The measurement sequence γ0 is the set of false measurements
which are not associated with any track in the feasible partitions under consideration.
Denote the event that the measurements in a measurement sequence γi are false by

θk,0 = γi represents a track formed by false measurementsf g ð7:26Þ

Assume that the measurements originating from no target are subject to a uniform distribution in
the radar surveillance region and different measurements are independent of each other. Then the
PDF of the measurement sequence γ0 constituted of false measurements can be expressed as

p γ0 θk,0
��� �

=
1
V

� �N0

ð7:27Þ

where V represents the size of the surveillance region and N0 represents the number of false
measurements in the false measurement sequence γ0. The number of false measurements in γ0
varies, since these measurements correspond to different feasible partitions. Therefore, N0 varies
with different feasible partitions.
The measurement sequences in the feasible partition τ should satisfy the following requirements:

Zk = [n
l= 0

γl ð7:28Þ

and

γl\ γj =ϕ l 6¼ j ð7:29Þ

where ϕ represents an empty set (i.e., (7.29) guarantees that a measurement originates only from one
possible track, which means that track splitting will not arise).
Corresponding to the feasible partition τ, we have the event

θ τð Þ = the partition τ is truef g ð7:30Þ

and define the set of all feasible partitions as

Γ= τf g ð7:31Þ
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The most likely partition is obtained by calculating the joint likelihood function of each feasible
partition in the set Γ of all feasible partitions and getting the maximum value.
From (7.29), we see that the measurements of each measurement sequence in the feasible

partition τ are independent.
Hence,

p Zk θ τð Þj� �
=
Yn
l= 0

p γl θ
k, l��� � ð7:32Þ

and the feasible partition satisfying

max
τ2Γ

p Zk θ τð Þj� �
=max

τ2Γ

Yn
l= 0

p γl θ
k, l��� � ð7:33Þ

is the correct partition, in which each measurement sequence corresponds to one target. In this case,
they can be filtered using the Kalman filtering technique.
The likelihood function of the sequence γi can be expressed as

p γi θ
k, i��� �

=
YNi

l= 1

2πSi lð Þj j−1
2

" #
exp −

1
2

XNi

l= 1

v0i lð ÞSi−1 lð Þvi lð Þ
" #

ð7:34Þ

where Ni is the number of measurements in the sequence γi, vi(k) is the innovation corresponding to
the possible track γi, Si(k) is the corresponding innovation covariance, and

vi kð Þ = z kð Þ−H kð ÞX̂i kjk−1ð Þ ð7:35Þ

where z(k) is the measurement in the sequence γi at the latest moment, H(k) is the measurement
matrix, and X̂i kjk−1ð Þ is the one-step prediction of the state of the sequence γi. We have

Si kð Þ =H kð ÞP kjk−1ð ÞH0 kð Þ+R kð Þ ð7:36Þ

where P kjk−1ð Þ is the one-step prediction covariance of the state, and R(k) is the measurement
covariance.

7.3.2 Recursive Joint Maximum Likelihood Algorithm

The joint maximum likelihood algorithm discussed above implements the multi-target data associ-
ation by using the joint likelihood functions of all the effective measurement sequences up to each
moment, considering the feasible combination and partition of all the measurements, calculating the
joint likelihood functions corresponding to all the feasible partitions, and taking the feasible parti-
tion which maximizes the joint likelihood function as the effective partition. Obviously this is a
batch processing algorithm, but in practice, we need to consider the recursive implementation of
the algorithm and construct the recursive joint likelihood algorithm to improve the real-time
capability of the algorithm.
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Assume that the correct partition τk−1 of all the effective measurements has been formed at
time k− 1 (i.e., the partition satisfies (7.33)), which gives rise to

p Zk−1jθ τk−1ð Þ� �
= max

τ2Γ
p Zk−1jθ τð Þ� �

= max
τ2Γ

Yn
l= 0

p γljθk−1, l
� � ð7:37Þ

Therefore, the partition can form fixed data associations at time k − 1 and constitute multiple tar-
get tracks. At time k, we only need to consider the assignment of all the effective measurements at
this moment to the target tracks formed at time k − 1. For the solution to the partition problem, we
can refer to the structure and division of the confirmed matrix in the united probability data asso-
ciation algorithm, which will be discussed in Section 8.5. Similarly, by calculating the joint like-
lihood functions of all the feasible partitions, the feasible partition satisfying (7.33) can be taken as
the correct partition of the target tracks by all the effective measurements at time k. In this case, the
partition is that which maximizes the joint likelihood probability and thus is implemented
recursively.

7.4 0–1 Integer Programming Algorithm

7.4.1 Calculation of the Logarithm Likelihood Ratio

In the mid-1970s, Morefield proved that multi-target tracking involves the decomposition and com-
bination of the set in the 0–1 integer programming algorithm and deduced the 0–1 integer program-
ming algorithm for multi-target tracking. The 0–1 linear integer programming algorithm is also a
batch processing algorithm applicable for multi-target track initiation. The state and the covariance
matrix of the target can be estimated using the filtering algorithm, according to each measurement
sequence after the judgment is complete. This algorithm and the generalized correlation algorithm
discussed below were proposed and widely used in the 1970s.
The negative logarithm likelihood function of the measurement sequence γi is obtained from

(7.34). The function is expressed as

λk, i = − ln p γi θ
k, i��� �� �

=
Ni

2
ln 2πð Þ + 1

2

XNi

l= 1

ln Si lð Þj jð Þ + 1
2

XNi

l= 1

v0i lð ÞSi−1 lð Þvi lð Þ ð7:38Þ

and from (7.38) the following logarithm likelihood ratio can be obtained:

eλk, i = − ln
p γi θ

k, i��� �� �
p γi θ

k,0��� �� �( )
= λk, i−Ni lnV ð7:39Þ

where Ni is the number of measurement data in the measurement sequence γi.
According to the discussion above,mmeasurement sequences in total are kept through threshold

detection, and their logarithm likelihood ratios can be obtained from (7.39). These likelihood ratios
form a column vector, written as

λ= eλk,1,eλk,2,…,eλk,mh i0
ð7:40Þ
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Likewise, a logarithm likelihood ratio column vector corresponding to each feasible partition
τ can be obtained in the way mentioned above.
Define an m-dimensional binary vector ρ. If an element of the logarithm likelihood ratio column

vector λ has a corresponding element in the feasible partition τ, then the relevant element in an
m-dimensional binary vector ρ corresponding to the feasible partition τ is 1, otherwise 0, and
each feasible partition τ corresponds to a binary vector ρ. For example, assume that there are five
elements in λ, that is,

λ= eλk,1,eλk,2,eλk,3,eλk,4,eλk,5h i0
ð7:41Þ

and the logarithm likelihood ratio in the feasible partition τ is eλk,1,eλk,3,eλk,5n o
. In this case, the

binary vector ρ corresponding to τ can be expressed as

ρ =

1

0

1

0

1

266666664

377777775
ð7:42Þ

Assume that ψ i i= 1,2,…,mð Þ is an N-dimensional column vector and N is the total number of
measurements in the cumulative set Zk. The measurement in the sequence γi i= 1,2,…,mð Þ corres-
ponds to the element 1 in the column vector ψ i, otherwise to the element 0. These column vectors
form a matrix with N ×m dimensions, that is,

A= ψ1,ψ2,…,ψm
� � ð7:43Þ

According to the corresponding column vector ρ, the conditional equations (7.28) and (7.29) of
feasibility are expressed as

Aρ ≤ 1 ð7:44Þ

where 1 is the N-dimensional column vector completely formed by 1.
For example, assume that Zk consists of six measurements. If the measurement sequence γ1

consists of the second, fourth, and fifth measurements, γ2 of the first, third, and sixth measure-
ments, γ3 of the first, second, and fifth measurements, γ4 of the third, fourth, and sixth meas-
urements, then the assignment column vectors ψ1, ψ2, ψ3, and ψ4 of γ1, γ2, γ3, and γ4 are,
respectively,

ψ1 = 0,1,0,1,1,0½ �0, ψ2 = 1,0,1,0,0,1½ �0, ψ3 = 1,1,0,0,1,0½ �0, ψ4 = 0,0,1,1,0,1½ �0 ð7:45Þ
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At this time, the matrix A can be expressed as

A=

0 1 1 0

1 0 1 0

0 1 0 1

1 0 0 1

1 0 1 0

0 1 0 1

26666666664

37777777775
ð7:46Þ

Hence, the set of column vectors ρ of all the feasible partitions at this time can be obtained from
(7.44), the conditional equation of feasibility.

7.4.2 0–1 Linear Integer Programming Algorithm

From (7.32) we get

− ln p Zk θ τð Þj� �� �
= −
Xn
l= 0

ln p γl θ
k, l��� �� �

= −
Xn
l= 1

ln p γl θ
k, l��� �� �

− ln p γ0 θk,0
��� �� � ð7:47Þ

The binary vector ρ corresponds to a certain feasible partition τ, and therefore when the negative
likelihood function λk,i is a relevant element of the feasible partition τ, the relevant element of ρ is 1,
otherwise it is 0. Hence, after using (7.38), (7.47) can be expressed as

− ln p Zk θ τð Þj� �� �
=
Xm
i= 1

ρiλ
k, i + λk,0 ð7:48Þ

where ρi is the ith element of ρ.
From (7.30) we find that the negative logarithm likelihood function of the measurement sequence

γ0 in a certain feasible partition τ is expressed as

λk,0 = − ln p γ0 θk,0
��� �� �

=N0 lnV = N−
Xm
i= 1

ρiNi

 !
lnV =N lnV −

Xm
i= 1

ρiNilnV ð7:49Þ

where Ni is the number of dimensions of the measurement sequence γi.
Substituting (7.49) into (7.48), we obtain

− ln p Zk θ τð Þj� �� �
=
Xm
i= 1

ρi λ
k, i−Ni lnV

� �
+N lnV ð7:50Þ

Substituting (7.39) into (7.50) gives

− ln p Zk θ τð Þj� �� �
=
Xm
i = 1

ρieλk, i +N lnV = ρ0λ+N lnV ð7:51Þ
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The last component N ln V in (7.51) is constant, and therefore minimizing − ln p Zk θ τð Þj� �� �
is

equivalent to minimizing ρ0λ, and minimizing − ln p Zk θ τð Þj� �� �
is equivalent to maximizing

p[Zk|θ(τ)]. Hence, the maximum likelihood function set of tracks can be obtained from

min
ρ

ρ0λf g ð7:52Þ

Themeasurement sequence from the corresponding target can be determined if them-dimensional
binary vector ρ which can minimize ρ0λ is obtained, so that the negative likelihood function can be
expressed as a linear functional of the assumed ρ, and the tracking problem will be transformed into
that of integer programming.
Based on the results above, the 0–1 linear integer programming of multi-target tracking can be

expressed as

min
ρ

ρ0λf g ð7:53Þ

whose constraint can be expressed as

Aρ ≤ 1 ð7:54Þ

where 1 is the column vector completely formed of 1’s and ρ is a binary vector. Equations (7.53) and
(7.54) are defined as the combination problem of the sets. Once the matrix A is determined, the
maximum possible set of tracks will be selected immediately and the calculation of the state
estimation and the covariance matrix can be completed in the standard Kalman filter.

7.4.3 Recursive 0–1 Integer Programming Algorithm

Obviously, the core of the 0–1 integer programming algorithm is also (7.53), that is, the feasible tracks
can be searched for through the overall optimization of various partitions of all the historic measure-
ment sequences, which is considered as the embryo of the multi-hypothesis tracking algorithm. But
twomain defects exist in this algorithm: (1) using the exhaustivemethod to construct the set of feasible
tracks; (2) the non-recursive form of the algorithm. Owing to the former, the algorithm can be used to
solve the data association problem only where there are fewer measurements; owing to the latter, the
historic information has to be processed repeatedly each time. These defects affect the application of
the algorithm in engineering, and therefore we need its recursive form as well.
Assume that the correct partition of all the effective measurements has been formed at time k−1.

The correct partition can form a fixed data association relationship and multiple target tracks. At this
moment we can get the logarithm likelihood ratio column vector λk −1 and the correct partition col-
umn vector of ρk −1 at time k − 1. Similarly, at time k, we only need to consider the feasible assign-
ment of all the effective measurements at the moment to all the target tracks formed at time k−1.
Assume that at this time the logarithm likelihood ratio column vector λk of the feasible tracks which
satisfy the likelihood ratio threshold is expressed as

λk = eλk,1,eλk,2,eλk,3,…,eλk,mk
h i0

ð7:55Þ

where mk denotes the number of measurement sequences kept through the threshold testing
at time k.
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Because the correct partition column vector ρk −1 has been obtained, a fixed set of measurement
sequences has been formed at time k − 1. Therefore, unlike in the case of the batch processing
algorithm, what is needed is to update the possible assignment of the effective measurements at
time k rather than to recalculate all the probabilities, since the correct measurement assignment
of the matrix Ak at time k − 1 is known.
At this time, the correct partition can be obtained from min

ρk
ρ0kλk
� �

and its constraint Akρk ≤ 1

through the 0–1 integer programming toolkit or the relevant solution algorithm. Thus, the state
can be updated by applying the Kalman filter algorithm, on the basis of which recursion can be
implemented.

7.4.4 Application of 0–1 Integer Programming Algorithm

Besides the data association between measurements and tracks in target tracking, the integer
programming algorithm can be applied to the following problems:

1. Association between tracks [175].
2. Multi-person, multi-index group decision in the group decision scheme case. Specifically, in this

case, two or more decision makers independently choose methods for decisions according to
their own knowledge, experience, and preferences. After the set of decisions has been made, this
algorithm can be used to form the optimal decision model and find the solution [176].

3. Investment decisions in information technology projects [177].

7.5 Generalized Correlation Algorithm

The generalized correlation algorithm [45, 171] was proposed by Stein and Blackman in 1975 based
on the maximum likelihood algorithm. It is an optimal batch processing data association algorithm,
which gives the general expression for calculating the optimal association and correlation (known as
generalized correlation) between measurements and tracks. Its main characteristic is to define a
score function, through which the initiation, confirmation, threshold logic, and cancellation of
tracks can be implemented. Therefore, this section is concerned first with the process of setting
the score functions, the key of the generalized correlation algorithm, and then with the applications
of this algorithm.

7.5.1 Establishing the Score Function

Assume that rmeasurements are obtained after scanning a detection area with volume V, K times.
These measurements include the updated values, false alarms, and echo values of some special
targets (“special targets” refer to those targets which are detected only once in the K scans). There-
fore, multiple probabilities exist in the association between the measurements and the tracks, and
multiple hypotheses about the association between the measurements and the tracks will be
obtained if a hypothesis is made about each possible situation. In order to accomplish the target
tracking, it is necessary to determine which hypothesis is most likely to appear and therefore to
calculate the probability of each hypothesis being correct. The generalized correlation algorithm
gives the expression of finding this probability and defines its logarithmic expression as the score
function.
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The correct relative likelihood ratio Qk of each hypothesis about the measurement-to-track
association is defined as

Qk =P0 nFK ,nKð Þ
YnK
i= 1

PTL Dið ÞPDT NUijDið Þ
YNUi

l= 1

PER eyilð Þ ð7:56Þ

where P0(nFK, nK) denotes the probability that nK real targets and nFK false targets occur in the detec-
tion area during theK scans,Di denotes the number of scans during which the ith source is present in
the detection area except for the initial detection (i.e., the track length of i), PTL(Di) denotes the
probability of the length being Di, PDT NUijDið Þ denotes the probability of the track i having
NUi measurements when the track length is Di, and PER(y~il) denotes the probability of the residual
error of the lth measurement of track i being y~il. Equation (7.56) shows that each true track is deter-
mined by Di and the number of measurements NUi (with residual error y~il).
The establishment processes of all the expressions of (7.56) will be discussed briefly below. They

are set based on standard models.
The probability of nK real targets and nFK false targets in the detection area during K scans is

P0 nFK ,nKð Þ = βFTΔð ÞnFK βNTΔð ÞnK e−βKV ð7:57Þ

where βFT is the density of false targets, βNT is the density of real targets, V is the volume of the
detection area, and Δ is the volume of each tiny unit in the detection area.
β (the density of the new sources) includes βNT (the density of the real targets) and βFT (the density

of the false targets), that is, β = βFT + βNT . The density of the real targets can be determined by the
detection probability PD, the average track length DE, and the given density of the total new targets
βNT, according to the following equation:

βNT =
PDβT

1− 1−PDð Þe−1=DE
ð7:58Þ

Assume that the PDF of the track length of the real targets is approximately subject to the fol-
lowing exponential distribution:

f τð Þ= e−τ=τ0

τ0

where τ0 is the expectation of the track length and τ0 =DET , where DE is the average track length
and T is the sampling interval.
The probability of the track length of track i being Di is obtained from deduction as below:

PTL Dið Þ= PTL1 Dið Þ, the source does not exist in the kth scan
PTL2 Dið Þ, the source still exists in the kth scan

(
ð7:59Þ

PTL1 Dið Þ = 1
τ0

ð Di + 1ð ÞT

DiT
e−τ=τ0dτ =PTT e

−Di=DE ð7:60Þ

PTL2 Dið Þ = 1
τ0

ð∞
DiT

e−τ=τ0dτ = e−Di=DE ð7:61Þ
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where PTT is the parameter of track termination, which is defined as the following equation:

PTT = 1−e
−1=DE ð7:62Þ

When the track length isDi, the probability of track i containing NUimeasurements is as follows:

PDTi =P
NUi
D 1−PDð Þ Di −NUið Þ ð7:63Þ

where NUi is the number of target points (i.e., measurements) of track i, except for the initial obser-
vation, and PD is the detection probability.
Assume that, for NUi measurements associated with the tracks, the PDF of the innovation vector

is subject to the Gaussian distribution, that is,

f eyilð Þ = e−d
2
il=2

2πð ÞM=2 ffiffiffiffiffiffiffiffi
Silj jp ð7:64Þ

where M is the number of dimensions of the measurements, and y~il(k) is the innovation, which is
determined by the following equation:

eyil kð Þ= yil kð Þ−Hx̂i kjk−1ð Þ ð7:65Þ

where |Sil| is the determinant of the innovation covariance Sil, and dil is determined by the following
equation:

dil
2 =ey0ilSil −1eyil ð7:66Þ

The total innovation probability of all the innovations of all the tracks is derived as below:

PER eyilð Þ =ΔnuK
YnK
i= 1

YNUi

l= 1

f eyilð Þ ð7:67Þ

where nuK is the total number of updating points of all the tracks, which satisfies the following
equation:

nuK =
XnK
i= 1

NUi = r−nK −nFK ð7:68Þ

Substituting (7.57), (7.59), (7.64), and (7.67) into (7.56), we obtain the probability function of the
hypothesis that the measurements are associated with the tracks as below:

Qk =Cβ
nFK
FT βnKNT

YnK
i= 1

PTL Dið ÞPNUi
D 1−PDð ÞDi −NUi

YNUi

l= 1

f eyilð Þ
" #

ð7:69Þ

whereC =Δre−KβV .Δ (the volume of the tiny unit) and V (the volume of the detection area) are both
included in the constant C, therefore they will not affect the ultimate probability.
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To correctly track the targets, we must determine which measurement is most probably
associated with the tracks. To calculate the maximum value of Qk more easily, take logarithms
on both sides of the equation for Qk and substitute (7.64) into the resulting equation to obtain

L0k = nFK lnβFT + nK lnβNT

+
XnK
i= 1

ln PTL Dið Þ½ �+ Di−NUið Þln 1−PDð Þ+
XNUi

l= 1

ln
PD

2πð ÞM=2 ffiffiffiffiffiffiffiffi
Silj jp" #

−
d2il
2

( )( )
ð7:70Þ

where L0K is defined as the score function.
To ensure that the values of the score function are positive when the effective tracks exist, minor

modifications need to be made to (7.70). When there is no track formed, r measurements obtained
after K scans are all false measurements, and therefore nFK = r and nK = 0. Substituting these into
(7.70), we have L0k = r lnβFT , so the modified score function becomes

Lk = L0k −r lnβFT

= nK ln
βNT
βFT

+
XnK
i= 1

ln PTL Dið Þ½ � + Di−NUið Þln 1−PDð Þ +
XNUi

l= 1

ln
PD

2πð ÞM=2 ffiffiffiffiffiffiffiffi
Silj jp" #

−
d2il
2

( )( )
ð7:71Þ

Now, the score function is successfully established. From the establishment process, we find that
the score function is the multiplication of the probability of the new sources, the track length prob-
ability, the track update probability, and the track error probability. The value of the score function is
related to the measurement-to-track association hypothesis. The association hypothesis which gets
the maximum score can be used for track update and target tracking.

7.5.2 Application of the Generalized Correlation Algorithm

In Section 7.5.1 we treated the establishment and definition of the score function. This section
will cover the application of this function, specifically the establishment of its suboptimal
sequence-correlated recursive equation, and its application in track initiation, confirmation, main-
tenance, and cancellation.

7.5.2.1 Establishment of the Suboptimal Correlated Recursive Equation
of Sequences of the Score Function

The score function defined by (7.71) is a common-sense batch processing method. It processes all
the data obtained from the first scan to the last, which is generally infeasible in calculation. There-
fore, it is necessary to construct the suboptimal sequence recursive equation of this function, that is,
to explain it through sequence processing with its optimality and batch processing method kept
maximally. On the premise of highlighting the effect of each track, we can evolve the recursive
algorithm from (7.71) as

Lk = nK −nK−1ð Þln β

β0FT
+
XnK−1

i= 1

Li,k ð7:72Þ
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where Li,k is the score of the ith track at time k, that is,

Li,k = Li,k−1 +ΔLi,k ð7:73Þ

β0FT = βFT + βNT 1−e−1=DE

� �
ð7:74Þ

In (7.73),

Li,k−1 = ln
β

β0FT
+ ln

βNT
β

U Di,k−1−1ð Þ+ Di,k−1−m
0
i,k−1

h i
ln 1−PDð Þ

−
Di,k−1

DE

Xmi,k−1

l = 2

ln
PD

β0FT 2πð ÞM=2 ffiffiffiffiffiffiffiffi
Silj jp −

d2il
2

( )
+CD

ð7:75Þ

where mi,k−1 is the number of target detection points (measurements) of the ith track including the
initial observation until time k− 1, that is,

m0
i,k−1 =mi,k−1−1 ð7:76Þ

CD =

lnð1−e−1=DE Þ cancel track, Di ≥ 0

0 maintain track

ln
β0FT
β

cancel track,Di = 0

8>>><>>>: ð7:77Þ

U Di,k−1−1ð Þ= 1, Di,k−1 ≥ 1

0, Di,k−1 = 0

(
ð7:78Þ

In (7.73),

ΔLi,k =
ΔLi,k 1ð Þ, have update
ΔLi,k 2ð Þ, no update

(
ð7:79Þ

where

ΔLi,k 1ð Þ= −
1
DE

+ ln
PD

β0NT 2πð ÞM=2 ffiffiffiffiffiffiffiffi
Silj jp −

d2il
2
+ δ Di,k −1ð ÞlnβNT

β
ð7:80Þ

ΔLi,k 2ð Þ = −
1
DE

+ ln 1−PDð Þ+ δ Di,k −1ð ÞlnβNT
β

ð7:81Þ

δ Di,k −1ð Þ= 1, Di,k = 1

0, others

(
ð7:82Þ

To demonstrate the whole process of using the generalized correlated algorithm to track the
targets more clearly, we establish the algorithm procedure using the suboptimal sequence
correlated recursive algorithm of the score function, as shown in Figure 7.1.
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7.5.2.2 Applications of the Score Function

Tracks can be initiated, confirmed, maintained, and cancelled by means of the recursive equation of
the score function, which will be discussed briefly below.

1. Track confirmation.Considering the conversion of a non-confirmed track into a confirmed track,
we decide that a non-confirmed track has turned into a confirmed one when its score is certainly
positive, and that the score of the track is certainly positive when it is greater than the penalty
score of the track cancellation. Therefore, deciding whether a track is confirmed is deciding
whether its score is higher than the penalty score of the track cancellation. Assume that the score
of the ith track at time k is Li,k. The ith track is a confirmed track on condition that

Li,k + lnPTT > 0 ð7:83Þ
where PTT is the penalty score when the track is cancelled.

All measurements
at time k

Determine whether there is any
measurement falling within the

validation region of target t

No Yes

Calculate the score
of track t when

no update occurs
ΔLtj,k+1(2)

Lt,k+1

Lt,k

Calculate the score of
each measurement of

track t which falls within
the confirmed region

ΔLtj,k+1(2)

Find the
maximum score
and obtain the

associated
measurement of
track t at time k

Obtain the innovation 
of the associated 

measurement

Replace X̂ (k + 1∣ k + 1)
with X̂ (k + 1∣ k)
Replace P (k + 1∣ k + 1)
with P (k + 1∣ k)

P (k ∣ k)

P (k + 1 ∣ k)

S j (k + 1)

K j (k + 1)

X̂ (k + 1 ∣ k)

X̂ (k + 1 ∣ k + 1) P (k + 1 ∣ k + 1)

Ẑ (k + 1 ∣ k)

X̂ (k ∣ k)

Figure 7.1 Single simulation cycle flowchart of the generalized correlation algorithm
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PTT must be added to the score function when the track is cancelled, which is defined
as follows:

PTT = 1−e
−1=DE ð7:84Þ

In most cases DE >> 1, therefore

PTT = 1−e
−1=DE � 1− 1−

1
DE

� �
� 1
DE

ð7:85Þ

2. Track initiation and track maintenance. Considering the circumstances where the track is
not cancelled, the following equation must be satisfied if measurement j is used to initiate or
maintain track i:

d2ij ≤ 2min Gi 1ð Þ,Gi 2ð Þ½ � ð7:86Þ

where d2ij is defined as in (7.66), and

Gi 1ð Þ = ln PD

1−PDð Þβ 2πð ÞM=2
ffiffiffiffiffiffiffiffi
Sij
�� ��q ð7:87Þ

Gi 2ð Þ=Gi 1ð Þ+ ln 1−PDð Þ− 1
DE

+ δ Di,k−1ð ÞlnβNT
β

−ΔLG, i +ΔLL, i ð7:88Þ

ΔLG, i =


Li,km−Li,k−1 + lnPTT , confirmed track

−Li,k−1, unconfirmed track
ð7:89Þ

ΔLL, i = −
1
DE

+ ln
PD

βFT 2πð ÞM=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sij,k + 1
�� ��q − ln

β

β0FT
ð7:90Þ

where Li,km is the score of the confirmed track with the highest score, which appears at time km.
3. Track cancellation. The principle of track cancellation can be expressed by the threshold. The

following equation must be satisfied if the track i is cancelled:

Gi 2ð Þ ≤Gi 1ð Þ+ ak ð7:91Þ

where

ak =
1
2
ln
Si,k + 1jno update at time k
Si,k + 1jupdate at time k

ð7:92Þ

where Si,k + 1 is the innovation covariance of the ith track at time k + 1.

Reference [178] extended the generalized correlation algorithm to distributed multi-sensor
systems, presented the distributed multi-sensor generalized correlation algorithm, and made a
simulation analysis using this algorithm.
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7.6 Summary

This chapter mainly discusses several maximum likelihood-based data association algorithms,
including track splitting, joint maximum likelihood, 0–1 integer programming, and generalized cor-
relation. The basic estimation criterion of the four algorithms is to maximize the likelihood function,
which denotes the probability of the vectors of target states conditioned on observations.
These algorithms are basically in the form of batch processing, hence incurring a large amount of

calculation. The track-splitting algorithm requires the largest amount of computation, because it
prunes out or eliminates, through the likelihood function, the measurement sequences which are
unlikely to have originated from the targets.
The joint maximum likelihood algorithm calculates the likelihood functions of various feasible

partitions of all the measurement sequences, and the measurement sequences under the feasible par-
titions which maximize the likelihood function are considered as the correct sequences from differ-
ent targets.
The 0–1 integer programming algorithm, although evolving from the joint maximum likelihood

algorithm, evaluates the binary vector ρ which minimizes the test statistic ρ0λ instead of the feasible
partition which maximizes the likelihood function. Compared with the joint maximum likelihood
algorithm, it is similar in principle, but slightly different in the means of solving problems.
The generalized correlation algorithm defines a score function and uses it to initiate, confirm, and

cancel tracks.
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8
Bayesian Multi-target Data
Association Approach

8.1 Introduction

With respect to multi-target data association, Chapter 7 explored maximum likelihood-based
algorithms, while this chapter focuses on some Bayesian approaches, including:

• nearest neighbor, including the nearest-neighbor standard filter (NNSF) and the probabilistic
nearest-neighbor filter (PNNF);

• probabilistic data association (PDA);
• integrated probabilistic data association (IPDA);
• joint probabilistic data association (JPDA).

The PDA, IPDA, and JPDA algorithms share a similar procedure of data association – they first
compute the probabilities of being correct (i.e., having originated from the target) for each validated
measurement at the current time, and thenweight these probabilities to obtain the state estimate of the
target. The difference between them is that the IPDA, which is based on the PDA and incorporates
the concept of target existence, provides the existence probability estimations of potential targets
while estimating the state of the target of interest so that the accuracy of track confirmation or ter-
mination can be improved, while the JPDA is mainly applied to the calculation of association prob-
abilities in an environment of dense targets, where several tracks compete for the samemeasurement.

8.2 Nearest-Neighbor Algorithm

8.2.1 Nearest-Neighbor Standard Filter

In 1973, Singer and Sea proposed a filter which uses the characteristics of the prior statistics to esti-
mate the correlated performances, that is, the NNSF [179]. Its working principle is as follows: set a
tracking gate first, and then define the echoes obtained in the preliminary screening made by the
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tracking gate (correlation wave gate) as the candidate echoes so as to limit the number of targets
[16, 17, 180–183] participating in the relevant differentiation.
As depicted in Chapter 6, the tracking gate is a subsection in the tracking space, centered at the

predicted position of the target being tracked. Its size should be designed such that the correct echoes
can be received with some probability. The measurements which fall within the gate are considered
as the candidate echoes, that is, the identification of the candidate echoes depends on whether the
measurement of the target z k + 1ð Þ satisfies the following equation:

z k + 1ð Þ− ẑ k + 1 kjð Þ½ �0S−1 k + 1ð Þ z k + 1ð Þ− ẑ k + 1 kjð Þ½ � ≤ γ ð8:1Þ

If only one measurement has fallen into the correlation wave gate of the target in track, it can be
used to update the track directly, but if more than one track has fallen into the gate, the candidate
echo with the shortest statistical distance should be taken as the target echo. That is, the measure-
ment which minimizes the weighted norm of the innovation

d2 zð Þ = z− ẑ k + 1 kjð Þ½ �0S−1 k + 1ð Þ z− ẑ k + 1 kjð Þ½ � ð8:2Þ

is used in the NNSF to update the state of the target.
The NNSF algorithm has the advantage of being simple in computation. Its disadvantage is that in

a multiple-echo environment the candidate echo nearest to the predicted position of a target of inter-
est is not necessarily the real one (particularly so in cases where several targets are very close to each
other or their trajectories intersect). In short, this algorithm is inadequate at resolving the problems
of false tracking and track loss [184].
In this algorithm, state updating is done by using the measurement in the wave gate which is

nearest to the predicted value. Therefore, it is applicable only for tracking non-maneuvering targets
in the presence of sparse echoes, but inappropriate in the case of less observable maneuvering tar-
gets or when the probability of false alarms increases. A similar algorithm to this is the strongest
neighbor filter (SNF) algorithm, which conducts state updating by using the strongest of the valid
measurements that fall into the wave gate [185].

8.2.2 Probabilistic Nearest-Neighbor Filter Algorithm

The NNSF is widely applied because it uses the simplest method of data association and
involves simple computation, as discussed in the previous subsection. To improve its tracking
performance, Song et al. [186] proposed the PNNF algorithm and another nearest-neighbor
association technique which updates the filter by using the nearest measurement in the wave
gate. However, based on the NNSF, this algorithm accounts for the possibility that the
nearest measurement might have come from false alarms and the situation where no echoes
lie in the wave gate, thus modifying the corresponding update expression of the error
covariance [187].
The PNNF algorithm defines three kinds of event, as follows:

1. there are no valid measurements within the wave gate (M0);
2. the nearest measurement is target-originated (MT);
3. the nearest measurement is false-alarm-originated (MF).
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The procedure of state prediction in the PNNF is essentially the same as in the standard Kalman
filter of Section 3.2, and will not be repeated here, while that of state updating in this algorithm will
be presented as follows.
When the eventM0 happens (i.e., when no echoes fall within the tracking gate with size

ffiffiffi
γ

p
), the

state prediction at time k is taken as the updated value at time k − 1, given as

X̂ kjkð Þ= X̂ kjk−1ð Þ ð8:3Þ

P kjkð Þ =P kjk−1ð ÞM0
=P kjk−1ð Þ+ PDPG 1−Cτg

� �
1−PDPG

K kð ÞS kð ÞK0 kð Þ ð8:4Þ

where PD is the target detection probability, PG is the gate probability, Cτg =

ðγ
0
qm=2e−q=2dq

n

ðγ
0
qm=2−1e−q=2dq

,

m is the dimension of the measurement vector, and when m= 2, Cτg = 1−e−γ=2 1 + γ=2ð Þ� �
=

1−e−γ=2
� �

.
When the event �M0 happens (i.e., when more than one echo falls within the tracking wave gate

with size
ffiffiffi
γ

p
), the nearest measurement within the gate is taken as the update

X̂ kjkð Þ= X̂ kjk−1ð Þ+K kð Þβ1v∗ kð Þ ð8:5Þ

�PMF

k Dð Þ=P kjk−1ð Þ + PDPR Dð Þ 1−Cτ Dð Þ½ �
1−PDPR Dð Þ K kð ÞS kð ÞK0 kð Þ ð8:6Þ

D= v∗0 kð ÞS−1 kð Þv∗ kð Þ ð8:7Þ

P kjkð Þ = β0 �PMF

k Dð Þ+ β1 P kjk−1ð Þ−K kð ÞS kð ÞK0 kð Þ½ � + β0β1K kð Þv∗ kð Þv∗0 kð ÞK0 kð Þ

=P kjk−1ð Þ + β0PDPR Dð Þ 1−Cτ Dð Þ½ �
1−PDPR Dð Þ −β1K kð ÞS kð ÞK0 kð Þ

� �
+ β0β1K kð Þv∗ kð Þv∗0 kð ÞK0 kð Þ

ð8:8Þ

where v∗(k) is the innovation corresponding to the nearest measurement within the wave gate,
�PMF

k Dð Þ is the state error covariance under the given condition D when the event MF happens,

PR(D) is the probability of the target existing within the wave gate of size
ffiffiffiffi
D

p
,

PR Dð Þ= mCm

2m=2 + 1πm=2

ðD
0
qm=2−1e−q=2dq, and when m = 2, PR Dð Þ= 1−e−D=2. Cτ(D) can be obtained

by replacing γ in the equation for Cτg with D. β1 is the probability of this nearest measurement

having originated from the target; β1 =
PDe−λVDN v∗ kð Þ;0,S kð Þð Þ

PDe−λVDN v∗ kð Þ;0,S kð Þð Þ + 1−PDPR Dð Þð Þλe−λVD
�β0 is the

probability of this nearest measurement having originated from clutter; β0 = 1−β1. VD is the volume
of the wave gate with size

ffiffiffiffi
D

p
, as shown in (6.6). This algorithm assumes that the amount of clutter

within the wave gate is subject to the Poisson distribution with parameter λVk.
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8.3 Probabilistic Data Association Algorithm

The PDA algorithm is an all-neighbor approach which handles all the candidate echoes (validated
measurements) falling in a correlation wave gate. It computes the probabilities of each candidate
echo having originated from the target under discussion according to different associations. The
PDA derives its name from this procedure, since it associates all the neighbors with the said target
based on these probabilities. Then, these probabilistic data are used in the PDA filter (PDAF) to
weight different echoes within the gate, and the sum of the weightings of the candidate echoes
is taken as the equivalent echo which is employed finally to update the state of the target.
As a suboptimal filter approach in which only the latest measurements are decomposed, the

PDAF algorithm is used chiefly to solve the single-radar, single-target tracking problem in cluttered
environments. If more than one candidate echo is found in the correlation wave gate in a single-
target environment, only one of them is assumed target-originated and the others due to false alarms
or clutter. The advantages of this algorithm in tracking a single target in clutter are its smaller prob-
ability of tracking a false target and missing the real target and its smaller amount of calculation,
only a little larger than that of the Kalman filter. The PDAF is one of the trends in the development of
modern tracking technology [23, 188–194].

8.3.1 State Update and Covariance Update

Similarly to Chapter 7, Z(k) denotes the set of candidate echoes falling within the correlation wave
gate of a certain target at time k and Zk the accumulative set of validated measurements up to time k,
that is,

Zk = Z jð Þf gkj= 1 ð8:9Þ

and

Z kð Þ= zi kð Þf gmk
i= 1 ð8:10Þ

where mk is the number of candidate echoes within the correlation wave gate.
Define the events
θi kð Þ≜ zi kð Þf denotes the target-originated measurements}, i = 1,2,…,mk

θ0 kð Þ≜{none of the measurements at time k is target-originated}

with the conditional probability of the ith measurement zi(k) having originated from the target

βi kð Þ≜Pr θi kð Þ Zk
		
 � ð8:11Þ

conditioned on Zk. These events are mutually exclusive and exhaustive, so
Xmk

i= 0

βi kð Þ = 1, and the

conditional mean of the state of the target at time k can be written as

X̂ k kjð Þ =E X kð Þ Zk
		� �

=
Xmk

i= 0

E Xi kð Þ θi kð Þ,Zk
		� �

Pr θi kð Þ Zj k
n o

=
Xmk

i= 0

βi kð ÞX̂ i k kjð Þ ð8:12Þ
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where X̂i k kjð Þ is the updated state estimate conditioned on the event θi(k), that is,

X̂i kjkð Þ =X̂ kjk−1ð Þ +K kð Þvi kð Þ ð8:13Þ
where vi(k) is the innovation corresponding to the measurement of interest.
If none of the measurements is correct, or target-originated (i.e., for i= 0), then the state cannot be

updated, and the state update at this moment should be approximately expressed by the predicted
value, that is,

X̂0 k kjð Þ=X̂ k k−1jð Þ ð8:14Þ
Substituting (8.13) and (8.14) into (8.12) yields the target state update equation, expressed as

X̂ k kjð Þ=
Xmk

i = 0

βi kð ÞX̂i k kjð Þ=X̂ k kj −1ð Þ+K kð Þ
Xmk

i= 1

βi kð Þvi kð Þ =X̂ k kj −1ð Þ +K kð Þv kð Þ ð8:15Þ

where

v kð Þ =
Xmk

i= 1

βi kð Þvi kð Þ ð8:16Þ

is called the “combined innovation.”
The error covariance correlated with the updated state estimate is

P k kjð Þ =P k kj −1ð Þβ0 kð Þ+ 1−β0 kð Þ½ �Pc k kjð Þ+ eP kð Þ ð8:17Þ

where

Pc k kjð Þ= I−K kð ÞH kð Þ½ �P k k−1jð Þ ð8:18Þ

eP kð Þ=K kð Þ
Xmk

i= 1

βi kð Þvi kð Þv0i kð Þ−v kð Þv0 kð Þ
" #

K0 kð Þ ð8:19Þ

and P k k−1jð Þ, K(k) are given respectively by (3.46), (3.51).

Example 8.1
To prove the validity of (8.17) by the definition of the state error covariance matrix.

Proof: From Chapter 3 it follows that the state error covariance matrix corresponding to the state
update equation (8.15) is

P kjkð Þ=E X kð Þ− X̂ kjkð Þ� �
X kð Þ− X̂ kjkð Þ� �0jZk

n o
=
Xmk

i= 0

βi kð ÞE X kð ÞX0 kð Þ−X kð ÞX̂0
kjkð Þ−X kjkð ÞX̂0 kð Þ + X̂ kjkð ÞX̂0

kjkð Þ
h i

jθi kð Þ,Zk
n o

≜P1 +P2 + P2
� �0

+P3

ð8:20Þ
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Since

X kð Þ= X kð Þ− X̂i k kjð Þ� �
+ X̂i k kjð Þ = eXi k kjð Þ+ X̂i k kjð Þ ð8:21Þ

then

X kð ÞX0 kð Þ= eXi k kjð ÞeX0
i k kjð Þ + X̂i k kjð ÞeX0

i k kjð Þ+ eXi k kjð ÞX̂0
i k kjð Þ+ X̂i k kjð ÞX̂0

i k kjð Þ ð8:22Þ

This gives

P1 =
Xmk

i= 0

βi kð ÞE X kð ÞX0 kð Þ θi kð Þ,Zk
		
 �

=
Xmk

i= 0

βi kð Þ Pi k kjð Þ + X̂i k kjð ÞX̂0
i k kjð Þ

h i

= β0 kð ÞP0 k kjð Þ + 1−β0 kð Þ½ �Pc k kjð Þ+
Xmk

i= 0

βi kð ÞX̂i k kjð ÞX̂0
i k kjð Þ

ð8:23Þ

Likewise, we have

P2
� �0

= −
Xmk

i= 0

βi kð ÞE X̂ k kjð ÞX0 kð Þ θi kð Þ,Zk
		
 �

= − X̂ k kjð Þ
Xmk

i= 0

βi kð ÞE X0 kð Þ θi kð Þ,Zk
		
 �

= − X̂ k kjð Þ
Xmk

i= 0

βi kð ÞX̂0
k kjð Þ= − X̂ k kjð ÞX̂0

k kjð Þ=P2

ð8:24Þ

P3 =
Xmk

i= 0

βi kð ÞE X̂ k kjð ÞX̂0
k kjð Þ θi kð Þ,Zk

		n o
= X̂ k kjð ÞX̂0

k kjð Þ
Xmk

i= 0

βi kð Þ

= X̂ k kjð ÞX̂0
k kjð Þ

ð8:25Þ

Substituting P1, P2, and P3 into (8.20) yields

P k kjð Þ= β0 kð ÞP0 k kjð Þ + 1−β0 kð Þ½ �Pc k kjð Þ+
Xmk

i= 0

βi kð ÞX̂i k kjð ÞX̂0
i k kjð Þ− X̂ k kjð ÞX̂0

k kjð Þ

= β0 kð ÞP k k−1jð Þ + 1−β0 kð Þ½ �Pc k kjð Þ+ eP kð Þ
ð8:26Þ

where

eP kð Þ=
Xmk

i= 0

βi kð ÞX̂i k kjð ÞX̂0
i k kjð Þ−X̂ k kjð ÞX̂0

k kjð Þ ð8:27Þ
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Then, (8.19) is proved equivalent to (8.13) below. Combining (8.13) and (8.16) into (8.27) gives

eP kð Þ =
Xmk

i= 0

βi kð Þ X̂ k k−1jð Þ+K kð Þvi kð Þ� �
X̂ k k−1jð Þ+K kð Þvi kð Þ� �0

− X̂ k kjð ÞX̂0
k kjð Þ

= X̂ k k−1jð ÞX̂0
k k−1jð Þ + X̂ k k−1jð Þ

Xmk

i= 0

βi kð Þv0i kð ÞK0 kð Þ +K kð Þ
Xmk

i= 0

βi kð Þvi kð ÞX̂0
k k−1jð Þ

+K kð Þ
Xmk

i= 0

βi kð Þvi kð Þv0i kð ÞK0 kð Þ− X̂ k k−1jð Þ+K kð Þv kð Þ� �
X̂ k k−1jð Þ+K kð Þv kð Þ� �0

=K kð Þ
Xmk

i= 0

βi kð Þvi kð Þv0i kð Þ−v kð Þv0 kð Þ
" #

K0 kð Þ ð8:28Þ

8.3.2 Calculation of the Association Probability

The association probability of (8.11) is calculated as follows. First, the measurement set Zk is broken
down into the past accumulative data Zk−1 and the latest data Z(k), then

βi kð Þ = Pr θi kð Þ Zk
		
 �

= Pr θi kð Þ Z kð Þ,mk,Zk−1
		
 � ð8:29Þ

Use Bayes’ rule,

Pr Bi xjð Þ= p x Bijð ÞPr Bið ÞXn
j= 1

p x Bj

		� �
Pr Bj

� � ð8:30Þ

Equation (8.29) can be rewritten as

βi kð Þ =Pr θi kð Þ Z kð Þ,mk,Z
k−1

		
 �
=

p Z kð Þ θi kð Þ,mk,Zk−1
		� �

Pr θi kð Þ mk,Zk−1
		
 �

Xmk

j= 0

p Z kð Þ θj kð Þ,mk,Zk−1
		� �

Pr θj kð Þ mk,Zk−1
		
 � ð8:31Þ

If zi(k) denotes the target-originated measurement, then its PDF is

p zi kð Þ θi kð Þ,mk,Zk
		� �

=P−1
G N zi kð Þ;̂z k k−1jð Þ,S kð Þ½ �=P−1

G N vi kð Þ;0,S kð Þ½ � ð8:32Þ

where PG is the gate probability. If incorrect measurements are modeled as independently and uni-
formly distributed random variables in the correlation wave gate (validation region), then

p Z kð Þ θi kð Þ,mk,Z
k−1

		� �
=

V −mk + 1
k P−1

G N vi kð Þ;0,S kð Þ½ �, i= 1,…,mk

V −mk
k , i= 0

(
ð8:33Þ
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where Vk is the volume of the correlation wave gate. From Ref. [2], it follows that the conditional
probabilities of the events θi are

γi mkð Þ =Pr θi kð Þ mk,Z
k−1

		
 �
= Pr θi kð Þ mkjf g

=

1
mk

PDPG PDPG + 1−PDPGð Þ μF mkð Þ
μF mk −1ð Þ

� −1

, i = 1,2,…,mk

1−PDPGð Þ μF mkð Þ
μF mk −1ð Þ PDPG + 1−PDPGð Þ μF mkð Þ

μF mk −1ð Þ
� −1

, i= 0

8>>>>><>>>>>:
ð8:34Þ

where PD is the target detection probability, that is, the probability of the correct measurement
being detected at all, and μF(mk) is the probability mass function (PMF) of the number of false
measurements (clutter points).
There are two models for this PMF: parameter and non-parameter.

8.3.2.1 Parameter Models

The PMF of this model is a Poisson function with parameter λVk:

μF mkð Þ= Pr mF
k =mk


 �
= e−λVk

λVkð Þmk

mk!
, mk = 0,1,2,… ð8:35Þ

where λ is the spatial density of false measurements (the number of false measurements per unit
area), Vk is the volume of the validation region, so λVk is the number of false measurements within
the validation gate.

8.3.2.2 Non-parameter Models

The PMF of this model is a diffuse prior probability density function

μF mkð Þ = 1
N
, mk = 0,1,…,N−1 ð8:36Þ

By using the Poisson parameter model (8.35) in (8.34), we get

γi mkð Þ=

PDPG

PDPGmk + 1−PDPGð ÞλVk
, i= 1,2,…,mk

1−PDPGð ÞλVk

PDPGmk + 1−PDPGð ÞλVk
, i= 0

8>><>>: ð8:37Þ

Using the diffuse non-parameter prior model (8.36) in (8.34) gives

γi mkð Þ= PDPG=mk, i= 1,2,…,mk

1−PDPG, i= 0

(
ð8:38Þ
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By replacing the Poisson parameter with the sample spatial density of the validated measure-
ments, the non-parameter model can be derived directly from the Poisson model, that is, (8.38)
can be obtained directly from (8.37) by letting λ =mk=Vk.
Substituting (8.33) and (8.37) into (8.31) gives, after some cancellations, the probability with the

Poisson clutter model

βi kð Þ = N vi kð Þ;0,S kð Þ½ �
λ 1−PDPGð Þ=PD +

Xmk

j= 1

N vj kð Þ;0,S kð Þ� �

=
exp −

1
2
v0i kð ÞS−1 kð Þvi kð Þ

� �
λ 2πS kð Þj j12 1−PDPGð Þ=PD +

Xmk

j= 1

exp −
1
2
v0j kð ÞS−1 kð Þvj kð Þ

� � , i= 1,2,…,mk

ð8:39Þ

β0 kð Þ = λ 2πS kð Þj j12 1−PDPGð Þ=PD

λ 2πS kð Þj j12 1−PDPGð Þ=PD +
Xmk

j= 1

exp −
1
2
v0j kð ÞS−1 kð Þvj kð Þ

� � ð8:40Þ

Define

ei≜exp −
1
2
v0i kð ÞS−1 kð Þvi kð Þ

� �
ð8:41Þ

b≜λ 2πS kð Þj j12 1−PDPGð Þ=PD = 2πj j12γ− nz
2
λVk

cnz
1−PDPGð Þ=PD ð8:42Þ

Then

β0 kð Þ= b

b +
Xmk

j= 1

ej

ð8:43Þ

βi kð Þ= ei

b+
Xmk

j= 1

ej

, i= 1,2,…,mk ð8:44Þ

If λVk in (8.42) is replaced by mk without any other alterations, then the non-parameter model’s
probabilities βi(k) and β0(k) can be derived. The probability βi(k) includes exponents, and thus
(8.16) is highly nonlinear.

8.3.3 Modified PDAF Algorithm

A very important parameter in the PDAF algorithm is the clutter density (also called the expected
number of false measurements within the wave gate), which directly affects the calculation of the
association probability. Therefore, if this assumed parameter differs a lot from practical realities, the
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error in the obtained filtering result will be very large and the tracking accuracy of the algorithm will
degrade. However, in many cases the parameter is hard to obtain in real time. This problem can be
solved quite effectively by the modified PDAF algorithm proposed in Ref. [195], which, while mak-
ing state estimations about the target, estimates the clutter density by using the sum of clutter
obtained from previous scans as prior information.
In this algorithm, averaging the number of measurements which have fallen within the wave gate

in all previous scans yields the mean clutter density

λ =
1
Vkk

Xk
i= 1

mk ð8:45Þ

where λ is the clutter density, mk is the number of measurements which fall within the wave gate at
time k, and Vk is the volume of the validation region.
While the clutter density λ is estimated in real time, from (8.43) and (8.44) follow the association

probabilities of all the valid measurements within the wave gate being false and the ith measurement
being real (i.e., having originated from the target), and then this probabilistic information can be
used to realize target tracking in clutter along the lines of filtering in the PDAF algorithm.

8.3.4 Performance Analysis

Here a simulation comparison between tracking effects for the PDA, NNSF, and PNNF algorithms
is made in the cluttered single-target, uniform-motion simulation environment. Assume that the tar-
get being tracked is in constant planar motion, with the following numerical values: initial state
X 0ð Þ= (60 000 m, 6 m/s, 60 000 m, −14m=s), process noise component q1 = 0:04 and q2 = 0:03,
standard deviation of measurement errors 40 m for both the x and the y axis, sampling interval
T = 1 s, and 100 simulation steps every time.
The discretized system equation is

X k + 1ð Þ =F kð ÞX kð Þ +Γ kð Þv kð Þ, k = 0,…,99 ð8:46Þ
where the state of the target is

X = x _x y _y½ �0 ð8:47Þ
The state transition matrix is written as

F kð Þ =

1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

266664
377775 ð8:48Þ

The process noise distribution matrix is given by

ΓðkÞ =

1
2
T2 0

T 0

0
1
2
T2

0 T

26666664

37777775 ð8:49Þ
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The process noise is zero-mean Gaussian white noise.
The measurement equation after converting the measurements is

z kð Þ=H kð ÞX kð Þ+W kð Þ ð8:50Þ

where the measurement matrix is given as

H kð Þ = 1 0 0 0

0 0 1 0

" #
ð8:51Þ

z kð Þ = z1 kð Þ
z2 kð Þ

" #
ð8:52Þ

The area of the validation region of two-dimensional measurements is

AV = πγ S kð Þj j12 ð8:53Þ
where S(k) is the innovation covariance.
Assuming that the parameter γ = 16, we can obtain the gate probability mass PG = 0:9997 by

referring to Table 6.2 according to γ and the measurement dimension nz. False measurements were
produced uniformly in the square centered at the correct measurements. The area of the square was
A= nc=λ≈10AV , where λ is the number of false measurements per unit area. Let λ= 0:00004 and nc
be the total number of false measurements, that is, nc = INT 10AVλ + 1½ �, where INT[x] indicates that
the largest integer taken is no greater than x. Then, the position of the ith false measurement is

xi = a+ b−að ÞRND, yi = c + d−cð ÞRND, i= 1,2,…,nc ð8:54Þ

where RND denotes the uniformly distributed random numbers and

a = xk −q, b = xk + q

c = yk −q, d = yk + q

(
ð8:55Þ

where (xk, yk) is the location of the correct measurement, that is,

q=
ffiffiffiffiffiffiffiffiffiffiffi
10AV

p
=2 ð8:56Þ

A large number of false measurements were produced in the area A≈10AV , and the number of
false measurements λAV in the validation region AV was approximately Poisson. The above proced-
ure to produce false measurements simulates quite accurately what really happens in the case of
random clutter or a high rate of false alarms.

Requirements. (1)Write out the target tracking steps using the PDAF. (2) Draw up the single-time
real track of the target, and the filtering track and the RMS diagram of each algorithm.

Solution.
(1) Real tracks and measurement tracks. The real states X(1), X(2),…, X(99) of the target at other

times can be obtained according to the discrete system equation and the given initial state X(0).
Substituting these values into the measurement equation yields measurement conversions; the con-
verted measurements of the target positions z(1), z(2), …, z(99).
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(2) Filtering tracks. Initializing the obtained measurements of the target position with the two-
point difference method mentioned in Chapter 3, we get the initial state and the initial covariance
of the target

X̂ 1 1jð Þ= z1 1ð Þ z1 1ð Þ−z1 0ð Þ
T

z2 1ð Þ z2 1ð Þ−z2 0ð Þ
T

� 0
ð8:57Þ

P 1 1jð Þ =

R11 R11=T R12 R12=T

R11=T 2R11=T2 R12=T 2R12=T2

R21 R21=T R22 R22=T

R21=T 2R21=T2 R22=T 2R22=T2

266664
377775 ð8:58Þ

The Kalman filtering equation mentioned in Chapter 3 is used before introducing clutter. After
clutter is introduced, it is advisable to select the candidate echoes through setting up correlation
wave gates, that is, to determine whether the following equation holds true:

v0i k + 1ð ÞS−1 k + 1ð Þvi k + 1ð Þ ≤ γ ð8:59Þ

where vi k + 1ð Þ is the innovation associated with the ith measurement and S k + 1ð Þ the innovation
covariance. If the measurement satisfies (8.59), it will be retained as a candidate echo, otherwise it
will be discarded as clutter. The combined innovation and association probabilities β0(k) and βi(k) of
the candidate echoes can be obtained from (8.16), (8.43), and (8.44). Then, the updated values of the
state and covariance of the target in clutter can be obtained from (8.15) and (8.17).
Figure 8.1 depicts the real and filtering tracks of the target, where the horizontal ordinate denotes

the x-axis position of the target and the ordinate the y-axis position. Figure 8.2 is an enlarged version
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Figure 8.1 Real and filtering trajectory of the target
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of Figure 8.1. Figures 8.3 and 8.4 are the RMS of the x and y-axis target position obtained from the
PDA algorithm through 50 Monte Carlo experiments. To be specific, assume that, for a target in the
rectangular coordinate system, the noiseless real measurement is (x, y) and the filtering value is
x̂, ŷð Þ. Then, the RMS errors of the x and y-axis position are

σx =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i= 1

x̂−xð Þ2
vuut ð8:60Þ

σy =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i= 1

ŷ−yð Þ2
vuut ð8:61Þ

respectively, where N denotes the number of Monte Carlo experiments.
As can be seen from Figures 8.1 and 8.2, the PDAF performs better in tracking a target in clutter

than the NNSF and PNNF. Note that the target tracking performances of all three algorithms are
affected by the density level of clutter, while the effect on that of the PDAF is weaker. The NNSF
and PNNF prove effective at tracking targets in sparse clutter; even in the region of high clutter
density, they may yield good results in some Monte Carlo simulation or other.
Since filtering divergence occurred in the NNSF and PNNF in this simulation, we present the

simulation results only from the PDAF in multiple Monte Carlo simulations. Figures 8.3 and 8.4
indicate that the RMS errors of the x and y-axis positions obtained from the PDAF filtering converge
quite quickly as the duration of the tracking extends. The following results from the three algorithms
were also found in the simulation:
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Figure 8.2 Enlarged version of Figure 8.1
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• The NNSF requires least computation, the PNNF a little more, and the PDAF most.
• The PNNF yields fewer occurrences of false tracking than the NNSF and thus has higher tracking
accuracy.

• The PDAF has the strongest tracking capability in the presence of clutter, thanks to its fewest
occurrences of false tracking and highest tracking accuracy, but it is the most time-consuming
among the three algorithms.
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Figure 8.3 RMS of the x axis (PDAF filtering)
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Figure 8.4 RMS of the y axis (PDAF filtering)
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8.4 Integrated Probabilistic Data Association Algorithm

Multi-targetpositioningand tracking inclutterbysensors involves thevalidationofmeasurements, their
association with a real target, and the difficulty of determining the number of targets. To resolve these
problems (especially that of determining the number of targets), Musicki and Evans [196, 197] intro-
duced the concept of target existence into the PDA and, based on the assumption that no track exists,
derived the IPDAalgorithm. This algorithm is capable of estimating the probabilities of track existence
of targets while tracking them, and has computational requirements equivalent to that of the PDA.

8.4.1 Judgment of Track Existence

In order to solve the problem of effectively estimating the number of targets in multi-target passive
tracking when the number of targets in clutter is unknown and varying, track existence can be mod-
eled by the Markov process and the events correlated with track existence can be defined as:

1. The targets exist and are visible (the targets exist with detection probability PD).
2. The targets exist but are invisible.
3. The targets do not exist.

That is to say, the track existence is viewed as a three-state Markov chain:

1. Xt,o
k indicates that target t exists at time k and is detected with probability PD.

2. Xt,n
k indicates that target t exists at time k but is not detected.

3. �Xt
k indicates that target t does not exist at time k.

The probability matrix of transition between the three states is

P=

p11 p12 p13

p21 p22 p23

p31 p32 p33

264
375 ð8:62Þ

where 0 ≤ pij ≤ 1 and
X3
j= 1

pij = 1, i= 1,2,3.

Assume that the probabilities of the three states (i.e., target t exists and is visible, target t exists
but is invisible, target t does not exist) at time k − 1 are known, that is, Pr Xt,o

k−1jZk−1

 �

,

Pr Xt,n
k−1jZk−1


 �
, and Pr Xt

k−1 jZk−1

 �

are known, where Zk−1 denotes the set of accumulated
measurements within the tracking gate up to time k − 1. Then, by using the probabilities of the first
state at time k− 1, and those of the transition between the three states obtained from (8.62), the
predicted value of Xt,o

k can be obtained from the total probability theorem as follows:

Pr Xt,o
k jZk−1


 �
=Pr Xt,o

k−1jZk−1

 �

p11 + Pr Xt,n
k−1jZk−1


 �
p21 + Pr Xt

k−1 jZk−1

 �

p31 ð8:63Þ

That is, the sum of probabilities of transition from the three states at time k − 1 to the first state at
time k. Likewise, we have the predicted probabilities of the other states:

Pr Xt,n
k jZk−1


 �
=Pr Xt,o

k−1jZk−1

 �

p12 + Pr Xt,n
k−1jZk−1


 �
p22 + Pr Xt

k−1 jZk−1

 �

p32 ð8:64Þ
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Pr Xt
k jZk−1


 �
=Pr Xt,o

k−1jZk−1

 �

p13 + Pr Xt,n
k−1jZk−1


 �
p23 + Pr Xt

k−1 jZk−1

 �

p33 ð8:65Þ

From (8.64) and (8.65) it follows that the probability of the existence of the target t (including the
states of being visible and invisible) is

Pr Xt
kjZk−1


 �
= Pr Xt,o

k jZk−1

 �

+ Pr Xt,n
k jZk−1


 � ð8:66Þ

and that the probability that t does not exist is

Pr Xt
k jZk−1


 �
= 1−Pr Xt

kjZk−1

 � ð8:67Þ

Letmt
k denote the number of measurements within the tracking gate of the target t at time k, V t

k the
area (volume) of the gate at time k, and

Vt
k = cnzγ

nz
2 St kð Þj j12 ð8:68Þ

where nz is the dimension of the measurements. When nz = 1, 2, 3,Cnz = 2, π, and 4π/3, respectively,
and St(k) is the innovation covariance correlated with target t.
The number of false measurements within the tracking gate is denoted by m̂t

k in the following
situations.

1. If the number of false measurements is Poisson distributed and the parameter λ is known,
then m̂t

k = λV
t
k.

2. If the number of false measurements is Poisson distributed but the parameter λ is unknown, then

m̂t
k =

0 mt
k = 0

mt
k −PDPGPr Xt,o

k jZk−1

 �

mt
k > 0

(
ð8:69Þ

where PG denotes the gate probability.
3. If the prior distribution of the number of false measurements is unknown, then m̂t

k =m
t
k.

This gives the updated probability correlated with the existence of target t at time k [196, 197]:

Pr Xt,o
k jZk


 �
=

1−δtk
� �

Pr Xt,o
k jZk−1


 �
1−δtkPr Xt,o

k jZk−1

 � ð8:70Þ

Pr Xt,n
k jZk


 �
=

Pr Xt,n
k jZk−1


 �
1−δtkPr Xt,o

k jZk−1

 � ð8:71Þ

Pr Xt
k jZk


 �
= 1−Pr Xt,o

k jZk−1

 �

−Pr Xt,n
k jZk−1


 � ð8:72Þ

where

δtk =

PDPG mt
k = 0

PDPG−PDPG
Vt
k

m̂t
k

Xmt
k

i= 1

Λt
i kð Þ mt

k > 0

8>><>>: ð8:73Þ
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with Λt
i kð Þ denoting the likelihood function of the ith measurement zi(k) within the tracking gate

having originated from the target t at time k, that is,

Λi
k kð Þ =P−1

G N vi kð Þ;0,St kð Þ½ � ð8:74Þ

where vi(k) is the innovation correlated with the measurement zi(k), and S
t(k) the innovation covari-

ance associated with target t.

8.4.2 Data Association

The association probability that the ith measurement zi(k) within the tracking gate originated from
target t at time k is [196, 197]:

βi kð Þ =
PDPG

Vt
k

m̂t
k

Λt
i kð ÞPr Xt,o

k jZk−1

 �

1−δtk
� �

Pr Xt,o
k jZk−1


 �
+ Pr Xt,n

k jZk−1

 � ð8:75Þ

β0 kð Þ= 1−PDPGð ÞPr Xt,o
k jZk−1


 �
+ Pr Xt,n

k jZk−1

 �

1−δtk
� �

Pr Xt,o
k jZk−1


 �
+ Pr Xt,n

k jZk−1

 � ð8:76Þ

The state update equation of target t is

X̂ k kjð Þ =
Xmt

k

i= 0

βi kð ÞX̂i k kjð Þ ð8:77Þ

where

X̂0 k kjð Þ = X̂ k k−1jð Þ ð8:78Þ

The covariance update equation of target t is

P k kjð Þ =
Xmt

k

i= 0

βi kð Þ Pi k kjð Þ+ X̂i k kjð Þ− X̂ k kjð Þ� �
− X̂ k kjð Þ
 �0g ð8:79Þ

where P0 k kjð Þ=P k k−1jð Þ.
Other filtering equations used in the IPDA are the same as in the PDA.

8.5 Joint Probabilistic Data Association Algorithm

The JPDA algorithm was proposed by Bar-Shalom and his students based on the PDA algorithm,
which is appropriate only in single-target tracking. The JPDA is a good algorithm applicable to
multi-target data association in the cluttered environment. Similarly to the PDA, it computes a
weighted residual for track updating based on all the measurements within the validation gate.
In this algorithm, unlike in the PDA, the target origins of all the measurements have to be considered
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when echoes are present in the overlap between correlation wave gates of the various targets. That
is, the competition of several tracks for the same measurement has to be accounted for in the com-
putation of association probabilities, and the weighted value of the target having participated in the
competition should be somewhat decreased to reflect competition for the measurement under
consideration.
The multi-target data association technique in cluttered environments is the most important and

difficult problem encountered in multi-target tracking. If the wave gates of the two or more targets
being tracked do not intersect, or no echoes lie in the intersection of the wave gates, then the problem
of multi-target data association can be simplified to a problem of data association of several indi-
vidual targets, which can be solved by the PDA algorithm discussed in Section 8.3. However, if
echoes are present in the intersection, then the data association problem will be significantly more
complex, as discussed here.

8.5.1 Basic Models of JPDA

8.5.1.1 Validation Matrix

When echoes are found in the intersection of correlation wave gates of various targets, the origins of
the measurements have to be considered in an all-round way. To indicate the complex relationship
between the valid echoes and the target tracking gates, Bar-Shalom introduced the concept of a
“validation matrix.”
The validation matrix is defined as

Ω= ωjt

� �
=

ω10 � � � ω1T

..

. � � � ..
.

ωmk0 � � � ωmkT

2664
3775 ð8:80Þ

where ωjt is a binary variable, ωjt = 1 indicates that measurement j (j = 1,2,…,mk) lies in the val-
idation gate of target t (t = 0,1,…,T), while ωjt = 0 shows that no measurement j is in this gate.
The index t = 0 stands for “no target” and all the elements ωj0 in the corresponding column of
Ω are 1, for each measurement is likely to have originated from clutter or a false alarm.

8.5.1.2 Association Matrix (Joint Events)

For a multi-target tracking problem, given the validation matrix (or association cluster matrix)
Ω reflecting the associations of the valid echoes with the targets or clutter or false alarms, the sep-
aration of this matrix yields all the association matrixes indicating the association events. This must
be done under two basic assumptions [198]:

• A measurement can have only one source (i.e., a measurement must have originated either from
the target or from clutter or a false alarm). In other words, indistinguishable detections are not
considered here.

• No more than one measurement can originate from a target. If several measurements seem to
match a target, one of them is assumed real and the others false.
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In other words, the separation of the validation matrix must be done according to two criteria [19]:

• In each row of the validation matrix, one and only one “1” can be selected as the only non-zero
element of the association matrix in this row, such that the feasible joint events indicated by the
feasible matrix satisfy the first assumption (i.e., that a measurement can have only one origin).

• In each column, except for the first, of the feasible matrix, there can be only one non-zero element
such that the feasible events indicated by the association matrix satisfy the second assumption
(i.e., that no more than one measurement can originate from a target).

8.5.1.3 Calculation of Association Probability

The purpose of the JPDA is to calculate the probability that every measurement is associated with its
various possible source targets. When echoes are found in the overlap of the correlation wave gates
of these various targets, the target sources of all the measurements have to be considered at the
same time.
Denote by θjt(k) the event of measurement j having originated from target t (0 ≤ t ≤ T), and by

θj0(k) that of j having originated from clutter or false alarms. Then the definition of the conditional
probability in the single-target PDAF gives

βjt kð Þ = Pr θjt kð ÞjZk

 �

, j= 0,1,…,mk, t = 0,1,…,T ð8:81Þ

which denotes the probability of the jth measurement being associated with target t, and

Xmk

j = 0

βjt kð Þ= 1 ð8:82Þ

Then the estimate of the state of target t at time k is

X̂t k kjð Þ=E X t kð Þ Zk
		� �

=
Xmk

j= 0

E X t kð Þ θjt kð Þ,Zk
		� �

Pr θjt kð Þ Zj k
n o

=
Xmk

j= 0

βjt kð ÞX̂t
j k kjð Þ ð8:83Þ

where

X̂
t
j k kjð Þ=E X t kð Þ θjt kð Þ,Zk

		� �
, j= 0,1,…,mk ð8:84Þ

indicates the estimate of the state obtained through the Kalman filtering of target t by the jth

measurement at time k, while X̂
t
0 k kjð Þ indicates that no measurements are target-originated at time

k, in which case the predicted value X̂t k k−1jð Þ should be used as a substitute.
The probability of the jth measurement being associated with the target can be obtained through

the following equation:

βjt kð Þ= Pr θjt kð Þ Zk
		
 �

= Pr [nk
i= 1

θijt kð Þ Zk
		� �

=
Xnk
i= 1

ω̂i
jt θi kð Þ½ �Pr θi kð Þ Zk

		
 � ð8:85Þ
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where θijt kð Þ denotes the event of measurement j having originated from target t (0 ≤ t ≤ T) in the ith
joint event, θi(k) the ith joint event, and nk the number of joint events, while

ω̂i
jt θi kð Þð Þ= 1, if θijt kð Þ � θi kð Þ

0, otherwise

(
ð8:86Þ

indicates whether measurement j originated from target t in the ith joint event; it is 1 if j originated
from t, and 0 otherwise.
Define the ith joint event under normal circumstances as

θi kð Þ = \mk

j= 1
θijt kð Þ ð8:87Þ

which indicates a probability that mk measurements match different targets.
Define the association matrix corresponding to the joint event as

Ω̂ θi kð Þð Þ = ω̂i
jt θi kð Þð Þ

h i
=

ω̂i10 � � � ω̂i1T

..

. � � � ..
.

ω̂imk0 � � � ω̂imkT

2664
3775 j = 1,2,…,mk; i= 1,2,…,nk; t = 0,1,…,T ð8:88Þ

From the two basic assumptions above, it is easy to deduce that the association matrix
satisfies

XT
t = 0

ω̂i
jt θi kð Þ½ �= 1, j = 1,2,…,mk

Xmk

j = 1

ω̂i
jt θi kð Þ½ � ≤ 1, t = 1,2,…,T

ð8:89Þ

8.5.1.4 Applications

Consider two target tracks, around whose measurement predictions two wave gates are set up.
Assume that the scan at the next moment yields three echoes, the relationship between whose posi-
tions and those of the correlation wave gates are shown in Figure 8.5.
Write out their validation matrix and association matrixes, and find the probability βjt(k) of the

measurements being associated with different targets.
Solution: Using the method for constructing a validation matrix defined in (8.80) yields the

validation matrix

Ω = ωjt

� �
=

1 1 0

1 1 1

1 0 1

264
375

zfflfflfflfflfflffl}|fflfflfflfflfflffl{t

1

2

3

9>=>; j ð8:90Þ
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Based on this matrix and the two criteria above, we have, through an exhaustive search, eight
association matrixes and their corresponding joint events (feasible association events), as
given below:

Ω
^
θ1 kð Þ½ � =

1 0 0

1 0 0

1 0 0

264
375, θ1 kð Þ= θ110 kð Þ\θ120 kð Þ\θ130 kð Þ ð8:91Þ

Ω
^
θ2 kð Þ½ � =

0 1 0

1 0 0

1 0 0

264
375, θ2 kð Þ= θ211 kð Þ\θ220 kð Þ\θ230 kð Þ ð8:92Þ

Ω
^
θ3 kð Þ½ � =

0 1 0

0 0 1

1 0 0

264
375, θ3 kð Þ= θ311 kð Þ\θ322 kð Þ\θ330 kð Þ ð8:93Þ

Ω
^
θ4 kð Þ½ � =

0 1 0

1 0 0

0 0 1

264
375, θ4 kð Þ= θ411 kð Þ\θ420 kð Þ\θ432 kð Þ ð8:94Þ

Ω
^
θ5 kð Þ½ � =

1 0 0

0 1 0

1 0 0

264
375, θ5 kð Þ= θ510 kð Þ\θ521 kð Þ\θ530 kð Þ ð8:95Þ

Ω
^
θ6 kð Þ½ � =

1 0 0

0 1 0

0 0 1

264
375, θ6 kð Þ= θ610 kð Þ\θ621 kð Þ\θ632 kð Þ ð8:96Þ

Ω
^
θ7 kð Þ½ � =

1 0 0

0 0 1

1 0 0

264
375, θ7 kð Þ= θ710 kð Þ\θ722 kð Þ\θ730 kð Þ ð8:97Þ

O

z1

z2
ẑ2(k + 1∣ k)

ẑ1(k + 1∣ k)

z3

y

x

Figure 8.5 Example of the validation matrix and the formation of association events
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Ω
^
θ8 kð Þ½ � =

1 0 0

1 0 0

0 0 1

264
375, θ8 kð Þ= θ810 kð Þ\θ820 kð Þ\θ832 kð Þ ð8:98Þ

The procedure of deriving association matrixes from the validation can also be illustrated by the
block diagram in Figure 8.6. Row 1 of the validation matrix derived from (8.90) can be separated,
according to the separation criteria for validation matrixes, into [1 0 0] and [0 1 0]. Specifically, the
first measurement originated from a false target or target 1; when the origin of the first measurement
is a false target, the second one (row 2 of the validation matrix) can be further split into [1 0 0],
[0 1 0], and [0 0 1]. That is, the second measurement belonged to a false target, target 1 or target 2;
when the source of the first is target 1, the second can be divided onwards into [1 0 0] and [0 0 1], that
is, the second measurement derived from a false target or target 2.
Notice that in this case, since the first measurement came from target 1, according to separation

criterion 2 for validation matrixes, the second cannot have originated from target 1, hence the situ-
ation [0 1 0] does not exist. Likewise, if the first two measurements belonged to different targets, we
can separate the source of the third one (row 3 of the validation matrix) and get a block diagram as
shown in Figure 8.6.
The probability βjt(k) of different measurements being associated with different targets is

given below:

β11 kð Þ =Pr θ11 kð Þ Zk
		
 �

= Pr [8
i= 1

θi11 kð Þ Zk
		� �

=
X8
i= 1

ω̂i
11 θi kð Þ½ �Pr θi kð Þ Zk

		
 �
=
X4
i= 2

Pr θi kð Þ Zk
		
 � ð8:99Þ

β21 kð Þ= Pr θ21 kð Þ Zk
		
 �

=Pr [8
i= 1

θi21 kð Þ Zk
		� �

=
X8
i= 1

ω̂i
21 θi kð Þ½ �Pr θi kð Þ Zk

		
 �
=
X6
i= 5

Pr θi kð Þ Zk
		
 � ð8:100Þ

β31 kð Þ =Pr θ31 kð Þ Zk
		
 �

= Pr [8
i= 1

θi31 kð Þ Zk
		� �

=
X8
i= 1

ω̂i
31 θi kð Þ½ �Pr θi kð Þ Zk

		
 �
= 0 ð8:101Þ

β12 kð Þ =Pr θ12 kð Þ Zk
		
 �

= Pr [8
i= 1

θi12 kð Þ Zk
		� �

=
X8
i= 1

ω̂i
12 θi kð Þ½ �Pr θi kð Þ Zk

		
 �
= 0 ð8:102Þ
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Figure 8.6 Association matrix block diagram
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β22 kð Þ= Pr θ22 kð Þ Zk
		
 �

= Pr [8
i= 1

θi22 kð Þ Zk
		� �

=
X8
i= 1

ω̂i
22 θi kð Þ½ �Pr θi kð Þ Zk

		
 �
= Pr θ3 kð Þ Zk

		
 �
+Pr θ7 kð Þ Zk

		
 � ð8:103Þ

β32 kð Þ= Pr θ32 kð Þ Zk
		
 �

= Pr [8
i= 1

θi32 kð Þ Zk
		� �

=
X8
i= 1

ω̂i
32 θi kð Þ½ �Pr θi kð Þ Zk

		
 �
= Pr θ4 kð Þ Zk

		
 �
+Pr θ6 kð Þ Zk

		
 �
+ Pr θ8 kð Þ Zk

		
 � ð8:104Þ

Likewise, the probability β0j ( j = 1,2) that all the valid echoes of targets 1 and 2 are false
measurements can be represented as

β01 = Pr θ1 kð Þ Zk
		
 �

+
X8
i= 7

Pr θi kð Þ Zk
		
 �

, β02 =
X2
i= 1

Pr θ1 kð Þ Zk
		
 �

+ Pr θ5 kð Þ Zk
		
 � ð8:105Þ

As can be seen from the example above, there is a one-to-one match between each association
matrix and each feasible association event. In practical use, feasible association events are deter-
mined typically with the association matrixes derived from validation matrixes. According to the
separation criteria, one validation matrix can be separated into many feasible association matrixes.
The number of association matrixes grows, usually exponentially with the number of targets and
that of valid echoes, and with the size of the intersection of wave gates as well. The example also
indicates that the key to the evaluation of the probabilities of the jth measurement being associated
with the target is that of the association event θi(k) (i = 1,2,…, nk).

8.5.2 Calculation of the Probability of Joint Events

For the sake of discussion, two binary variables are introduced.

1. The measurement association indicator

τj θi kð Þ½ �=
XT
t = 1

ω̂jti θi kð Þð Þ = 1

0

(
ð8:106Þ

indicates whether measurement j is associated with a real target in the joint event.
2. The target detection indicator

δt θi kð Þ½ �=
Xmk

j= 1

ω̂jti θi kð Þ½ �= 1

0

(
ð8:107Þ

indicates whether any measurement is associated with target t in the joint event θi(k), that is,
whether it has been detected.

Denoting by ϕ[θi(k)] the number of false measurements in the joint event θi(k) yields

ϕ θi kð Þ½ �=
Xmk

j= 1

1−τj θi kð Þ½ �
 � ð8:108Þ
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Using Bayes’ rule gives the conditional probability of the joint event θi(k) at time k,

Pr θi kð Þ Zk
		
 �

=Pr θi kð Þ Z kð Þ,Zk−1
		
 �

=
1
c
p Z kð Þ θi kð Þ,Zk−1

		� �
Pr θi kð Þ Zk−1

		
 � ð8:109Þ

where c is the normalization constant

c=
Xnk
j= 0

p Z kð Þ θj kð Þ,Zk−1
		� �

Pr θj kð Þ
 � ð8:110Þ

Assume that the false measurements (i.e., those unassociated with any target) are uniformly dis-
tributed in the validation region of volume V, and that the target-associated measurements have the
Gaussian PDF Nt zj kð Þ� �

=N zj kð Þ; ẑt kjk−1ð Þ,St kð Þ� �
. The only difference from the single-target

case is that all the validation regions are assumed to coincide with the entire surveillance region;
this suggests that the gate probability PG = 1. By simulating the solution of the single-target
PDA approach, we get

p zj kð Þ		θijt kð Þ,Zk−1
h i

=
Nt zj kð Þ� �

, if τj θi kð Þ½ � = 1
V −1, if τj θi kð Þ½ �= 0

(
ð8:111Þ

Hence

p Z kð Þ θi kð Þ,Zk−1
		� �

=
Ymk

j= 1

p zj kð Þ		θijt kð Þ,Zk−1
h i

=V −ϕ θi kð Þ½ �Ymk

j= 1

Nt zj kð Þ� �τj θi kð Þ½ � ð8:112Þ

As we know, given θi(k), the target detection indicator δt(θi(k)) and the number of false measure-
ments ϕ(θi(k)) are completely determined. Thus,

Pr θi kð Þf g= Pr θi kð Þ,δt θi kð Þ½ �,ϕ θi kð Þ½ �f g ð8:113Þ
Using the multiplication theorem, the above equation becomes

Pr θi kð Þf g= Pr θi kð Þjδt θi kð Þð Þ,ϕ θi kð Þð Þf gPr δt θi kð Þð Þ,ϕ θi kð Þð Þf g ð8:114Þ

In fact, given the number of false measurements, the joint event θi(k) will be defined only by the
target detection indicator function δt[θi(k)]. But there are Cϕ θi kð Þ½ �

mk
events in total, which include

ϕ[θi(k)] false measurements. These such events also contain mk −ϕ θi kð Þ½ � real measurements,
and there are mk −ϕ θi kð Þ½ �f g! possible associations between these such real measurements and
the target. Therefore,

Pr θi kð Þjδt θi kð Þð Þ,ϕ θi kð Þð Þf g = 1

ðmk −ϕ θi kð Þð Þ!Cϕ θi kð Þð Þ
mk

=
ϕ θi kð Þð Þ!

mk!
ð8:115Þ

The last factor in (8.114) is

Pr δt θi kð Þð Þ,ϕ θi kð Þð Þf g =
YT
t = 1

Pt
D

� �δt θi kð Þð Þ
1−Pt

D

� �
1−δt θi kð Þð ÞμF ϕ θi kð Þð Þð ð8:116Þ
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where Pt
D denotes the detection probability of target t and μF{ϕ[θi(k)]} the prior PMF of the number

of false measurements. Substituting (8.115) and (8.116) into (8.114) gives the prior probability of
the joint event θi(k):

Pr θi kð Þf g= ϕ θi kð Þ½ �!
mk!

μF ϕ θi kð Þ½ �f g
YT
t = 1

Pt
D

� �δt θi kð Þ½ �
1−Pt

D

� �
1−δt θi kð Þ½ � ð8:117Þ

Similarly, combining (8.112) and (8.117) into (8.109), we get the posterior probability of θi(k) as

Pr θi kð ÞjZk

 �

=
1
c

ϕ θi kð Þ½ �!
mk!

μF ϕ θi kð Þ½ �f gV −ϕ θi kð Þ½ �Ymk

j= 1

Ntj Zj kð Þ� �τj θi kð Þ½ �YT
t = 1

Pt
D

� �δt θi kð Þ½ �
1−Pt

D

� �1−δt θi kð Þ½ �

ð8:118Þ

The JPDA filter has two forms according to the model for the PMF μF ϕ θi kð Þð Þð of the number of
false measurements [16]. The parametric JPDA filter uses the Poisson distribution, that is,

μF
�
φ θi kÞð Þð Þ = e−λV λVð Þφ θi kð Þð Þ

φ θi kð Þð Þ! ð8:119Þ

where λ is the space density of false measurements, and λV is the expected number of false meas-
urements in the gate. Inserting (8.119) into (8.118) yields

Pr θi kð ÞjZk

 �

=
λϕ θi kð Þ½ �

c0
Ymk

j= 1

Ntj Zj kð Þ� �τj θi kð Þ½ �YT
t = 1

Pt
D

� �δt θi kð Þ½ �
1−Pt

D

� �1−δt θi kð Þ½ � ð8:120Þ

where c0 is the new normalization constant.
The non-parametric JPDA uses the uniformly distributed μF ϕ θi kð Þð Þð , that is, μF ϕ θi kð Þð Þ = εð .

Substitute μF ϕ θi kð Þð Þ= εð into (8.118) and cancel the constants ε and mk! in every expression, then
(8.118) becomes

Pr θi kð ÞjZk

 �

=
1
c00
ϕ θi kð Þ½ �!
V ϕ θi kð Þ½ �

Ymk

j= 1

Ntj Zj kð Þ� �τj θi kð Þ½ �YT
t = 1

Pt
D

� �δt θi kð Þ½ �
1−Pt

D

� �1−δt θi kð Þ½ � ð8:121Þ

where c00 is the new normalization constant.

8.5.3 Calculation of the State Estimation Covariance

From the Kalman filtering equation, we can obtain the covariance of the state estimate X̂
t
j kjkð Þ of

target t based on the jth measurement

Pt
j kjkð Þ=E X t kð Þ−X̂t

j kjkð Þ
h i

X t kð Þ−X̂t
j kjkð Þ

h i0
jθjt kð Þ,Zk

n o
ð8:122Þ

=Pt kjk−1ð Þ−Kt kð ÞSt kð ÞKt0 kð Þ ð8:123Þ
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where Kt(k) denotes the gain matrix of the target at time k, and St(k) the corresponding innovation
covariance.
As we know, when no targets come from t (i.e., when no valid echoes are used to update the state

of the target), the state estimate of the target is equal to its predicted value. Therefore,

Pt
0 kjkð Þ=E X t kð Þ−X̂t

0 kjkð Þ
h i

X t kð Þ−X̂t
0 kjkð Þ

h i0
jθ0t kð Þ,Zk

n o
=E X t kð Þ−X̂t k k−1jð Þ� �

X t kð Þ−X̂t k k−1jð Þ� �0
θ0t kð Þ,Zk

n o
=Pt kjk−1ð Þ

ð8:124Þ

The covariance of the state estimate X̂t k kjð Þ is

Pt kjkð Þ =E X t kð Þ−X̂t k kjð Þ� �
X t kð Þ−X̂t k kjð Þ� �0jZk

n o
=
Xmk

j= 0

βjt kð ÞE X t kð Þ−X̂t k kjð Þ� �
X t kð Þ−X̂t k kjð Þ� �0jθjt kð Þ,Zk

n o
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� �h in
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+ X̂
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n o
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n o
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h i
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ð8:125Þ

It follows from (8.122)–(8.124) thatXmk

j= 0

βjt kð ÞE X t kð Þ− X̂t
j kjkð Þ

h i
X t kð Þ− X̂t

j kjkð Þ
h i0

jθjt kð Þ,Zk
n o
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Xmk
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j= 1
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ð8:126Þ

From (8.125) we getXmk

j= 0

βjt kð ÞE X t kð Þ− X̂t
j kjkð Þ

h i
X̂
t
j kjkð Þ− X̂t kjkð Þ
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ð8:127Þ
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Likewise, we have

Xmk

j= 0

βjt kð ÞE X̂
t
j kjkð Þ− X̂t kjkð Þ

h i
X t kð Þ−X̂t

j kjkð Þ
h i0

jθjt kð Þ,Zk
n o

= 0 ð8:128Þ

Xmk
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ð8:129Þ

Thus, combining (8.126)–(8.129) into (8.124) yields the covariance of X̂t kjkð Þ:

Pt kjkð Þ =Pt kjk−1ð Þ− 1−β0t kð Þð ÞK t kð ÞSt kð ÞK t0 kð Þ

+
Xmk

j= 0

βjt kð ÞX̂t
j kjkð ÞX̂t0

j kjkð Þ− X̂t kjkð ÞX̂t0
kjkð Þ ð8:130Þ

8.5.4 Simplified JPDA Model

The JPDA algorithm, through the permutation and combination of all targets and measurements,
selects reasonable joint events to calculate the joint probability. Therefore, it accounts for the fact that
the various measurements from other targets are likely to lie in the same target association region. In
this case, the algorithm has good performance in solving the problem of the measurements of several
targets appearing in the same association region in a cluttered environment.But this algorithm is quite
complex, and it has excessive computing requirements: with the increase in number of targets, the
computational load for separating the validation matrix grows exponentially, even generating com-
bination explosion. Inviewof theseproblems, the JPDAis quite difficult to implement in engineering.
For the sake of engineering implementations, many simplified algorithms are advanced based on

the JPDA. An empirical equation for probability calculation was first proposed by Robert Fitzgerald
(see Ref. [199]). This was followed by the suboptimal version presented by Roecher and Phillis
[200]. The depth-first search (DFS) method and its condensed form initiated by B. Zhou can be
found in Ref. [201]. These reduced versions perform differently with respect to tracking accuracy
and real-time features in various cases. For convenience, three simplified models of the JPDA are
given below.
The equation to calculate the empirical probability in the cheap JPDA algorithm [15, 199, 202]

has the characteristics of the JPDA. To be specific, only the measurements in the association region
of one track are heavily weighted, while those which lie in the overlap of the association regions of
several tracks and contradict each other are lightly weighted. This algorithm assigns a higher
weighting to the approximation of predicted positions and the association with fewest tracks. Gen-
erally (except in the presence of dense clutter), B= 0 gives satisfactory results. In the cheap JPDA,
only two to three measurements with the highest probabilities are used for updating the state of the
target. This constraint accounts for the computational load. Another limit on the number of
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measurements is that the empirical probability may overweight false measurements, so that the
covariance matrix increases unrestrainedly in the presence of dense targets.
The suboptimal JPDA [15, 200, 202, 203] adopts the concept of partial joint events. Assume that

the associations between these partial joint events are non-contradictory. To be more precise,
assume that measurement j1 is associated with track t1, and that measurement j2 is associated with
track t2. In this case, if tracks t1 and t2 share a common measurement in the overlap (if any) of their
association regions, this event is called a partial joint event. Events of this type are known as sub-
optimal joint events, since they are all subsets of optimal joint events.
Data association is deemed equivalent to combination in terms of multi-target tracking, while in

terms of JPDA implementations it primarily concerns how to generate hypothesis matrixes and cal-
culate association probabilities effectively and quickly. A well-known model for combination is the
constrained limited exhaustive search (CLES) method, by combining which the DFS algorithm [15,
201, 202, 204] attacks the problem of data association, or that of the production and separation of
association matrixes for the JPDA.

8.5.5 Performance Analysis

The JPDA algorithm and its several simplified versions discussed above are capable of tracking
dense targets in clutter. This section presents a simulation comparison between them.
Assume that a filter is tracking two targets under discussion which are in cross motion, with the

following initial positions.

Target 1: X 0ð Þ = −29 500m, 400m=s, 34 500m, −400m=sð Þ
Target 2: X 0ð Þ = −26 250m, 296m=s, 34 500m, −400m=sð Þ
Process noise quantity q1 = q2 = 0:01
Range error of radar σr = 100m
Angle error of radar σθ = 0:02 rad
Detection probability PD = 0:98
Gate probability PG = 0:9997
γ = 16
mk = 2
Sampling interval T = 1 s

There are 70 simulation steps every run, and 50 runs in total. The state and measurement equa-
tions of the system are the same as in Section 8.3.4.
False measurements were produced uniformly in a square centered at the correct measurements,

with an area of A= nc=λ≈10AV , where λ denotes the number of false measurements per unit area,
and λ= 0:0004; nc is the total number of false measurements, that is, nc = INT 10AVλ+ 1½ �,
AV = πγ S kð Þj j12, and parameter γ = 16.
The real movement trajectories of the two targets and the curves of their RMS position errors

calculated by the JPDA, cheap JPDA, suboptimal JPDA, and depth-first JPDA algorithms are illus-
trated in Figures 8.7, 8.8, and 8.9. The time consumed by these algorithms and their false tracking
rates are shown in Table 8.1.
As can be seen from the simulation results, all the algorithms are capable of tracking two crossing

targets in clutter. Compared with its condensed versions, the JPDA had higher tracking accuracy
and lower false tracking rates; but its real-time performance was worse.
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All three simplified algorithms have proved appropriate for engineering implementations.
Among them, the depth-first JPDA performed best in terms of tracking accuracy and false tracking
rate, and its real-time behavior was desirable. The suboptimal JPDA ranked high in tracking accur-
acy and low in error tracking rate, but poor in real-time performance. The cheap JPDA came out top
in real-time performance, but at the expense of its highest false tracking rate.

x/m

y/
m

3.5

3

2.5

2

1.5

1

0.5
0–3 –2.5 –2 –1.5 –1 –0.5

×104

×104

Target’s real trajectory

Figure 8.7 Real trajectories of the targets

Cheap JPDA
Suboptimal JPDA

Depth-first JPDA

JPDA

600

10 20 30

t (s)

40 50 60 70

10 20 30

t (s)

40 50 60 70

400

200

0

500

400

300

200

100

0

R
M

S 
(m

)
R

M
S 

(m
)

Cheap JPDA
Suboptimal JPDA
Depth-first JPDA

JPDA

Figure 8.8 RMS position errors of target 1 on axis x (top) and y (bottom)

166 Radar Data Processing with Applications



The various performances of the three reduced forms in this simulation can be attributed to the
following factors.

• The cheap JPDA is direct and simple because it incorporates the essential properties of the JPDA
in association probability computation, but the sum of these probabilities calculated is not 1 for
any track, as a result of which empirical probabilities tend to overweight incorrect echoes.

• The suboptimal JPDA, by accounting for partial joint events, yields more reasonable association
probabilities and higher tracking accuracy, which only compounds its complexity.

• Thesimplified formofdepth-first JPDAevaluatesassociationprobabilitiesdirectly, and thusproduces
similar tracking results to those of the JPDA inmedium-target-density cases, andwith high speed, but
its complex equations incur, in the presence of dense targets, extra computational load on the system.

8.6 Summary

This chapter focuses on Bayesian data association algorithms. Compared with batch processing
approaches such as maximum-likelihood-based ones, they find wider applications in engineering
and serve as a major source of in-depth research. Bayesian algorithms fall into two broad categories.
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Table 8.1 Time consumed and false tracking rate

Algorithm Time consumed per step (s) False tracking rate (%)

JPDA 0.2206 3
Cheap JPDA 0.1406 10
Suboptimal JPDA 0.1540 6
Depth-first JPDA 0.1427 6
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One is the optimal approach which processes only the latest set of validated measurements, mainly
including the NNSF, PNNF, PDA, IPDA, and JPDA algorithms. These algorithms have proved
convenient for engineering applications, with their reasonably low computing and memory
requirements.
Second is the optimal Bayesian approach, which deals with all combinations of measurements

from the initial right through to the current time and evaluates probabilities for each sequence of
measurements. Major members in this category are the optimal Bayesian filter (OBF) and multiple
hypothesis filter (MHT). These approaches demand more calculation and memory but can be some-
what simplified for practical uses. The optimal approaches are not covered in this chapter.
Based on the analysis of the suboptimal Bayesian algorithms under discussion, this chapter

makes a comparative analysis of the performance of the JPDA and its three simplified varieties
in a simulation experiment before concluding with a summary.
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9
Tracking Maneuvering Targets

9.1 Introduction

In Chapters 3 and 4 we discussed some basic filtering methods of radar data processing, usually
based on the assumption that the target of interest is in uniform or uniformly accelerated motion.
If the radar moves faster than the target, say a ground or sea-surface target being tracked by an air-
borne radar, then the target can be viewed as being in approximately uniform or uniformly acceler-
ated motion, or even static. However, the target tends to take turns, evasions, or other special attack
postures due to its increasing maneuverability and the operator’s manipulations at any time in the
process of moving, so it is unlikely to always move with constant speed or uniform acceleration. To
put it differently, maneuvers are likely to occur for a target in motion. Therefore, this chapter focuses
on tracking maneuvering targets, or rather, the problem of uncertainty in establishing target model
parameters in the filtering process. The uncertainty of target model parameters and measurement
origins discussed in previous chapters constitute the two fundamental problems of target tracking.
The approaches to tracking maneuvering targets fall into two broad categories: tracking algo-

rithms with maneuver detection and adaptive tracking algorithms without maneuver detection.
The former category can be further divided into two types according to the parameters adjusted
after the detection of maneuvers.

1. Adjusting the gain of the filter. The specific procedure is as follows: restart the gain sequence of
the filter, enlarge the variance of the input noise, and augment the covariance matrix for the target
state estimate. The adjustable white noise algorithm [16, 39, 205–208] in Section 9.2.1 falls into
this type. This approach adjusts the gain of a filter by adjusting the variance of the noise input.

2. Adjusting the structure of the filter. The specific procedure is as follows: switch among different
tracking filters and increase the number of dimensions of the target state. The variable-dimension
filtering (VDF) approach [16, 37, 39, 209] in Section 9.2.2 is to increase the current dimension-
ality of the state of a target on confirming that the target is maneuvering, and to restore it to its
original model on confirming that the maneuver is finished.
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The latter category need not detect maneuvers of a target, but corrects the gain of the filter
while undertaking the estimation of the target.
Section 9.3.1 offers an adaptive tracking algorithm for maneuvering targets on the basis of the

input estimation algorithm, a modified input estimation algorithm [210]. This algorithm combines
Bayes’ and Fisher’s methods to realize the adaptive tracking for maneuvering targets.
The Singer model algorithm [16, 39, 211] in Section 9.3.2 holds that the noise process is

colored, and that the target’s acceleration should be modeled as the zero-mean random process
with exponential autocorrelation.
The current model [40, 212, 213] of Section 9.3.3 estimates the mean value of the maneuvering

acceleration while estimating the state of the target, corrects the distribution of acceleration
through estimation in real time, and feeds back these values in the form of variance to the next-time
gain of filters.
Section 9.3.4 presents the jerk model algorithm, which, similarly to the Singer algorithm,

models the process noise as the color noise, and needs to find the derivative of the acceleration
in real time, that is, to estimate the acceleration.
In the multiple model algorithm [16, 40, 214–219] of Section 9.3.5, a number of different noise

levels can be assumed. The tracker may calculate the probability for each level, and then compute
the weight sum of these probabilities. Or, the tracker may switch between levels according to a
particular criterion (e.g., according to the probability of the noise level).
Section 9.3.6 discusses the interactive multiple model algorithm, a target tracking approach

frequently used in recent years. Finally, a simulation analysis of the performance of the various
algorithms in tracking is presented, pinpointing some common problems of these algorithms
together with the solutions.

9.2 Tracking Algorithm with Maneuver Detection

The maneuver detection of the target is by nature a decision mechanism, in which detection is based
on the measurements of the target and the theory of mathematical statistics. The basic idea in the
tracking algorithm with maneuver detection is that maneuvers lead to the degradation of the original
model, so that the target state estimate deviates from what it is in reality and the filtering residual
properties change. Therefore, the estimation as to whether the maneuver has started or whether the
maneuver is over can be made by observing the residual changes of the target’s motion. Then, the
tracking algorithm should be adjusted accordingly (i.e., noise variance adjustment or model
transformation should be undertaken so that the target can be better tracked). As shown in
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Figure 9.1 Schematic diagram of maneuvering target tracking
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Figure 9.1 – a schematic diagram of the framework of this type of tracking algorithm for maneu-
vering targets – the measurement Z and the state prediction HX̂ k + 1jkð Þ first constitute the innov-
ation vector v. Then, the maneuvering detection is undertaken by observing the changes in v and,
according to a particular criterion or logic, the filtering gain or structure of the filter is adjusted so
that the maneuvering target can be tracked [220–222].

9.2.1 White Noise Model with Adjustable Level

The concept of the white noise model with adjustable level was propounded by Jazwinski in
1970 [223], and applied to the tracking of maneuvering targets in 1977 by Chang et al. [209].
This method detects the start and end of a maneuver by observing the changes in innovation of
a target and adjusting the filter accordingly.
For convenience, the equation of motion for maneuvering targets will be repeated below:

X k + 1ð Þ=F kð ÞX kð Þ+G kð Þu kð Þ+V kð Þ ð9:1Þ

where the process noise V(k) is a zero-mean, white, random sequence with covariance matrix Q(k),
but the input u(k) is unknown. This input is the crux of the solution to the problem of tracking
maneuvering targets.
Suppose that the dynamic equation for the target can be represented as in (9.1), then its corres-

ponding measurement equation is

Z k + 1ð Þ =H k + 1ð ÞX k + 1ð Þ+W k + 1ð Þ ð9:2Þ

This method assumes that a maneuver manifests itself as a large innovation, and that the innov-
ation will increase with the maneuver. A simple detection procedure for maneuvering targets is
based on the normalized innovations squared,

εv kð Þ= v0 kð ÞS−1 kð Þv kð Þ ð9:3Þ

where the filtering residual (innovation) is

v kð Þ =Z kð Þ− Ẑ kjk−1ð Þ ð9:4Þ

with εν(k) a χ2-distributed random variable with nz degrees of freedom, in which nz represents
the number of dimensions of the measurement. Supposing that εmax is a threshold, and α the sig-
nificance level, then a threshold value can be established such that, based on the non-maneuvering
target model,

Pr εv kð Þ ≤ εmaxf g = 1−α ð9:5Þ

When the threshold is exceeded, the target is considered to begin to maneuver, and the covariance
Q k−1ð Þ of the process noise should be scaled up until εv(k) is lessened to the threshold εmax. When
εv kð Þ> εmax, the maneuver is considered over, and the original filtering model will be restored.
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Alternatively, by multiplying the matrix of process noise Q k−1ð Þ by the scale factor ϕ > 1, the
innovation covariance becomes

S kð Þ =H kð ÞP kjk−1ð ÞH0 kð Þ +R kð Þ
=H kð Þ F k−1ð ÞP k−1 k−1jð ÞF0 k−1ð Þ +ϕQ k−1ð Þ½ �H0 kð Þ +R kð Þ ð9:6Þ

In order to adjust the square of the normalized innovation, the noise can be adjusted by employing
a sliding-window time average or a fading-memory likelihood function in place of the single-time
test statistic.

9.2.2 Variable-Dimension Filtering Approach

The VDF approach was proposed by Bar-Shalom and Birmiwal in 1982 [37]. It does not rely on an
a priori assumption about target maneuvers. In this approach, the maneuver of a target is regarded
as a change inherent in its dynamics rather than modeled as noise. In the absence of maneuvers,
the tracking filter operates in its original model. Once a maneuver is detected, the filter will use
a different, higher-dimension state measurement; new state components are added.
Two models are employed here: a constant-velocity model in the absence of maneuvers and an

approximately constant-acceleration model for maneuvering targets. In the former model, the state
component for planar motion is

X = x _x y _y½ �0 ð9:7Þ

In the latter model, the state component is

Xm = x _x y _y €x €y½ �0 ð9:8Þ

In the case of the constant-velocity model, a maneuver occurs as follows. Denote by ρ(k) the
fading-memory average of the filtering innovation εν(k),

ρ kð Þ = μρ k−1ð Þ + εv kð Þ ð9:9Þ

where μ is the discount factor (0 < μ< 1), μ= 1−1=s, s is the length of the sliding window (used to
detect the existence of a maneuver), and εv(k) is the normalized innovation squared in (9.3).
The hypothesis that a maneuver is happening is accepted when ρ(k) exceeds the threshold set in

(9.5), and at this moment the estimator switches from the non-maneuvering to the maneuvering
model. Otherwise, the estimated accelerations are compared with their standard deviations. If they
are not statistically significant, the maneuver hypothesis is rejected, at which point the estimator
switches from the maneuvering to the non-maneuvering model.
The test statistic for the significance of the acceleration estimate is

δa kð Þ= â0 k kjð Þ Pm
a k kjð Þ� �−1

â k kjð Þ ð9:10Þ

where â is the estimate of the acceleration component and Pm
a is the corresponding block from the

covariance matrix of the maneuvering model. When the sum over a sliding window with length p,
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ρa kð Þ=
Xk

j= k−p + 1

δa jð Þ ð9:11Þ

falls below the threshold, the acceleration is considered insignificant.
When the acceleration suddenly declines to 0 (i.e., when the maneuver ends abruptly), large

innovations can be generated in the maneuvering model. This can be alleviated by allowing the
estimator to switch to a lower-order level model when the innovations of the maneuvering model
exceed 95% of the confidence region.
When a maneuver is detected at time k, the filter assumes that the target started to move with

a constant acceleration at time k−s−1, where s is the length of the effective sliding window,
and then corrects the state estimate appropriately for time k−s. First, the estimate at time k−s
for the acceleration is

X̂
m
4 + i k−sjk−sð Þ = 2

T2
zi k−sð Þ− ẑi k−sjk−s−1ð Þ½ �, i= 1,2 ð9:12Þ

The position component of the estimate at time k−s is taken as its corresponding measurement,

X̂
m
2i−1 k−sjk−sð Þ = zi k−sð Þ, i = 1,2 ð9:13Þ

while the velocity component is corrected with the acceleration estimate,

X̂
m
2i k−sjk−sð Þ = X̂2i k−sjk−s−1ð Þ +TX̂m

4 + i k−sjk−sð Þ, i = 1,2 ð9:14Þ

The covariance matrix corresponding to the corrected state estimate, whose derivation can be
found in Ref. [38], is Pm k−s k−sjð Þ and is expressed as

Pm
11 k−sjk−sð Þ=R11, Pm

12 k−sjk−sð Þ = 2R11=T ,Pm
15 k−sjk−sð Þ= 2R11=T2

Pm
22 k−sjk−sð Þ= 4=T2ð Þ∗ R11 +P11ð Þ+P22 + 4P12=T

Pm
25 k−sjk−sð Þ= 4=T3ð Þ∗ R11 +P11ð Þ+ 2=Tð ÞP22 + 6=T2ð ÞP12

Pm
33 k−sjk−sð Þ=R22,Pm

34 k−sjk−sð Þ = 2R22=T ,Pm
36 k−sjk−sð Þ= 2R22=T2

Pm
44 k−sjk−sð Þ= 4=T2ð Þ∗ R22 +P33ð Þ+P44 + 4P34=T

Pm
46 k−sjk−sð Þ= 4=T3ð Þ∗ R22 +P33ð Þ+ 2=Tð ÞP44 + 6=T2ð ÞP34

Pm
55 k−sjk−sð Þ= 4=T4ð Þ∗ R11 +P11 + 2TP12 + T2P22ð Þ

Pm
66 k−sjk−sð Þ= 4=T4ð Þ∗ R22 +P33 + 2TP34 + T2P44ð Þ

Pm
13 =P

m
14 =P

m
16 =P

m
23 =P

m
24 =P

m
26 =P

m
35 =P

m
45 =P

m
56 = 0

Pm
ij =P

m
ji , i, j= 1,2,…,6

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

ð9:15Þ

When a maneuver is detected, the state model of the target can be changed by bringing in an
additional state component (i.e., the acceleration of the target). It can be seen from the above that
the VDF detects maneuvers by a χ2 test based on the innovation quantity of a fading memory.
In the absence of maneuvers, it operates in the constant-velocity (CV) model. If the maneuver
of a target is detected at time k, it assumes that the maneuver took place at time k−s−1, and starts
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up the constant-acceleration (CA) model at time k−s. Then this algorithm modifies the previous
state estimates by using the succeeding measurements, and expands the target state. When the target
is detected as having switched from the maneuvering to the non-maneuvering state, the algorithm
does not remodify the preceding state estimates gained from the CA model. The reason is that the
tracking performance of the algorithm decreases slightly when tracking non-maneuvering targets
based on the CA model.
Another important approach to maneuvering target tracking and detection is the input estimation

algorithm proposed in 1979 by Chan et al. [16, 40, 224]. This method does not rely on prior
knowledge about the maneuverability of the target of interest. Instead, it treats the acceleration
of a maneuver as an unknown deterministic input. The estimate of this acceleration is obtained
by means of the least-squares method from the innovation, and is used to update the state of
the target.

9.3 Adaptive Tracking Algorithm

9.3.1 Modified-Input Estimation Algorithm

Let the state equation of the discrete-time system be

X k + 1ð Þ=F kð ÞX kð Þ+G kð Þu kð Þ+Γ kð Þv kð Þ ð9:16Þ

where F(k) is the state transition matrix, X(k) is the state vector, G(k) is the input control matrix,
u(k) is the unknown input of the target maneuvering model, Γ(k) is the matrix of the process noise
distribution, and v(k) is the process noise sequence, which is zero-mean, white, Gaussian and
satisfies

E v kð Þv0 jð Þ½ �=Q kð Þδkj ð9:17Þ

In other words, the process noises at different moments are mutually independent statistically.
Here, δkj is the Kronecker delta function. When the state vector is X kð Þ = x _x y _y½ �0 or
X kð Þ = x _x y _y z _z½ �0, the unknown input of the corresponding target maneuvering model is

u kð Þ= ax ay
� �0

or u kð Þ = ax ay az
� �0

, while G(k) is, respectively,

G kð Þ = T2=2 T 0 0

0 0 T2=2 T

" #0
ð9:18Þ

or

G kð Þ =
T2=2 T 0 0 0 0

0 0 T2=2 T 0 0

0 0 0 0 T2=2 T

264
375
0

ð9:19Þ

By adding the unknown input vector u(k) to the state vector X(k), the state equation of the
maneuvering target given by (9.16) can be rewritten as the following non-maneuvering state
equation [210]:
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X k + 1ð Þ
u k + 1ð Þ

" #
=

F G

02 × 4 I

" #
X kð Þ
u kð Þ

" #
+

Γ
02 × 2

" #
v kð Þ ð9:20Þ

where I represents the 2 × 2 unit matrix, 02 × 4 the 2 × 4 all-zero matrix, and 02 × 2 the 2 × 2 all-zero
matrix; F, G, Γ are the abbreviations, respectively, of F(k), G(k), Γ(k).
Define

XAug k + 1ð Þ = X k + 1ð Þ
u k + 1ð Þ

" #
ð9:21Þ

FAug kð Þ= F G

02 × 4 I

" #
ð9:22Þ

ΓAug kð Þ= Γ
02 × 2

" #
ð9:23Þ

then the augmented state equation is

XAug k + 1ð Þ=FAug kð ÞXAug kð Þ+ΓAug kð Þv kð Þ ð9:24Þ

the measurement equation of the discrete-time system is

Z k + 1ð Þ =H k + 1ð ÞX k + 1ð Þ+W k + 1ð Þ
=H k + 1ð Þ F kð ÞX kð Þ +G kð Þu kð Þ+Γ kð Þv kð Þ½ �+W k + 1ð Þ ð9:25Þ

where W k + 1ð Þ is the zero-mean, white, Gaussian measurement noise sequence which satisfies
E W kð ÞW 0 jð Þ½ �=R kð Þδkj and is uncorrelated with the process noise sequence.
It follows from (9.25) that

Z k + 1ð Þ= HF HG½ � X kð Þ
u kð Þ

" #
+HΓv kð Þ +W k + 1ð Þ ð9:26Þ

For the sake of simplicity, H k + 1ð Þ is abbreviated as H.
Define

ZAug kð Þ=Z k + 1ð Þ ð9:27Þ
HAug kð Þ= HF HG½ � ð9:28Þ

WAug kð Þ=HΓv kð Þ+W k + 1ð Þ ð9:29Þ

Then (9.26) yields the augmented measurement equation

ZAug kð Þ =HAug kð ÞXAug kð Þ +WAug kð Þ ð9:30Þ

and combining (9.24) and (9.30) gives the modified-input estimation filtering algorithm.
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The one-step prediction of the state is

X̂Aug k + 1 kjð Þ=FAug kð ÞX̂Aug kjkð Þ ð9:31Þ

The one-step prediction of the covariance is

PAug k + 1 kjð Þ=FAug kð ÞPAug k kjð ÞF0
Aug kð Þ+ΓAug kð ÞQ kð ÞΓ0

Aug kð Þ ð9:32Þ

The innovation covariance is

SAug k + 1ð Þ =HAug k + 1ð ÞPAug k + 1jkð ÞH0
Aug k + 1ð Þ +RAug k + 1ð Þ ð9:33Þ

where

RAug k + 1ð Þ=E WAug k + 1ð ÞW 0
Aug k + 1ð Þ

h i
=H k + 1ð ÞΓ kð ÞQ kð ÞH0 k + 1ð ÞΓ0 kð Þ+R k + 1ð Þ

ð9:34Þ

The gain is

KAug k + 1ð Þ=PAug k + 1jkð ÞH0
Aug k + 1ð ÞS−1

Aug k + 1ð Þ ð9:35Þ

The measurement prediction is

ẐAug k + 1jkð Þ =HAug k + 1ð ÞX̂Aug k + 1jkð Þ ð9:36Þ

The update equation of the state is

X̂Aug k + 1jk + 1ð Þ= X̂Aug k + 1jkð Þ +KAug k + 1ð Þ ZAug k + 1ð Þ− ẐAug k + 1jkð Þ� � ð9:37Þ

The update equation of the covariance is

PAug k + 1jk + 1ð Þ =PAug k + 1jkð Þ−PAug k + 1jkð Þ
=H k + 1ð ÞΓ kð ÞQ kð ÞH0 k + 1ð ÞΓ0 kð Þ +R k + 1ð Þ

ð9:38Þ

The modified-input estimation algorithm combines the Bayesian method with Fisher’s method,
and regards the acceleration of a maneuvering target as an unknown input vector which is then
added to the state equation, and tracks the target when the state vector is augmented. During the
process of tracking, it estimates the acceleration of the target while estimating the original target
state vector. This algorithm requires no maneuvering detection of the target and can be adapted
to two working modes: maneuvering and quiescent, thereby realizing the adaptive tracking of
the maneuvering target.

9.3.2 Singer Model Tracking Algorithm

The algorithm discussed in Section 9.2 models the maneuvering control as white noise. The white
noise model is a relatively idealistic model. In fact, a more practical maneuvering model is one
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which models the maneuvering control as correlated (colored) noise. The Singer model
approach regards the maneuvering model as a model of correlated noise, instead of a commonly
hypothesized white noise model [16]. The acceleration a(t) of the target is modeled as the
zero-mean random process with exponential autocorrelation, that is,

R τð Þ =E a tð Þa t + τð Þ½ �= σ2me−α τj j ð9:39Þ

where σ2m and α are indeterminate parameters determining the maneuverability of the target within
[t, t + τ]; σ2m is the acceleration variance of the target; and α is the reciprocal of the constant of the
maneuvering time (i.e., the maneuvering frequency).
The maneuvering acceleration variance σ2m is calculated through the PDF of the maneuvering

target. Usually, the distribution of the maneuvering acceleration is hypothesized as follows:
(1) the probability of the maneuvering acceleration being aM is pM, while that for the maneuvering
acceleration being −aM is also pM; (2) the probability of the acceleration being 0 is p0 (the non-
maneuvering probability); (3) the maneuvering acceleration is approximately subject to the
uniform distribution within the interval −aM, aM½ �. Based on the above hypotheses, the following
PDF can be obtained:

p að Þ = δ a−aMð Þ + δ a + aMð Þ½ �pM + δ að Þp0 + 1 a + aMð Þ−1 a−aMð Þ½ �1−p0−2pM
2aM

ð9:40Þ

where 1 �ð Þ is the unit step function and δ �ð Þ is the Dirac pulse function.
The variance corresponding to (9.17) can be derived from the PDF mentioned above:

σ2m =
a2M
3

1 + 4pM−p0ð Þ ð9:41Þ

The acceleration for maneuvering in the Singer model (α(t)) is hypothesized as a relevant random
process (colored noise), but is required to be an irrelevant white-noise process when applying
Kalman filtering. Therefore, α(t) needs to be “whitened” before applying Kalman filtering. The
transfer function of the whitening filter is H sð Þ= s+ α, and the Laplace transformation of the
function correlated with the output signals from the whitening filter is

Φw sð Þ =Φ sð ÞH sð ÞH −sð Þ = 2ασ2m ð9:42Þ
where

Φ sð Þ = σ2m
−2α

s + αð Þ s−αð Þ ð9:43Þ

is the Laplace transformation corresponding to the time-correlation function R τð Þ = σ2me−α τj j.
Through a whitening filter, the maneuvering acceleration α(t) is output as a white-noise signal,

the correlation function of which is 2ασ2mδ τð Þ, that is,

H sð Þ = s + α=
eV sð Þ
A sð Þ

) sA sð Þ + αA sð Þ= eV sð Þ
) sA sð Þ = −αA sð Þ+ eV sð Þ
) _a tð Þ = −αa tð Þ +ev tð Þ

ð9:44Þ
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Equation (9.44) is the relational expression in which the maneuvering acceleration α(t) is
expressed in the form of white noise. It is a first-order time-correlated model with white noise
as its input (this dynamic model is the first-order Markov process). In the equation, ṽ(t) is Gaussian
white noise with zero mean and variance 2ασ2m, that is,

E ev tð Þev τð Þ½ �= 2ασ2mδ t−τð Þ ð9:45Þ

Let the state vector about the coordinate x be X = x _x €x½ �0, where €x = a. By using the state equa-
tion, the first-order time-correlated model above can be expressed as

_X tð Þ =AX tð Þ+ eV tð Þ ð9:46Þ

This is the well-known Singer model, in which the system matrix is

A=

0 1 0

0 0 1

0 0 −α

264
375 ð9:47Þ

and

eV = 0 0 ev½ �0 ð9:48Þ

is the process noise. Substituting A and eV into (9.46), we have

_X tð Þ=
_x

€x

_a

264
375=AX tð Þ+ eV tð Þ =

0 1 0

0 0 1

0 0 −α

264
375 x

_x

€x

264
375+

0

0ev
264

375 ð9:49Þ

For the sample interval T, the discrete-time dynamic equation corresponding to (9.46) is

X k + 1ð Þ=F kð ÞX kð Þ+V kð Þ ð9:50Þ

where

F= eAT =

1 T αT −1 + e−αTð Þ=α2
0 1 1−e−αTð Þ=α
0 0 e−αT

264
375 ð9:51Þ

whose discrete-time process noise V has covariance

Q= 2ασ2m

q11 q12 q13

q21 q22 q23

q31 q32 q33

264
375 ð9:52Þ
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which assumes αT << 1, that is, the sampling interval T is assumed much less than the time constant
of maneuvering autocorrelation 1/α. When the target tracking is done by a radar, this assumption
(αT << 1) is considered correct if the updating rate is high enough. Conversely, when the tracking is
done by a long-distance sonar (active or passive), the opposite is correct (i.e., αT >> 1). The meas-
urement equation is similar to the Kalman filtering equation and the white-noise model, except for
the measurement matrix H. Here, H = 1 0 0½ � and the accurate expression of Q (a symmetrical
matrix) is

q11 =
1
2α5

1−e−2αT + 2αT +
2α3T3

3
−2α2T2−4αTe−αT

� �
q12 =

1
2α4

e−2αT + 1−2e−αT + 2αTe−αT −2αT + α2T2
� �

q13 =
1
2α3

1−e−2αT −2αTe−αT
� �

q22 =
1
2α3

4e−αT −3−e−2αT + 2αT
� �

q23 =
1
2α2

e−2αT + 1−2e−αT
� �

q33 =
1
2α

1−e−2αT
� �

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

ð9:53Þ

Note that in matrix A of (9.46), when α= 0,

A=

0 1 0

0 0 1

0 0 0

264
375 ð9:54Þ

the state transition matrix is

F=

1 T
1
2
T2

0 1 T

0 0 1

2664
3775 ð9:55Þ

and the covariance matrix of the process noise is

Q= q

T5=20 T4=8 T3=6

T4=8 T3=3 T2=2

T3=6 T2=2 T

264
375 ð9:56Þ

which is a model of uniformly accelerated rectilinear motion. In the equation, a smaller value can
be taken for q (e.g., q= 0:05).
If A is assigned as

A=
0 1

0 0

" #
ð9:57Þ
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then the state transition matrix is

F= eAT =
1 T

0 1

" #
ð9:58Þ

and the covariance matrix of the process noise is

Q= q
T3=3 T2=2

T2=2 T

" #
ð9:59Þ

which is a model of uniformly accelerated rectilinear motion. Hence, it can be found that the model
of uniformly accelerated rectilinear motion and that of uniform rectilinear motion are two excep-
tions of the Singer model.
Actually, the Singer model algorithm laid a theoretical foundation for the subsequent maneuver-

ing target model algorithms. It is clear that the Singer model algorithm is by nature an a priori model
algorithm. But it is unrealistic to use an a priori maneuvering model to describe target maneuvers
effectively. In addition, its hypothesis that target maneuvering acceleration in the interval
−aM, aM½ � is approximately subject to a uniform distribution is inappropriate, for it keeps the mean
value of the acceleration always at zero.

9.3.3 Current Statistical Model Algorithm

The current statistical model algorithmwas proposed by Zhou et al. [39]. This algorithm is by nature
a Singer model with adaptive, non-zero-mean acceleration. Unlike the Singer model algorithm,
which has the hypothesis of an approximate uniform distribution, this algorithm describes the stat-
istical features of maneuvering acceleration by use of the modified Rayleigh distribution. The merit
of its hypothesized distribution is that the distribution changes with the mean, while the variance
depends on the mean. Therefore, the algorithm, while estimating the target state, can identify
the mean of the maneuvering acceleration, so as to modify the distribution of acceleration in real
time, and feed back through the variance to the next-moment filtering gain. Thus, closed-loop
adaptive tracking is realized.
Suppose that the state equation for the target motion is

X k + 1ð Þ=F kð ÞX kð Þ+G kð Þ�a +V kð Þ ð9:60Þ

where F(k) is the same as described in (9.51) and G(k) is the input control matrix,

G kð Þ =

1
α

−T +
αT2

2
+
1−e−αT

α

� �
T −

1−e−αT

α

1−e−αT

2666664

3777775 ð9:61Þ
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V(k) is the discrete-time white noise sequence, and

Q kð Þ =E V kð ÞV0 kð Þ½ �= 2ασ2a
q11 q12 q13

q12 q22 q23

q13 q23 q33

264
375 ð9:62Þ

where the expression of Q(k) can be found in the Singer model (see Section 9.3.2), α is an autocor-
relation time constant, σ2a is the variance of maneuvering acceleration, and ā(k) is the mean of man-
euvering acceleration, that is,

σ2a =
4−π
π

amax−�a kð Þ½ �2 ð9:63Þ

�a kð Þ = €̂x kjk−1ð Þ ð9:64Þ

The one-step prediction equation of this algorithm is

X̂ kjk−1ð Þ =F kð ÞX̂ k−1jk−1ð Þ +G kð Þ�a kð Þ ð9:65Þ

where the measurement matrix is

H = 1 0 0½ � ð9:66Þ

The current statistical model algorithm is capable of adjusting the process noise adaptively
according to the estimate of the acceleration for the last moment. It is concerned more with the cur-
rent statistical characteristics of the maneuvering target. When the target is maneuvering at an
acceleration, its acceleration at the next moment varies within a limited range, only in some neigh-
borhood of the current acceleration. Therefore, compared with the Singer model algorithm, this
algorithm can better reflect the changes in the maneuvering range and intensity of the target.
In view of the fact that it has difficulty selecting the autocorrelation time constant, the current

model algorithm is modified with a multiple-model approach (see Ref. [220]), resulting in the modi-
fied current model algorithm.
The modified current model takes a comprehensive view of the impact of the autocorrelation time

constants on the tracking effect in different maneuvering situations, sets models respectively for
several typical autocorrelation time constants α which are likely to appear in real processes, and
establishes a filter for each model. Then it gets, according to their likelihood functions, the prob-
ability that each model is correct. These probabilities are used to weight the updated state and
covariance values derived from each model, the results of which are sent to each filter for circula-
tion. Finally, the combination estimate X̂ kjkð Þ and covariance P kjkð Þ for r models are obtained, the
expressions of which are, respectively,

X̂ kjkð Þ =
Xr

j= 1

μj kð ÞX̂j kjkð Þ ð9:67Þ

P kjkð Þ=
Xr

j= 1

μj kð ÞPj kjkð Þ+
Xr

j= 1

μj kð Þ X̂j kjkð Þ− X̂ k kjð Þ� �
X̂j kjkð Þ− X̂ kjkð Þ� �0 ð9:68Þ
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where μj(k) indicates the posterior probability that model j is correct at time k,

μj kð Þ = λj kð Þμj 0ð ÞXr

l= 1

λl kð Þμl 0ð Þ
ð9:69Þ

where μj(0) is the a priori probability that model j is correct at time k and λj(k) is the likelihood
function of the measurement.

9.3.4 Jerk Model Tracking Algorithm

The jerk model algorithm was proposed by Mehrotra and Mahapatra in 1997 [225], and holds that
the main cause of the poor performance of maneuvering model algorithms in tracking complex man-
euvering targets is that the state vector has insufficient derivative orders. Therefore, this algorithm
adds one more dimension to the model of acceleration, in other words, it finds derivatives from the
acceleration in real time (estimates the jerk). Hence, we can have a more accurate estimation of the
acceleration so as to realize the tracking of maneuvering targets.
Similar to the Singer model algorithm, the exponential autocorrelation function of the target’s

jerk j(t) is

Rj τð Þ=E j tð Þj t + τð Þ½ �= σ2j e−α τj j ð9:70Þ

where σ2j is the jerk variance of the target and α is an autocorrelation time constant. Conduct the
Laplace transformation of Rj(τ),

R sð Þ=Laplace Rj τð Þ� 	
=

−2ασ2j
s−αð Þ s+ αð Þ =H sð ÞH −sð ÞV sð Þ ð9:71Þ

where

H sð Þ = 1= s+ αð Þ ð9:72Þ

V sð Þ= 2ασ2j ð9:73Þ

The differential equation of (9.72) is

_j tð Þ= −αj tð Þ + v tð Þ ð9:74Þ

The inverse Laplace transform of the autocorrelation function of white noise v(t) (i.e., that
of (9.73)) is

rv τð Þ = 2ασ2j δ τð Þ ð9:75Þ
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Let the state vector about the coordinate x be

X = x _x €x x
...½ �0 ð9:76Þ

By use of the state equation, the first-order time-correlated model can be expressed as

_X tð Þ=AX tð Þ +Bv tð Þ ð9:77Þ

where

A=

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 −α

266664
377775 ð9:78Þ

is the system matrix.

B= 0 0 0 1½ �0 ð9:79Þ

is the noise distribution matrix.
For sample interval T, the discrete-time dynamic equation corresponding to (9.77) is

X k + 1ð Þ=F kð ÞX kð Þ+V kð Þ ð9:80Þ

where

F kð Þ =

1 T T2=2 p1

0 1 T q1

0 0 1 r1

0 0 0 s1

266664
377775 ð9:81Þ

and

p1 = 2−2αT + α2T2−2e−αTð Þ= 2α3ð Þ
q1 = e−αT −1 + αTð Þ=α2
r1 = 1−e−αTð Þ=α
s1 = e−αT

8>>>><>>>>: ð9:82Þ

The covariance of the process noise is

Q kð Þ= 2ασ2j

q11 q12 q13 q14

q21 q22 q23 q24

q31 q32 q33 q34

q41 q42 q43 q44

266664
377775 ð9:83Þ
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where the exact expression of the symmetrical matrix Q(k) is

q11 =
1
2α7

α5T5

10
−
α4T4

2
+
4α3T3

3
−2α2T2 + 2αT −3 + 4e−αT + 2α2T2e−αT −e−2αT

� �
q12 =

1
2α6

1−2αT + 2α2T2−α3T3 +
α4T4

4
+ e−2αT + 2αT −2e−αT −α2T2e−αT

� �
q13 =

1
2α5

2αT −α2T2−
α3T3

3
−3−2e−2αT + 4e−αT + α2T2e−αT

� �
q14 =

1
2α4

1 + e−2αT −2e−αT −α2T2e−αT

 �

q22 =
1
2α5

1−e−2αT +
2α3T3

3
+ 2αT −2α2T2−4αTe−αT

� �
q23 =

1
2α4

1 + α2T2−2αT + 2αTe−αT + e−2αT −2e−αT

 �

q24 =
1
2α3

1−e−2αT −2αTe−2αT

 �

q33 =
1
2α3

4e−αT −e−2αT + 2αT −3

 �

q34 =
1
2α2

1−2e−αT + e−2αT

 �

q44 =
1
2α

1−e−2αT

 �

ð9:84Þ

9.3.5 Multiple Model Algorithm

When maneuvering target tracking is done by use of the adaptive filtering algorithm based on a
single model, the tracking results tend to be poor because the model usually needs prior setting,
and thus cannot match the target’s maneuvering motion very well. Nowadays, as a result of targets’
increasing maneuverability and great variations in the structures and parameters of targets’ motion
models, the single-model algorithm has difficulty in accurately identifying the maneuver parameters
in time, which leads to inaccuracy of the model and degradation of the algorithm’s performance.
In response to these limits of the single model, the multiple-model adaptive tracking algorithm is

brought into being on the basis of the multiple-model adaptive control approach to automatic con-
trol. Hence, maneuvering target tracking is regarded as a question of mixed estimation. In the adjust-
able white-noise model of Section 9.2.1, there is only one level for the noise, so the noise covariance
increases when a maneuver happens and the model reverts to its original form when the maneuver
ends. In contrast, the multiple model algorithm is another modeling approach with unknown input
as the white noise. It assumes two or more process noise levels and establishes a filter for each
model. The filter switches between them according to a particular rule, or calculates the probability
of being correct for each model based on its likelihood function, and then obtains the weighted sum
of these probabilistic data.
Denote by Mj the event that model j with prior probability Pr Mj

� 	
= μj 0ð Þ j= 1,2,…,rð Þ is

correct. The likelihood function of the measurements up to time k under the assumption of
model j is

λj kð Þ= Pr ZkjMj

� �
=
Yk
i = 1

p vj ið Þ
� � ð9:85Þ
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in which the PDF of the innovation from filter j under the Gaussian hypothesis is

p vj kð Þ� �
= j2πSj kð Þj−1=2 exp −1

�
2v

0
j kð ÞS−1

j ið Þvj kð Þ
h i

ð9:86Þ

The use of Bayes’ rule yields the posterior probability for model j being correct at time k as

μj kð Þ≜Pr MjjZk

 �

=
Pr ZkjMj


 �
Pr Mj


 �
Pr Zk

 � =

Pr ZkjMj


 �
Pr Mj


 �
Xr

l= 1

Pr ZkjMl


 �
Pr Mlð Þ

=
λj kð Þμj 0ð ÞXr

l= 1

λl kð Þμl 0ð Þ
ð9:87Þ

The state estimate of the target is a weighted average of the model-conditioned estimates with the
above probabilistic data as weights,

E X kð Þ Zk
� 	

=
Xr

j= 1

E X kð Þ Mj,Zk
� 	

Pr Mj Zk
� 	 ð9:88Þ

At last we have the combined estimate X̂ kjkð Þ and the covariance P kjkð Þ,

X̂ kjkð Þ =
Xr

j= 1

μj kð ÞX̂j kjkð Þ ð9:89Þ

P kjkð Þ=
Xr

j= 1

μj kð ÞPj kjkð Þ+
Xr

j= 1

μj kð Þ X̂j kjkð Þ− X̂ kjkð Þ� �
X̂j kjkð Þ− X̂ kjkð Þ� �0 ð9:90Þ

The block diagram of this algorithm is shown in Figure 9.2. In this algorithm, the filters work
in parallel, and the combined estimate is an MMSE estimate calculated probabilistically for
all the models. But in practice, it might be necessary to use the probability estimated from

System dynamic equation

System measurement
equation

Filter 1

Filter r

Model probability
calculation

X̂r, Pr

X̂ , P

X̂1, P1

Weighted average

Figure 9.2 Structure chart of multiple model algorithm

185Tracking Maneuvering Targets



the model with the highest μj(k) to eliminate the models with low probabilities, or to utilize some
other scheme.

9.3.6 Interacting Multiple Model Algorithm

From 1984 to 1989, Blom and Bar-Shalom, on the basis of the generalized pseudo-Bayesian algo-
rithm, proposed a structural adaptive algorithm with Markov transition probability, the interacting
multiple model (IMM) algorithm [16, 39, 226–231]. This algorithm, on the basis of the multiple
model algorithm, assumes that the transition between different models is subject to the finite
Markov chain of the given transition probability, and obtains the state estimate of the target by
accounting for the interaction between several models.
The IMM consists of several filters (with their corresponding models), a model probability

estimator, an interacting actuator (at the input end of the filter), and an estimate mixer (at the output
end of the filter). The models interact with one another to track the maneuver of a target. The IMM
algorithm of N models is illustrated in Figure 9.3.
In Figure 9.3, X̂ kjkð Þ is the state estimate based on N models, and X̂j kjkð Þ (j= 1,2,…,N) is the

state estimate of model j. Λ(k) is a model possibility vector, and u(k) is a model probability vector.

X̂j k−1jk−1ð Þ (j = 1,2,…,N) is the output of the jth filter at time k−1. X̂
oj
k−1jk−1ð Þ (j= 1,2,…,N)

is the result of the interaction of X̂j k−1jk−1ð Þ ( j = 1,2,…,N) and serves as the input of filter j at
time k. Z(k) is the measurement at time k.

Filter M1(k) Filter M2(k) Filter MN (k)

Model

probability

updating

State

estimation

mixing

Interacting

Xˆ 1(k ∣ k)

Xˆ 01(k – 1∣k – 1 )

Xˆ 1(k – 1∣k – 1 ) Xˆ 2(k – 1∣k – 1 ) Xˆ N(k – 1∣k – 1 )

u(k – 1∣k – 1 )

Xˆ 0N(k – 1∣k – 1 )

Xˆ 2(k ∣ k) Xˆ N(k ∣ k) Xˆ (k ∣ k)u(k )

Z(k )

Xˆ 02(k – 1∣k – 1 )

Figure 9.3 Diagram of interacting multiple model algorithm
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Suppose that the model probability switches under the Markov chain; the interacting actuator
employs the model probability and the model transition probability to calculate the interacting
estimate for each filter. At the beginning and end of the filtering cycle, each filter makes use of
the interacting estimate and measurement data to calculate a new estimate and the possibility of
the model. Then the probability, possibility, and transition probability of the model at the last
moment are used to calculate the new model probability. Hence, the general state can be calculated
through the new state estimate and its corresponding model probability. The recursive process of
the IMM algorithm with N models from time k−1 to k is described below.

9.3.6.1 Interacting State Estimates

Let the transition probability from model i to model j in Figure 9.3 be

Ptij =

Pt11 Pt12 � � � Pt1r

Pt21 Pt22 � � � Pt2r

..

. ..
. ..

. ..
.

Ptr1 Ptr2 � � � PtNN

2666664

3777775 ð9:91Þ

Let X̂j k−1jk−1ð Þ be the state estimate of filter j at time k−1,Pj k−1jk−1ð Þ its corresponding state
covariance matrix, and uk− 1 jð Þ the probability of model j at time k−1 (i, j= 1, 2,…,N). Then, the
input of r filters at time k after the interacting calculation is

X̂
oj
k−1jk−1ð Þ =

XN
i= 1

X̂i k−1jk−1ð Þuk−1jk−1 ijjð Þ ð9:92Þ

where

uk−1jk−1 ijjð Þ= 1
�Cj
Pt ij uk−1 ið Þ

�Cj =
XN
i= 1

Pt ij uk−1 ið Þ

8>>>><>>>>: ð9:93Þ

Poj k−1jk−1ð Þ=
XN
i= 1

Pi k−1jk−1ð Þ + X̂i k−1jk−1ð Þ��
− X̂oj k−1jk−1ð Þ� X̂i k−1jk−1ð Þ− X̂oj k−1jk−1ð Þ� �0o

uk−1jk−1 ijjð Þ
ð9:94Þ

9.3.6.2 Model Modification

By using the state vector X̂
oj
k−1jk−1ð Þ, its variance Poj k−1jk−1ð Þ, and observation Z(k) together

as the inputs into the jth model at time k, a calculation of these inputs through a standard Kalman
filter yields the output of each model, X̂j kjkð Þ, Pj kjkð Þ, j= 1,2,…,N.
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9.3.6.3 Calculation of Model Possibility

If the filtering residual of model j is v jk, and its corresponding covariance is Sj
k, then the possibility

of model j under Gaussian assumptions is

Λj
k =

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πSj

k

 q exp −
1
2

v jk

 �0

Sj
k


 �−1
v jk

� �
ð9:95Þ

where

v jk =Z kð Þ−H j kð ÞX̂j kjk−1ð Þ
Sj
k =H

j kð ÞPj kjk−1ð ÞH j kð Þ0 +R kð Þ

(
ð9:96Þ

9.3.6.4 Update of Model Probability

The probability update of model j is

uk jð Þ= 1
C
Λj
k
�Cj ð9:97Þ

where

C =
XN
i= 1

Λi
k
�Ci ð9:98Þ

9.3.6.5 Model Output

Let X̂ kjkð Þ, P kjkð Þ, respectively, be the interacting outputs at time k, then

X̂ kjkð Þ =
XN
i= 1

X̂i kjkð Þuk ið Þ ð9:99Þ

P kjkð Þ=
XN
i= 1

uk ið Þ Pi kjkð Þ+ X̂i kjkð Þ− X̂ kjkð Þ� �
X̂i kjkð Þ− X̂ kjkð Þ� �0n o

ð9:100Þ

The IMM algorithm is completed by means of this recursive process.
The features of the IMM algorithm include:

1. Its employment of measurement information is shown not only in the filtering, but also in the
model probability, whose variation is used to adjust the model in an adaptive way.

2. It is modularized. Therefore, the filtering modules can adopt various linear or nonlinear filtering
algorithms according to their different applications.

3. Its calculation efficiency is improved since its modules compute in parallel.
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The IMM estimation is usually considered the most effective hybrid estimation scheme, pos-
sessing efficiency of estimation and advantages in calculation. It has been successfully applied
to many tracking systems. However, as in the case of the multiple model algorithm, the perform-
ance of the IMM relies heavily on the model set it uses. This leads to a contradiction that is
difficult to reconcile (i.e., more models are needed to match the target’s motion in order to
improve the performance of state estimation). These additional models increase the computa-
tional load of the system greatly, and even degrade the performance of the trackers in many
cases. In addition, applying the IMM to less maneuverable or non-maneuvering targets leads
to a waste of resources.
All the methods discussed above are adaptive tracking algorithms without maneuver detection.

They are also called “tracking algorithms for maneuver identification.” Their advantage is that no
maneuver detection is required, so that there is no time delay for value estimation. Their disadvan-
tage is that a practical a priori hypothesis needs to be established for the maneuverability of the
target, but this hypothesis is hard to verify in practice.

9.4 Performance Comparison of Maneuvering
Target Tracking Algorithms

The various maneuvering target tracking algorithms discussed in the previous sections perform
differently in various environments since they are based on different principles. A few typical
environments for target maneuvering have been chosen below. These algorithms are put in the same
simulation environment, and a comprehensive comparison is made between them in terms of track-
ing accuracy, tracking lifetime, and instantaneity.

9.4.1 Simulation Environment and Parameter Setting

In this section, five typical environments for maneuvering targets are chosen.

Environment 1
Initial state of the target: X 0ð Þ = 120 000m, −426m=s, 2000m, 0m=s½ �0. Duration of the motion:
90 s. The time when the maneuver happens and the magnitude of the acceleration are shown in
Table 9.1.

Environment 2
Initial state of the target: X 0ð Þ= 47000m, −426m=s, 12 000m, 0m=s½ �0. Duration of the motion:
120 s. The time when the maneuver happens and the acceleration of the target are shown in
Table 9.2.

Table 9.1 Target maneuvers in environment 1

Time when the maneuver happens t = 31 t = 38 t = 49 t = 61 t = 65 t = 66 t = 81

Acceleration in the direction of X (m/s2) 5 −8 10 0 −10 −5 5
Acceleration in the direction of Y (m/s2) −10 18 −20 30 −8 0 −10
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Environment 3
In this simulation environment, a motion model is established to simulate the diving motion of an
aircraft with the kinematic equation retained and the kinetic equation simplified. The target’s motion
lasts for 100 s, its dipping height is 2500 m, dipping distance is 15 000 m, and the initial state of the
target is X 0ð Þ= 8000m, 191m=s, 6000m, 0m=s½ �0.

Environment 4
As in environment 3, a motion model is established to simulate the climbing movement of an air-
craft. The target’s motion lasts for 100 s, its climbing height is 400 m, climbing distance is 15 000 m,
and the initial state of the target is X 0ð Þ= 8000m, 110m=s, 6000m, 0m=s½ �0.
In the process of simulation, suppose that the radar sampling interval is T = 1 s, the range

measurement error is ρr = 100 m, and the angle measurement error is ρθ = 0:03 rad. The number
of simulations is N = 50. The parameters for the algorithms are set out as follows.

1. Adjustable white-noise model: length of detection sliding window l= 8, judgment threshold for
maneuver happening εmax = 5:07, primary process noise q0 = 0:005.

2. VDF algorithm: length of detection sliding window l= 8, judgment threshold of maneuver
happening εmax = 20:1, threshold of maneuver completion εmin = 13:4.

3. Input estimation algorithm: length of detection sliding window l= 8, judgment threshold of
maneuver happening εmax = 5:07.

4. IMM algorithm: there are three models adopted, each with quotient of process noise covariance
q1 = 10, q2 = 1, q3 = 0:1, a priori probability of the model μ0 = 1=3,1=3,1=3½ �, and transition
probability of the Markov model

Ptij =

0:8 0:15 0:05

0:3 0:4 0:3

0:05 0:15 0:8

264
375 ð9:101Þ

5. Current model algorithm: autocorrelation time constant α= 1=20, largest acceleration
amax = 100m=s2, a−max = −100m=s2.

6. Singer model algorithm: autocorrelation time constant α= 1=20, largest acceleration
amax = 100m=s2, largest probability Pmax = 0:95, Pmin = 0:05.

Environment 5
In the same simulation environment, conduct a simulation comparison of the tracking results,
respectively, of the corrected input estimation, adjustable white noise, Singer, and jerk algo-
rithms. Among them, the parameters of the Singer model algorithm are set as follows:

Table 9.2 Target maneuvers in environment 2

Time when the maneuver happens t = 31 t = 38 t = 61 t = 71 t = 91

Acceleration in the direction of X (m/s2) 10 0 −5 −10 50
Acceleration in the direction of Y (m/s2) −10 −10 30 0 −2
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autocorrelation time constant α= 1=20, largest acceleration amax = 0:1m=s2, occurrence probability
of the largest acceleration PM = 0:2, probability of non-occurrence of target maneuver P0 = 0:6. The
jerk variance of the jerk algorithm is 0.00092. In the process of simulation, suppose that the radar
sampling interval is T = 2 s, the range measurement error is σr = 100 m, the angle measurement
error is σθ = 0:1∘, the number of simulations is N = 100, the initial state of the target is
X 0ð Þ= 20000m, 4m=s, 80 000m, −15m=s½ �0, and the duration of target motion is 900 s. The time
when the target maneuver happens and the acceleration of the maneuvering target are shown in
Table 9.3.

Table 9.3 Target maneuvers in environment 2

Time when the target maneuver happens t = 400−600 t = 610−660 other times

Acceleration in the direction of X (m/s2) 0.075 −0.3 0
Acceleration in the direction of Y (m/s2) 0.075 −0.3 0
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Figure 9.4 Target’s trajectory in environment 1
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Table 9.4 Comparison of the track lifetime and the average elapsed time of a cycle of the algorithms
from environment 1 to environment 4

Maneuvering targets tracking
algorithms

Track lifetime (pace) Average elapsed time of a cycle (ms)

1 2 3 4 1 2 3 4

Adjustable white noise 432 572 463 489 0.12 0.13 0.12 0.12
VDF 396 549 448 471 0.23 0.29 0.21 0.27
IMM 450 600 500 500 1.49 1.91 1.62 1.67
Singer model 428 577 492 500 0.15 0.16 0.15 0.15
Current statistical model 450 600 500 500 0.17 0.25 0.18 0.17
Jerk model 450 600 500 500 0.15 0.21 0.17 0.17
Modified current model 450 600 500 500 0.72 1.33 1.03 1.09
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9.4.2 Simulation Results and Analysis

Environment 1 (shown in Figures 9.4–9.7)

Environment 2 (shown in Figures 9.8–9.11)

Environment 3 (shown in Figures 9.12–9.15)

Environment 4 (shown in Figures 9.16–9.19)
The track lifetime and the average elapsed time of a cycle of the algorithms from environment 1 to
environment 4, respectively, are shown in Table 9.4.

Environment 5 (see Figures 9.20–9.22)
Figure 9.20 is the target’s trajectory, Figures 9.21 and 9.22 show the x-axis and y-axis RMS error of
100 Monte Carlo experiments.
We can reach the following conclusions from the simulation results described above.

1. The VD filtering in the Type 1 algorithms may produce quite large errors when the maneuver
happens, but generally the errors will decrease relatively fast, as shown in Figures 9.5, 9.9, and
9.17. Despite that, there will be very large errors sometimes, as shown in Figure 9.13.
The tracking accuracy of the adjustable white noise algorithm is a little lower than that of the

VDF algorithm, but its performance is quite stable in all the simulation experiments and very
large errors have not occurred, as demonstrated in Figures 9.5, 9.9, 9.13, and 9.17.
The input estimation algorithm has been relatively stable in the whole process of tracking, and
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its tracking error curve shows few drastic fluctuations. However, it is lower than either of the two
algorithms in terms of tracking accuracy, as illustrated in Figures 9.5, 9.9, 9.13, and 9.17.

2. The current model in Type 2 algorithms is similar to the IMM algorithm in tracking accuracy.
Sometimes the former is a little better than the latter, as shown in Figure 9.10, while sometimes it
is the other way around, as illustrated in Figure 9.18. Sometimes the two algorithms are basically
the same in tracking accuracy, as demonstrated in Figures 9.6 and 9.14. This is due to the a priori
model set established by the IMM algorithm. If the motion model of the target is included in the
model set, then the tracking accuracy of the algorithm will become relatively high.
The tracking accuracy of the Singer model is lower than those of the two algorithms men-

tioned above according to all the simulation experiment results, as shown in Figures 9.6,
9.10, 9.14, and 9.18. The jerk model, featuring better tracking accuracy than the first three algo-
rithms, is similar to the modified current model in terms of tracking accuracy in the whole track-
ing process, as shown in Figures 9.6, 9.10, and 9.14. But the RMS error of the jerk model showed
a larger fluctuation occasionally, as demonstrated in Figure 9.14.

3. As shown in Figures 9.21 and 9.22, the modified input estimation, adjustable white noise,
Singer, and jerk algorithms can all track the maneuvering target quite well in this environment.
In general, the modified input estimation algorithm is better at tracking than the other three algo-
rithms mentioned above.

4. Comparing the two algorithm models with higher tracking accuracy of Type 1 and the current
model algorithm of Type 2 in each environment, the current model is obviously higher in terms
of tracking accuracy than the adjustable white noise model and the VDF filtering model in envir-
onments 2 and 3. In addition, in environment 1, the current model is obviously higher in terms of
tracking accuracy than the adjustable white noise algorithm but lower than the VDF filtering
model, while in environment 4, the current model is strikingly lower in terms of tracking accur-
acy than the adjustable white noise algorithm and the VDF filtering model. This is a result of the
current model’s a priori hypothesis of autocorrelation time constant of the target’s maneuver.
When the hypothesis is approximate to the target’s real autocorrelation time constant for man-
euvers, the tracking accuracy will become higher.

5. From Table 9.4 it can be seen that the current statistical model, IMM, jerk model, and modified
current algorithm possess the longest track lifetime, and all are able to perform a complete track-
ing of the target’s motion in the 50 simulations. The adjustable white noise algorithm, input esti-
mation algorithm, and Singer model have a shorter track lifetime, and the VDF algorithm has the
shortest track lifetime. In terms of instantaneity of algorithm, the adjustable white noise algo-
rithm is the most instantaneous, while the VDF algorithm, Singer model, jerk model, and current
statistical model are less instantaneous, and the modified current model and IMM algorithm are
the least instantaneous. Therefore, from a comprehensive perspective, each algorithm has its own
advantage in terms of tracking accuracy, track lifetime, and/or instantaneity.

9.5 Summary

The tracking algorithms for maneuvering targets discussed in this chapter generally fall into two
categories: tracking algorithms with maneuver detection and adaptive tracking algorithms. The for-
mer category, based on the adjusted parameters after the maneuver is detected, is further divided
into algorithms adjusting the filter gain and algorithms adjusting the filter structure. The latter
can be subdivided into single-model algorithms and multiple-model algorithms. The single-model
adaptive tracking algorithms for maneuvering targets include the modified input estimation, Singer
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model, current statistical model, and jerk model algorithms, while the multiple-model adaptive
tracking algorithms include the multiple model and IMM algorithms.
Through a simulation analysis and comparison of the two categories of algorithms mentioned

above, we can reach the following conclusion: the tracking algorithms with maneuver detection
feature less calculation and greater instantaneity, but this category of models cause a larger
error when the target maneuvers. In addition, because of maneuver detection, it is impossible
for this category to avoid some estimated time delay, which will affect the tracking performance
of the filter.
In contrast, the common advantages with adaptive tracking algorithms are the reduced time delay

to maneuver tracking and the stable performance in tracking. Of these algorithms, the single-model
tracking algorithms realize the adaptive tracking of the maneuvering targets mainly by the real-time
estimation of the maneuvering target’s states and model parameters. This group of algorithms does
not cause a larger error when the target maneuvers, but usually needs a reasonable hypothesis about
the maneuverability of the target, which means that when the hypothesis is incongruent with reality,
its performance will degrade greatly. Additionally, the tracking accuracy of this group of algorithms
will fall to some degree when the target is non-maneuvering [232].
The modified current statistical model algorithm among this group may not need to establish

an a priori hypothesis of the target’s maneuverability, and it has a good performance in tracking
when the target is non-maneuvering. However, the instantaneity of this algorithm needs to be
improved.
Through the effective combination of multi-target models or process noise levels, multiple-

model algorithms among the adaptive tracking algorithms for maneuvering targets realize the
adaptive estimation of the maneuvering target states, thus achieving a better effect in tracking
maneuvering targets. Therefore, this is considered as the most important research achievement
in maneuvering targets tracking in recent decades, and has become a mainstream tracking algo-
rithm for maneuvering targets which is of practical value in an engineering sense.
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10
Group Target Tracking

10.1 Introduction

In reality, a complicated group target will probably form within a small spatial distribution range
because of uncontrollable or specific human factors, such as the splitting of space debris, a large
amount of debris and decoy, along with the process of penetration of ballistic missiles, missiles
and aircraft formations, etc. These targets occupy a smaller spatial distribution range, and their dif-
ferences in the motion are obscure. They have a lower relative velocity of motion, with approximate
characteristics. In the field of target tracking, this type of target is called a “group target.”
Restrained by its measurement equipment’s angular resolution, range resolution, power, and

measurement accuracy, etc., a detection system in the process of tracking a group target will gen-
erally encounter three situations:

1. It is totally unable to identify the targets within the group. Then the group cannot be identified.
2. It is sometimes able to identify the targets within the group, but unable to gain a stable, constant,

and effective measurement. This means that the group target is partly identifiable.
3. It is able to completely identify the targets within the group, which means that the group is

identifiable.

In addition, when the target changes its range and angle to the sensor, the three situations will
switch between each other. Therefore, the echo characteristics of the group are more complex than
those of the traditional multi-targets.
However, conventional target tracking algorithms [41, 160, 233–236] underestimate the com-

plexities of the echo of the group, thus being relatively simple in design, and defective in the solu-
tion of the problems of track initiation, track maintenance, maneuver processing, track cancellation,
and so on. Hence, they are generally quite limited in tracking effect.
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In order to better solve the problems of group tracking, this chapter will first focus on the initiation
techniques of the group in Section 10.2. Several typical models of group initiation will be discussed
in terms of group segmentation, group association, and estimation of group velocity. Then, in
Section 10.3, a gray fine track initiation algorithm of the group applicable to cluttered environments
is proposed. Sections 10.4 and 10.5 will focus on the tracking algorithms, respectively, for center
group targets and the formation of group targets. Finally, in Section 10.6, a few simulation envir-
onments close to reality are designed, and then a test and analysis of the comprehensive performance
of the algorithms in this chapter are conducted.

10.2 Basic Methods for Track Initiation of the Group Target

The track initiation of the group target [41, 237, 238] is much more complex than that in the case of
single or multiple-target tracking. Conventional algorithms for track initiation are unsatisfactory in
this respect [236, 239–241]. First, because the range between the targets in a group is small, the
initial gates for each target will seriously intersect if the direct-vision method or logical approach
[242, 243] is adopted to establish the courses, respectively, for the group targets. Owing to the exist-
ence of measurement errors and extrapolation errors, the group targets tend to make mistaken cross-
correlations with the measurements. Second, because the behavioral models of the group targets are
similar to each other and the cross-correlations between targets are very strong at the time before and
after the echoes, mistaken temporary tracks can find correlation values at follow-up moments. The
rules for track confirmation in the direct-vision method, logical approach, or other conventional
methods for target initiation cannot restrain the output of mistaken tracks so that the initiation rate
of false track increases. Finally, if the track initiation algorithms [244, 245] based on the Hough
transform are adopted to establish courses for the group targets, then the echoes of other targets
are all clutter to the targets which need course establishment. The errors are most likely to cause
local maximum values, cross-correlations of measurements between the group targets, and
decreases in the initiation rate of correct tracks.

10.2.1 Group Definition

The typical initiation algorithm for the group target is usually composed of group division, group
correlation, and group velocity estimation. But before group division is discussed, it is necessary to
define the group. The group target, also known as the formation target, group target, etc. [17, 41, 45,
160, 233–238, 246–254] is by nature a group of targets which satisfy the following three conditions
in terms of direction, range, and velocity [19, 236, 238]:

1. The same motion direction.
2. A much smaller distance between the members of a group than that between groups.
3. Basically the same velocity.

The tracking of group targets defined by the above conditions has three conceptual advantages
over that of dense targets.

1. In terms of the typical radar tracking problems discussed by Taenzer [237], the group target’s
tracking saves radar resources. In the case of group target tracking it only needs to track the cen-
ter of the group instead of every target in the group, and therefore the necessary radar operations
will decrease. Since it is the single group rather than all the targets within the group that is
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tracked, the number of track files that need processing will decrease. In the case of air-to-ground
tracking, this advantage of group target tracking is crucial when the tracked target is a motorcade
moving on the ground, since it is impossible, difficult, or unnecessary to track every single target
in such environments.

2. When tracking dense targets in complex environments, mistaken correlations are unavoidable.
The group target tracking in such environments will help to make target tracking more smooth
and more stable.

3. When the sensor’s target detection probability is low, it is easier for group target tracking to gain
information from each target group, thereby achieving a better effect in tracking.

10.2.2 Group Segmentation

Based on the definition of the group in Section 10.2.1, this section discusses three typical methods of
group segmentation, including distance division, threshold value circulation, and diagrammatical
methods.

10.2.2.1 Distance Segmentation Method

In the definition of a group, it is required that the distance between the members of a group is far
smaller than that between groups. Therefore, group segmentation can be completed by comparing
the spatial distance between two measurements with a constant in terms of size [160, 236, 238].
Suppose that Z(k) is the measurement set gained by the sensor at time k, and

Z kð Þ= zi kð Þf gmk
i= 1 ð10:1Þ

where mk is the number of measurements at time k.
Define the distance between the ith measurement zi kð Þ= xik yik zik½ �0 and the jth measurement

zj kð Þ in Z(k) at time as

d zi kð Þ,zj kð Þ� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xik −xjk
� �2

+ yik −yjk
� �2

+ zik −zjk
� �2q

ð10:2Þ

If

d zi kð Þ,zj kð Þ� �
< d0 ð10:3Þ

then measurements zi(k) and zj(k) belong to the same group. Here, d0 reflects the density of targets
within the group. For mechanical scanning radars, the aim of adopting the group target tracking is
to cope with the increase in covariance of filtering error as a result of mistaken correlations.
Therefore, d0 is the spatial range between two targets which cannot be distinguished by means
of the nearest-neighbor approach. For phased array radars, the purpose of adopting the group target
tracking is to save radar resources, and d0 = 3� 5 km can be taken.
By using (10.2) and (10.3) to calculate the range between any two measurements in Z(k),

which is then compared with d0, Z(k) can be segmented into different groups. Suppose that Z(k)
can be segmented into m groups, denoted by {U1,U2,…,Um}, and
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Ui = ~zij kð Þ
n o~mi

j= 1
ð10:4Þ

where ~zij kð Þ is the jth measurement of the ith group and the ~mj number of measurements of the
ith group.
Define the range between two groups Ui and Uj,

d Ui,Uj

� �
=min d ~zim kð Þ,~zjn kð Þ� �� �

1 ≤m ≤ ~mi,1 ≤ n ≤ ~mj ð10:5Þ

When d Ui,Uj

� �
≥ d0, Ui and Uj are two separate groups. When d Ui,Uj

� �
< d0, Ui and Uj are

combined into one group. Therefore, each measurement in Ui must satisfy

min d ~zim kð Þ,~zin kð Þ� �� �
< d0 1 ≤m ≤ ~mi,1 ≤ n ≤ ~mi ,m 6¼ n ð10:6Þ

and the set ~z i1 kð Þ,~z i2 kð Þ,…,~z i~mi
kð Þ

n o
cannot be segmented into two parts: U∗

1 and U∗
2.

Let d U∗
1,U

∗
2

� �
≥ d0.

10.2.2.2 Circulation Threshold Value Method

The circulation threshold value method includes the following four procedures:

1. Choose zi(k) as the center, and establish a wave gate with the threshold value of d0.
2. Rebuild a gate with the threshold value of d0 for each measurement falling in the gate, and look

for the measurement falling in the latest gate.
3. Repeat step 2 until there is no measurement in the established gate. The measurements concerned

in the process are defined as a group.
4. Choose any one measurement from the measurements which do not belong to the defined

groups, then repeat the previous three steps until the last measurement so as to finish the group
segmentation.

The value assignment of d0 in this method is the same as that in the range segmentation method.
As indicated by its procedure, this algorithm is based on the range segmentation method with the
same results of segmentation, except for the considerable reduction in computing complexity.

10.2.2.3 Diagrammatical Method

The diagrammatical method is to segment the groups in the whole detection region. According to its
definition, a group is any measurement set U which satisfies the following two conditions:

1. The distance between the measurements in U is less than the threshold value d0.
2. The number of measurements in U is larger than the threshold value L.

The value assignment of d0 and L relies on real tracking systems and their task require-
ments [246].
In view of the above rules, the diagrammatical method includes the following four steps.
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1. As shown in Figure 10.1, the detection region is segmented into l2 small regions, and l is
determined by

l = INT

ffiffiffiffiffiffiffi
V

πd20

s
+ 1

" #
ð10:7Þ

whereV is the area of the detection region and INT[x] indicates the largest integer not larger than x.
The segmentation process of the detection region is the key to the diagrammaticalmethod.After

segmentation, if the areas of small regions are too large, dense target regions might be ignored; if
the small regions are too small, the calculation work will increase.

2. As shown in Figure 10.2, the number of measurements falling in each small region is counted
and denoted as the number of measurements falling in the small region of the ith line and the
jth row.

Figure 10.1 Diagram for segmentation of the detection region
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Figure 10.2 Statistical diagram of the number of measurements
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3. As illustrated in Figure 10.3, choose any small region, denote by N0 the number of measure-
ments falling in the small region, and then define the value M of the small region as

M =N0 +N1 +N2 +N3 +N4 +N5 +N6 +N7 +N8 ð10:8Þ

where N1,N2,…,N8 are the numbers of measurements, respectively, for the eight neighboring
small regions of the one (N0) under discussion.

4. Compare the value of each small region in (10.8) with the threshold value L. The region with a
value larger than L is defined as the dense region of measurements, illustrated by the shaded
region in Figure 10.4. Then the measurements falling in the dense region of measurements form
a group.

Straightforward and convenient, the diagrammatical method has a better segmentation effect and
can be used to determine several groups for one time with less calculation work.

10.2.3 Group Correlation

Suppose that the measurement set Z(k) is finally segmented into m groups, denoted {U1,U2,…,
Um}. To correlate the groups [41, 160, 236, 237], the center of each group has to be calculated first.
Define �Zi kð Þ as the center of Ui, the ith group, and

N1

N2N3N4

N5

N6 N7 N8

N0

Figure 10.3 Diagram for value assignment and calculation in the small region
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Figure 10.4 Diagram for determination of the dense region of measurements
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�Zi kð Þ= �Xik �Yik �Zik½ �0 ð10:9Þ

�Xik =
1
~mi

X~mi

l= 1

xlk, �Yik =
1
~mi

X~mi

l= 1

ylk , �Zik =
1
~mi

X~mi

l= 1

zlk ð10:10Þ

where zil kð Þ = xlk,ylk ,zlk½ �0 is the set of l measurements of the ith group and ~mi is the number of
measurements in the ith group.
After gaining the centers of each group at the adjacent moments, define the range between the

center of the ith group at time k =m and that of the jth group at time k = n as

d Zi mð Þ,Zj nð Þ� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Xim− �Xjn

� �2
+ �Yim− �Yjn

� �2
+ �Zim− �Zjn

� �2q
ð10:11Þ

In order to be correlated, the two groups must satisfy

d Zi mð Þ,Zj nð Þ� �
<Vmax �T ð10:12Þ

where T is the sampling interval, n =m+ 1, and Vmax is the largest velocity of the group, the value of
which depends on the specific type of group target.
If the ith group at time k =m correlates with the multiple groups at time k = n, then the nearest

group is chosen as the group for correlation.

10.2.4 Group Velocity Estimation

After completing the division and correlation of the group, it is still necessary to conduct an esti-
mation of the group velocity [160, 236, 238] before the completion of group initiation. In order to
ensure a high estimation accuracy of group velocity without making the algorithm more complex,
it is necessary to adopt different estimation algorithms of group velocity based on the number of
targets in the group.

10.2.4.1 Direct Estimation Algorithm

If the number of targets in the group is N > 6, the group velocity can be calculated directly through
the association groups at the previous three moments [238]. Suppose thatUi(1), the ith group at time
k = 1, and Uj(2), the jth group at time k = 2, are associated, and that the jth group at time k = 2 asso-
ciates with Um(3), the mth group at time k = 3, then the group velocity estimate of Um(3) is

Vm 3ð Þ= V2 +V3

2
ð10:13Þ

where

V2 =
�Zj 2ð Þ− �Zi 1ð Þ

T
, V3 =

�Zm 3ð Þ− �Zj 2ð Þ
T

ð10:14Þ

and �Zi 1ð Þ, �Zj 2ð Þ, �Zm 3ð Þ are the centers, respectively, of Ui(1), Uj(2), Um(3).
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10.2.4.2 Association and Distinction Algorithm

If the number of targets in the group is N ≤ 2, then the estimation of the group velocity by the direct
estimation algorithm will be inaccurate. In order to increase the estimation accuracy, another esti-
mation algorithm of group velocity is needed, that is, the association and distinction algorithm. In
this algorithm, estimation is done mainly according to the following three steps.

1. Calculating the candidate value for the velocity. Suppose thatUi(1) andUj(2) are associated, and
that Uj(2) and Um(3) are associated, and establish validation gates with the size of Vmax � T
around the measurements in Ui(1). For the measurements in Uj(2) falling in the validation gates,
estimate the candidate value of the velocity by use of the difference value between the associated
measurements at the adjacent moments. As illustrated in Figure 10.5, there are two measure-
ments in Ui(1): z11 and z21, and three measurements in Uj(2): z12, z22, and z32, z12, z22, and
z11 are associated; z32, z22, and z21 are associated. Therefore, we get four corresponding candidate
values of velocity, that is,

v11 =
z12−z11

T
,v21 =

z22−z11
T

v31 =
z22−z21

T
,v41 =

z32−z21
T

8><>: ð10:15Þ

2. Combining candidate values of the velocity. Suppose that vi = vix viy viz½ �0 and vj = vjx vjy vjz½ �0
are any two candidate values of velocity. If the two values satisfy (10.16), then make vi roughly
equal to vj:

jvix−vjxj ≤ σx, jviy−vjyj ≤ σy, jviz−vjzj ≤ σz ð10:16Þ

where σx, σy, and σz are, respectively, the standard deviations of measurement errors in the
different directions. As illustrated in Figure 10.5, the candidate values of velocity v21 and v31
do not meet (10.16), while v11 and v41 satisfy (10.16). They can be combined into

v1 =
v11 + v41

2
ð10:17Þ

k = 1 k = 2

v12 z13
z12

z22

z32

z21

z11

z23v22

V 11

v21

v31

v41

k = 3

Figure 10.5 Diagram of association and distinction algorithm

210 Radar Data Processing with Applications



3. Estimating the group velocity. If there are still several candidate values of velocity left after step 2
(as shown in Figure 10.5, v1, v21, and v31 still exist after combination), it is necessary to use these
candidate values of velocity to extrapolate the measurement at time k = 2 to time k = 3, establish
the validation gate around each extrapolation point, and associate the extrapolation point with the
measurements inUm(3). If the measurement zi3 = xi3 yi3 zi3½ �0 at time k = 3 falls in the gate of the
extrapolation point z0 = x0,y0,z0½ �, then the following condition must be met:

d zi3,z
0ð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi3−x0ð Þ2 + yi3−y0ð Þ2 + zi3−z0ð Þ2

q
≤ c1σxc2σyc3σz ð10:18Þ

where c1, c2, c3 are constants.

If there is no measurement in the validation gate, then the candidate value of velocity used for
extrapolation is proved to be ineffective, and cannot be applied to the estimation of group velocity. If
there is any measurement in the validation gate, continue to calculate the candidate values of vel-
ocity and repeat the procedures mentioned above.
Since the number of targets in the group is small, it only takes a few moments to estimate the

group velocity according to the rules.
As shown in Figure 10.5, z13 and z23 are two measurements in Um(3), and z13 associates with the

point obtained through the extrapolation of z12 by using the velocity v1. Then its candidate value of
velocity is calculated as

v12 =
z13−z12

T
ð10:19Þ

z23 associates with the point obtained through the extrapolation of z32 by using the velocity v1,
and its candidate value of velocity is calculated as

v22 =
z23−z32

T
ð10:20Þ

Using the rules defined by (10.16) to conduct verification, it can be found that v12 is roughly equal
to v22. Thus, combining them yields

v2 =
v12 + v22

2
ð10:21Þ

Since there is no measurement falling in the validation gates of the points obtained through the
extrapolation of z22 by the velocity v21 and v31, v2 is the only candidate value of velocity at time
k = 3, and it is verified that v2 is roughly equal to v1. Combining them gives the final estimate of
the group velocity as

v =
v1 + v2

2
ð10:22Þ

10.2.4.3 Center Extrapolation Algorithm

If the number of targets in the group is 2 <N ≤ 6 and the direct estimation algorithm is adopted to
calculate the group velocity, the estimation error will become large. If the association and distinction
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algorithm is adopted, there will be more calculation work to do. Therefore, it is necessary to adopt
another algorithm for group velocity estimation, that is, the center extrapolation algorithm.
This algorithm conducts estimations under the following procedure. It first supposes that the

relative position of each target in the group is basically fixed. Through several extrapolations, it
deletes those measurements which do not belong to any group (e.g., false alarms). Then, from
the measurements of the real target in the group, the center of the group is calculated, thereby
estimating the group velocity finally.

1. Establishing the basic set and candidate set. To estimate the group velocity with this method, it is
necessary to establish the basic set and candidate set first. Choose any two measurements
z1 = xw1 yw1 zw1½ �0 and z2 = xw2 yw2 zw2½ �0 in Ui(1) as the basic set. If the line connecting
z3 = xw3 yw3 zw3½ �0 with z4 = xw4 yw4 zw4½ �0 in Uj(2) parallels the line connecting z1 with z2
(i.e., if (10.23) is satisfied), then z3 and z4 can be chosen as the candidate set. For the same basic
set, there can be many candidate sets. Suppose that m candidate sets can be found:

j xw1−xw2ð Þ− xw3−xw4ð Þj< σx
j yw1−yw2ð Þ− yw3−yw4ð Þj< σy
j zw1−zw2ð Þ− zw3−zw4ð Þj< σz

8><>: ð10:23Þ

If no measurement in Uj(2) can meet (10.23), it is necessary to reselect two measurements
from Ui(1) as the basic set, and repeat the above procedure until the candidate set corresponding
to the above basic set surely exists. If no basic set in Ui(1) can meet the above conditions, the
initiation of the group track can start from time k = 2 or k = 3.
As shown in Figure 10.6, if the measurements z11 and z21 in Ui(1) are selected as the basic set,

then the measurements z12 and z22, and z32 and z42 in Uj(2), can form two candidate sets.
Then, m= 2.

2. Expansion of basic sets and reducing the number of candidate sets. This can be done as follows.
Select another measurement z∗ from Ui(1), which had better not be in the same line with the
members of the basic set. Then select a candidate set C from Uj(2), calculate the velocity v∗

of C’s center relative to the basic set’s center, extrapolate the measurement z∗ by use of the vel-
ocity v∗, establish a validation gate around the extrapolation point, and then associate the
extrapolation point with the measurements in Uj(2). If the association is successful, then the
measurement z∗ joins the basic set, the successfully associated measurements in Uj(2) join
the candidate set C, and update the center of the basic set and candidate set C. If the association
fails, delete the selected candidate set. If associations for all the candidate sets fail, select another
measurement from Ui(1) and repeat the procedures above.

z31
z11

z21
z41

z22 z42

z52

z32
z12

Ui(1) Uj(2)

Figure 10.6 Diagram of establishment of basic set and candidate set
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If the number of candidate sets is still larger than 1 after this process, repeat the procedures
mentioned above until the number of candidate sets is 1 or there is no measurement to choose
from in Ui(1).
As shown in Figure 10.7, select z41 and join it to the basic set, then the measurement z42 can

join the first candidate set, and z52 can join the second candidate set. Hence, the number of can-
didate sets is m= 2, and thus it is necessary to further join measurement z31 to the basic set.

As shown in Figure 10.8, it is verified that measurement z32 can join the first candidate set
and no measurement in Uj(2) can join the second one, so delete the second candidate set, then
the number of candidate sets is m = 1.

3. Estimating group velocity. By use of the centers of the basic set and the candidate set, the can-
didate value of group velocity can be calculated. If this value is the only one, it is the group vel-
ocity. If there is more than one, extrapolate based on step 2 using each candidate value of the
group velocity, establish the validation gates centered at the extrapolation points, and associate
the extrapolation points with the measurements in Um(3). The successfully associated one that
has the largest number of measurements is the group velocity. If two or more candidate values of
the group velocity have the same number of successfully associated measurements, it is neces-
sary to continue to extrapolate the point to the next moment until the group velocity can be
gained according to the rules. Since there are not many candidate values of velocity left after
step 2, the computational load of step 3 will not be too heavy.

As illustrated in Figure 10.9, the number of candidate sets is m = 1, and the group velocity can-
didate value v is calculated as

v=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2x + v

2
y + v

2
z

q
ð10:24Þ

z31
z11

k = 1 k = 2
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z41

z22
z42

z52

z32
z12

Figure 10.7 Diagram of expansion of basic sets
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k = 1 k = 2

z11

z21 z41
z22
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z52

z32
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Figure 10.8 Diagram of reduction of the number of candidate sets
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vx =
z2x−z1x

T
, vy =

z2y−z1y
T

, vz =
z2z−z1z

T
ð10:25Þ

where [z1x, z1y, z1z]0 is the center of the basic set while [z2x, z2y, z3z]0 is the center of the candidate set.
Since v is the only one, it is the estimate of group velocity.

10.3 The Gray Fine Track Initiation Algorithm for Group Targets

As can be seen from Section 10.2, most of the existing algorithms [46, 146, 240] for track initiation
of the group targets are based on the K method [236, 254], cluster seeding method [236, 254], dia-
gramming method [246], etc. They first undertake group segmentation, make group association
based on the equivalent measurements of the group, estimate the group velocity according to the
number of targets within the group, and finally get the state values for the group’s equivalent meas-
urements. Their advantage is that the mistaken cross-association between the group targets is
avoided to a large degree, and the calculation is reduced. The disadvantages mainly include:

1. Since it is likely that new members join the group at any time, or old members leave the group at
any time, and that the measurement in the group might be lost when the radar resolution is low, it
is inaccurate to conduct a direct group segmentation simply based on the spatial distance in the
cluttered environment – the group association and the estimation of the group velocity will be
unstable, and the precision of the initial track will be lower.

2. In practical implementations, like intercepting low-altitude-formation penetrating targets, or
tracking group targets with special significance, etc., there is a real need to establish the course
for individual targets within the group while tracking the whole group target. Hence, track ini-
tiation is needed for individual targets in the group, that is, fine track initiation of group targets is
required. However, most of the existing track initiation algorithms for group targets are only able
to gain the state of the group centers, and have not yet solved the problem of fine track initiation
of group targets in cluttered environments.

In order to further solve these problems, this section begins with a complete framework for track
initiation of group targets, specified as follows.
Suppose that Z(k) is the kth measurement set gained by the sensors, that is,

Z kð Þ= zi kð Þf g i= 1,2,…,mk ð10:26Þ

where mk indicates the number of measurements, zi kð Þ= x,y, t½ �0, and t is the actual time when the
radar system outputs measurement zi(k). Because some of the existing radar systems output
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Figure 10.9 Final basic set and candidate set
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measurements by section, even in the same detection cycle, the output times of each measurement
might differ.
Suppose that at time k the sensor has already confirmed that the system tracks are composed of

traditional multi-target tracks and group target tracks, and that track initiation includes dual track
initiation of the conventional multi-target and the group targets. The complete initiation framework
is shown in Figure 10.10.
In order to complete the third and fourth steps of the framework for track initiation of group

targets, this section has proposed the gray fine track initiation algorithm for group targets based
on the relative position vector. The detailed procedure is shown in Figure 10.11.

10.3.1 Gray Fine Association of Targets within the Group Based on the
Relative Position Vector of the Measurement

As indicated from the definition of group targets, the relative position of each target in the group
drifts slowly, the target echoes in the same group in neighboring cycles can form a whole with a
relatively stable structure, and the extent to which affine transformation happens to the whole is
small, which is mainly affected by measurement error. In the phase of track initiation, for group

Remove the measurements in Z(k) which are correlated successfully with the 
system tracks (including traditional multi-targets, and group target), and gain the Zʹ(k).

Correlate the measurements in Zʹ(k) with the temporary tracks of traditional 
multi-targets, remove the successfully correlated measurements, then Zʹʹ(k) is gained.

Correlate the measurements in Zʹʹ(k) with the temporary tracks of the group
target, remove the successfully correlated measurements, and Zʹʹʹ(k) is gained.

By use of Zʹʹʹ(k) and the left measurements at the first three cycles, establish the
track head for group target, remove the measurements which have been used,

and Z̃(k) is gained.

The problems that need to 
be solved in this section

By use of Z̃(k) and the left measurements at the first three cycles, establish the
track head for common target, remove the measurements which have been used,

and Z̃ʹ(k) is gained.

Store Z̃ʹ(k), and specify that it can take part in the track initiation of the
following three cycles.

Figure 10.10 Framework for track initiation of group targets
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targets which have successfully pre-associated at neighboring moments, the relative positional
relationship of the target echoes inside the group is basically unchanged, but it is simply trans-
lation and rotation as a whole. The appearance of clutter within the neighboring cycles is random
rather than associated as a whole, as with the echoes of real targets. This is the theoretical basis for
the gray fine association of targets within the group based on the relative position vector of the
measurement.

10.3.1.1 Establishment of Relative Position Vector of Measurement

Suppose that Z1 and Z2 are two groups which pre-interconnect successfully with one another at
neighboring cycles. Z1 is at the front while Z2 is at the back, and

Z1 = z1l1

n o~m1

l1 = 1
, Z2 = z2l2

n o~m2

l2 = 1
ð10:27Þ

where ~m1 and ~m2 are the numbers of measurements, respectively, of the two groups. The relative
position vector for each measurement in Z1 and Z2 can be established as follows.

Establish Corresponding Coordinate Systems

1. Establish the basic coordinate system and the reference coordinate system. The basic and the
candidate set can be established through center extrapolation, as in Section 10.2.4. First select

any two measurements z11 = x11,y
1
1

� �0
and z12 = x12,y

1
2

� �0
from Z1. If there exist two measurements

z21 = x21,y
2
1

� �0
and z22 = x22,y

2
2

� �0
in Z2, and the length and direction of their connection line is basic-

ally the same as that of the connection line of z11 and z
1
2, then (10.28) is satisfied. Set the midpoint

of the connection line of z11 and z12 as the origin, and the basic coordinate system is established

Group pre-segmentation based on threshold
value cycle model

Pre-correlation based on group center point

Gray correlation of the targets within the 
group based on the relative position vector of 

the measurement

Determination of the tracks for the targets 
within the group

Establishment of the state matrix for the 
group target

Figure 10.11 Flowchart of the algorithm
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according to the ground rectangular coordinate system. In a similar way, set up the reference
coordinate system based on z21 and z22:

d1−d2j j< aσρ
θ1−θ2j j< bσθ
d1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x11−x

1
2

� �2
+ y11−y

1
2

� �2q
d2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21−x

2
2

� �2
+ y21−y

2
2

� �2q
θ1 = cπ + d arcsin

y11−y
1
2

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x11−x

1
2

� �2
+ y11−y

1
2

� �2q
θ2 = cπ + d arcsin

y21−y
2
2

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21−x

2
2

� �2
+ y21−y

2
2

� �2q

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

ð10:28Þ

where σρ and σθ are the standard deviations of measurement error, respectively, of the directions
of ρ and θ, a and b are the coefficients of the threshold, and c and d are related, respectively, to the
quadrants in which the measurements z21−z

1
1

� �
and z22−z

1
2

� �
lie. If the measurement z21−z

1
1

� �
or

z22−z
1
2

� �
lies in the first quadrant, then c = 0 and d = 1. If it lies in the second quadrant, then c= 1

and d = −1. If it lies in the third quadrant, then c= 2 and d = −1. If it lies in the fourth quadrant,
then c = 1 and d = 1.

2. Establish the comprehensive value of the coordinate origin. For a basic coordinate system, there
may be several reference coordinate systems meeting (10.28), but actually there is only one cor-
responding to it at most. As for the overall relationship between the coordinate origin and each
measurement in the group, the corresponding coordinate system is the nearest one. Therefore, the
comprehensive value of the coordinate origin can be established to describe the overall relation-
ship between the coordinate origin and each measurement in the group, before the determination
of the corresponding coordinate system is complete.
Divide the basic and the reference coordinate systems clockwise from the polar axis into

_

S
quadrants [255]. Connect all the measurements in the same quadrant of the basic and reference
coordinate systems to their respective origins, and make judgments based on (10.28). Undertake
summation of the Euclidean distances between the measurements meeting (10.28) in the quad-
rant and the coordinate origin, which will be the component of this quadrant. Take the reference
coordinate system

_

j, for example, and define the comprehensive value C_

j of the coordinate
origin as

C_

j =
XS1
s= 1

ρ0i
1
s ,…,

XS_n

s= 1

ρ0i
_
n
s ,…,

XSM
s= 1

ρ0i
_

N
s

" #
ð10:29Þ

where ρ0i
_
n
s =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20_

j
−x

i
_n
s

_

j
Þ2 + y20_

j
− ŷ

i
_n
s

_

j

	 
2
�s

indicates the Euclidean distance between the coordin-

ate origin z20_

j
= z21_

j + z
2
2

_

j

	 
�
2 = x20_

j
,y20_

j

h i0
of the reference coordinate system

_

j and the sth meas-

urement in the group falling in the _

nth quadrant and satisfying (10.28). S_

n is the number of
measurements meeting (10.28) in the quadrant _n.
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Suppose that the quadrant number
_

S = 8, and that there are seven measurements in the
group Z2, as shown in Figure 10.12. After detection, it is found that 5 measurements of group
Z2 in the reference coordinate system

_

j and the measurements of group Z1 in the basic coordinate
system satisfy (10.28), while z24 and z26 do not. Then the comprehensive value of the coordinate
origin of the reference coordinate system

_

j is C_

j = ρ03,ρ02,ρ05,0,0,ρ01 + ρ07,0,0
� �

. The compre-

hensive values B_

i and C_

j ,
_

j = 1,…,
_
M , respectively, of the coordinate origins of the basic coord-

inate system
_

i and
_
M reference coordinate systems can be obtained in a similar way.

3. Determine corresponding coordinate systems. To find the similarities between the reference and
the basic coordinate system, establish the statistic T_

i
_

j based on (10.30) and select the basic and
reference coordinate systems which have the smallest T_

i
_

j as the corresponding coordinate
systems:

T_

i
_

j = 1−B_

iC
_

j Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B_

ij j C_

j

 q ;
_

i = 1,…,
_

N ; j = 1,…,
_
M ð10:30Þ

where
_

N is the number of basic coordinate systems.

Establish Relative Position Vectors
After the corresponding coordinate systems are determined, establish the relative position vectors

W2 = w2
l2

n o
, l2 = 1,…,n2 for the measurements in group Z2:

w2
l2
= Pol x2l2 −x

20
j∗ ,y

2
l2
−y20j∗

h i0	 

= ρ2l2 ,θ

2
l2

	 

ð10:31Þ

where Pol �ð Þ is the function which transforms rectangular coordinates into polar coordinates,

x20j∗ ,y
20
j∗

h i0
is the coordinate in the ground rectangular coordinate system of the coordinate origin

of the reference coordinate system j∗, and ρ2l2 ,θ
2
l2

	 

is the distance and bearing of the measurement
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Figure 10.12 Relative position of measurements in reference coordinate system
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z2i relative to the coordinate origin. The relative position vectors W1 = w1
l1

n o
, l1 = 1,…,n1 of the

measurements in Z1 can be gained in a similar way.

10.3.1.2 Establishment of the Gray Fine Association Model

For Z1 and Z2, the positions of the target echoes in their respective corresponding coordinate sys-
tems are basically the same. The relative position vectors describe the positions of the measurements
in their corresponding coordinate systems. Therefore, based on the relative position vector of each
measurement, similarity between the measurements in the pre-association group at different
moments can be judged so as to remove the clutter and realize the fine association of the targets
in the group. Here, the gray theory [175] is adopted to solve the problem.

Problem Description
For convenience, only the associated groups within two neighboring cycles are considered. By
regarding the l1 measurements from group Z1 as the l1 known modes, and the measurement z2l2
from Z2 as the mode to be identified, the fine association of the measurements of the targets in
the pre-associated groups in different cycles has been transformed into a matter of typical mode
identification.

Gray Association Degree between Relative Position Vectors of the Measurements

1. Determination of data columns. Select measurement z2l2 of Z2 as the reference vector, denoted

w0 = w2
l2
gð Þ, g= 1,2

n o
. Suppose that n1 measurements in Z1 are vectors for comparison,

denoted wl1 = wl1 gð Þ, g= 1,2, l1 = 1,…,n1f g.
2. Data standardization. In order to make sure that the data is comparable, it is necessary to conduct

a generative treatment of the data columns in the analysis of gray association. Here the interval
value method is adopted to normalize the characteristic data of the relative position of the
measurements:

wl1 gð Þ=
wl1 gð Þ−min

l1
wl1 gð Þ

max
l1

wj gð Þ−min
l1

wj gð Þ l1 = 1,…,n1 ð10:32Þ

w0 gð Þ =
w0 gð Þ−min

l1
wl1 gð Þ

max
l1

wj gð Þ−min
l1

wj gð Þ l1 = 1,…,n1 ð10:33Þ

3. Calculating the coefficients of gray association. It follows from the standard deviation of

measurement error σ = σρ,σθ
� �0

that the association coefficient of the reference vector w0 and
the comparison vector wj is

ξl1 gð Þ = σ gð Þ
σ gð Þ+ w0 gð Þ−wl1 gð Þj j•A gð Þ ð10:34Þ

where A gð Þ= max
l1

wl1 gð Þ−min
l1

wl1 gð Þ
� �

. This gives the association coefficient of the reference

vector w0 and the comparison vector wl1 as ξl1 = ξl1 gð Þ,g= 1,2� �
.
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4. Calculating the gray association degree. For the sake of comparison, it is necessary to incorp-
orate each indicator of the association coefficients into one value, which is called the “gray asso-
ciation degree.”Denote the gray association degree of the comparison vector wl1 to the reference
vector w0 as γ ω0,ωl1ð Þ (γl1 for short). As can be seen from (10.31), the relative position vector of
the measurements is composed of the distance and bearing of the measurements in the group
relative to the origins of the corresponding coordinate systems. Without considering the system
errors, the information on distance and bearing is affected by measurement noise. When the dis-
tance measurement noise is large, the detection distance of the target gained by the radar differs a
lot from the real distance, and the contribution of the distance information to the relative posi-
tions of measurements is less reliable, at which point a smaller weight should be assigned to the
distance information. The same occurs with the bearing information indicator. Define the gray
association degree as

γl1 = λ1ξl1 ρð Þ + λ2ξl1 θð Þ= σ θð Þσmax ρð Þξl1 ρð Þ+ σ θð Þσmax ρð Þξl1 θð Þ
σ ρð Þσmax θð Þ+ σ θð Þσmax ρð Þ ð10:35Þ

where σmax = σmax ρð Þ,σmax θð Þ½ �0 is the largest value of the standard deviation of radar measure-
ment error. When it is impossible to determine σmax, make λ1 = λ2 = 0:5, which can be used to
meet common demands.

10.3.1.3 Rules of Fine Association for Gray Association Measurements

After getting the gray association degree describing the degree of closeness of two measurements at
the relative positions in the corresponding coordinate system, it is necessary to judge whether or not
these measurements associate with each other. In order to make the judgment on the association
between the measurements z2l2 and z1l1 jl1 = 1,…,n1, it is necessary to rank the gray association
degree from largest to smallest, thereby getting the gray association order. Here, the maximum
association degree identification principle is adopted, that is,

γ∗ = max
l1

γl1 ð10:36Þ

and
γ∗ > ε ð10:37Þ

Then, measurement z2l2 is considered associated with z1l∗1 and not be associated with any other

measurements. Otherwise, z2l2 is considered as clutter. ε is the threshold value parameter and
ε ≤ 1. Its actual value assignment is related to all the measurements constituting ω0,ωl1 and meas-
urement error σ. The calculation formula is (10A.13) in Appendix 10A (for a detailed derivation, see

Appendix 10A). Finally, the measurement set Ẑ= z1c ,z
2
c

� �� �C

c= 1 composed of the corresponding and
associated measurements in Z1 and Z2 is obtained, in which C is the number of association meas-
urement pairs.

10.3.2 Confirmation of the Tracks within a Group

After the possible tracks are established based on the corresponding and associated measurements
set, the output of the confirmed track for each target in the group is completed by means of the logic
rule of 3/4, and the initiation rate of false tracks is further reduced.

220 Radar Data Processing with Applications



In order to more clearly describe the confirmation of tracks, an example is cited here. Suppose that
Figure 10.13 shows the measurement distribution in a pre-association group for four successive pro-
cessing cycles. There are eight possible tracks formed on the basis of the gray fine association
model. In the figure, measurements marked with the same sequence number belong to the same
track, but the tracks with more than three association measurements are only {1, 2, 4, 5}. According
to the logic rule of 3/4, only these four tracks are confirmed. Output {1, 2, 4, 5} and cancel the
other tracks.

10.3.3 Establishment of State Matrixes for Group Targets

In order to fully describe the state of group targets, establish a state matrix for them on the basis of
(10.38). The first column indicates the state of the group center, while the other n columns are the
states of the n confirmed tracks in the group. It needs to be clarified that the state of the group center
and the state covariance are determined by the confirmed tracks in the group, and are unrelated to the
results of pre-segmentation and pre-association.

X =

x0 x1 � � � xn

_x0 _x1 � � � _xn

y0 y1 � � � yn

_y
0

_y
1
� � � _y

n

t0 t1 � � � tn

266666664

377777775
ð10:38Þ

10.3.4 Simulation Verification and Analysis of the Algorithm

In order to verify the performance and effectiveness of the algorithm, aMonte Carlo simulation with
N = 100 runs was conducted for the gray fine track initiation algorithm for group targets based on
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Figure 10.13 Measurement distribution diagram of pre-association group
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relative position vectors (group algorithm), modified logic method (logic algorithm), and track
initiation algorithm of multi-formation based on cluster and Hough transformation in Ref. [146]
(center algorithm). This section presents a comparison and analysis of the performances of these
algorithms in this test in terms of track initiation.

10.3.4.1 Simulation Environment

Suppose that the sampling period of the radar T = 1 s, the radar’s direction measurement error and
distance measurement error are, respectively, σθ = 0:3� and σr = 40m. In order to compare those
algorithms in terms of performance in track initiation in different environments, the following three
typical simulation scenarios are set.
Environment 1: Simulation of sparse group targets in clutter. Suppose that there are 10 targets in

a two-dimensional plane, among which the eight targets divide into two groups, and the distance
between the targets in the sparse group is usually in the range of (600 m, 1000 m). The first group is
in uniform linear motion, and is composed of the first four targets; their initial positions are, respect-
ively, (5000 m, 800 m), (5400 m, 1400 m), (5850 m, 1500 m), and (6100 m, 900 m); their initial
velocity is uniform (0 m/s, 300 m/s).
The second group conducts maneuvers, and is composed of five to eight targets; their initial

positions are, respectively, (−5000m, 10 000 m), (−5200m, 9400 m), (−4900m, 8600 m), and
(−5300m, 8000 m); their initial velocity is uniform (−270m=s, 270 m/s), and their initial acceler-
ated velocity is uniform (5 m/s2, −10m=s2). The other two targets are in uniform linear motion
and their initial positions are, respectively, (10 000 m, −8000m) and (−10 000m, −8000m); their
initial velocities are, respectively, (−240m=s, 200 m/s) and (200 m/s, 230 m/s).
The clutter generation in simulation is divided into two parts. For the common target T0, establish

a matrix with T0 as the center and [10 σρ,10 σθ] as the side length in polar coordinates. In this matrix,
λ1 clutters are evenly produced. For the group targets G, calculate the center point �G of the group
targets, and establish a matrix with �G as the center and [2ΔGρ + 10σρ, 2ΔGθ + 10σθ] as the side
length in polar coordinates (ΔGρ andΔGθ are the maximum difference values of each measurement
inG on the two coordinate axes of the polar coordinate system). In this matrix, λ2 clutters are evenly
produced. Here, λ1 = 2 and λ2 = 4.
Environment 2: Simulation of the dense group targets in clutter. The distance between the targets

in dense group target cases is usually in the range of (100 m, 300 m). The initial positions of each
target in the first group turn into (5000 m, 800 m), (5200 m, 850 m), (5350 m, 900 m), and (5550 m,
830 m). The initial positions of each target in the second group turn into (−5000m, 10 000 m),
(−5100m, 9800 m), (−5000m, 9650 m), and (−5050m, 9500 m). The other parameters are the
same as those in environment 1.
Environment 3. In order to verify the variation of the algorithms’ comprehensive initiation cap-

ability with the variation in clutter and sensor measurement error, on the basis of environment 1, the
value assignment of clutter (in numbers), the distance measurement error (in meters), and the angle
measurement error (in degrees) are shown in Table 10.1.

10.3.4.2 Simulation Results and Analysis

Figure 10.14 is a partially enlarged drawing of the overall situation for the 10 targets, in which there
are two group targets and two common targets. Figure 10.15 is the distribution diagram of sensor
measurements at the first four moments, in which, compared with that of conventional targets,
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Table 10.1 Value assignment for clutter and measurement error in
environment 3

λ1 1 2 3 4 5 6
λ2 2 4 6 8 10 12
σρ 20 40 60 70 80 100
σθ 0.1 0.3 0.5 0.7 0.9 1.2
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Figure 10.14 Targets’ overall situation (environment 1)
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Figure 10.15 Measurements distribution at the first four moments (environment 1)
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the group targets’ measurement distribution is much denser. Figures 10.16 and 10.17 are, respect-
ively, the targets’ real track pictures in environments 1 and 2, and the group’s motion states are
similar in the two environments. But in terms of density of tracks in the group, the latter is greater
than the former.
Figure 10.18 shows the comparison of track initiations in environment 1, between the logic,

group, and center algorithms, respectively, for the first group targets (subgraphs (a)–(c)), the second
group targets (subgraphs (d)–(f )), and the first common target (subgraphs (g)–(i)).
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Figure 10.16 The real tracks of each target at the first four cycles (environment 1)
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Figure 10.17 The real tracks of each target at the first four cycles (environment 2)
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Figure 10.19 shows the comparison of track initiations between the three algorithms in environ-
ment 2. Subgraphs (a)–(c) are for the first group targets, subgraphs (d)–(f ) are for the second, and
subgraphs (g)–(i) for the first common target.
As indicated by the comparison between Figures 10.18 and 10.19 with Figures 10.16 and 10.17,

in terms of group measurements in the two environments, the logic algorithm initiated several false
tracks, so that it is impossible to identify the real motion posture of the group. The center algorithm
can establish only one track for each group, and has low track accuracy. The group algorithm can
initiate each target in the group basically accurately, there is only one track crossing of the initiation
for the first group in Figure 10.19, and its overall effect is obviously better than that of the logic and
center algorithms. For the common target, since the initial logic adopted by each algorithm is the
same, their respective initiation effects are the same.
The reasons for the results above are as follows. The logic algorithm is non-pre-emptive, that is,

the measurement already used to establish tracks can still be used for other tracks so as to ensure a
higher correct track initiation rate and track accuracy. But the initiation rate of false tracks will also
be greatly increased. The center algorithm conducts initiation based on the group center point, and
can initiate no more than one track. As a result, there will be a loss of situations. In addition, the
clutter is likely to cause deviations of the group center point from the real value, and drops in the
accuracy of the established track, so that even track establishment is impossible. The group algo-
rithm is to conduct precise track establishment within the group for each association group based on
relative vectors of measurements so that the impact of clutter is alleviated to the largest degree, and
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Figure 10.18 Comparison of track initiation of the three algorithms (environment 1)

225Group Target Tracking



the false tracks are removed on the basis of 3/4 logic to ensure higher correct track initiation rate
and lower false track initiation rate.
In order to quantize the effectiveness of track initiation for each algorithm, we established

two indicators – the overall initiation track quality indicator and the overall initiation track
accuracy indicator – and offer a comparison diagram of the algorithms in terms of the two indicators
in 50 simulations (each simulation includes 100 Monte Carlo simulations). The indicators are
established in the following procedure.

1. Verification of initiated tracks. Suppose that the track initiation algorithms establish Tl
tracks on the basis of the measurements of the four cycles, in which the ith track’s state is

X̂i = x̂i, v̂ix, ŷi, v̂iy
� �0

. To calculate the overall quality and accuracy of the tracks initiated by the
algorithms, first it is necessary to determine the number of real tracks among the Tl tracks. Sup-

pose that the real track of T targets at this moment is Xj = xj,vjx,yj,vjy
� �0n oT

j= 1
. If X̂i and Xj satisfy

(10.39), then X̂i is the candidate track corresponding to the real track Xj. That is,

jρ̂i−ρjj< ξρ
jθ̂i−θjj < ξθ
Δd < ξd

8><>: ð10:39Þ
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Figure 10.19 Comparison of track initiation of the three algorithms (environment 2)
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where ξρ, ξθ, ξd are the threshold values, respectively, for judging velocity magnitude, velocity

direction, and position distance, and are related to measurement error. ρ̂i, θ̂i
� �

= Pol v̂ix, v̂iy
� �

,

ρj,θj
� �

= Pol vjx,vjy
� �

, and Pol �ð Þ is the function which transforms rectangular coordinates into
polar coordinates. If the ith track includes four measurements, then

Δd =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂i−xj
� �2

+ ŷi−yj
� �2q

ð10:40Þ

If the ith track includes only three tracks, then

Δd =min
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂i−xj
� �2

+ ŷi−yj
� �2q

,d0
� �

d0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂i−x3j
� �2

+ ŷi−y3j
� �2q ð10:41Þ

where (x3j, y3j) is the third measurement point of the jth real track.

In X̂i

� �Tl
i= 1 there may be multiple candidate tracks corresponding to Xj. Define the compre-

hensive value Dij to make judgments, that is,

Dij = jρ̂i−ρjj+ jθ̂i−θjj+Δd
i∗ = argmin

i= 1:T 0
Dij

� �8<: ð10:42Þ

where T0 is the number of candidate tracks corresponding to Xj. Set X̂i∗ and Xj as 0, and then
they cannot be used to judge whether other tracks are true or false. Add 1 to ltrue indicating
the number of real tracks, and store Dltrue =Di∗j.

2. Establishment of overall initiation track quality. In track initiation, it is necessary to initiate as
many true tracks as possible, and as few false tracks as possible. Therefore, it is possible to com-
prehensively indicate whether an algorithm is good or bad by use of the correct track initiation
rate, false track initiation rate, and omitted track initiation rate. Equation (10.43) is employed to
define the overall initiation track quality Pqu of an algorithm, in which the numerator is the sum
of the algorithm’s false track initiation rate and omitted track initiation rate, while the denom-
inator is the correct track initiation rate. Then, the smaller Pqu the better the track initiation.

Pqu =
1−

ltrue
T

� �
+

Tl− ltrueð Þ
T

� �
ltrue
T

ð10:43Þ

3. Establishment of overall initiation track accuracy. The track state required for track initiation
should be maximally congruent with the true track, so we can judge whether an initiation algo-
rithm is good or not by means of state accuracy parameters such as the position and velocity
of initiated tracks. Equation (10.44) is used to define the overall initiation track quality Ppr

for an algorithm. Di fully contains the accuracy information of position, velocity magnitude,
and velocity direction. Therefore, the smaller Ppr is, the better the track initiation is.

227Group Target Tracking



Ppr =

Xltrue
i= 1

Di

ltrue
ð10:44Þ

Figures 10.20 and 10.21 serve to compare the overall qualities of tracks initiated by the algo-
rithms in the 50 time simulations, respectively, of environments 1 and 2. It can be seen that the
overall track quality of the group algorithm is much better than that of the logic and the center
algorithm. The rationale for this is that the logic algorithm is non-pre-emptive, so its initiation rate
of real tracks is quite high while its initiation rate of omitted tracks is very low. However, its false
track initiation rate is far higher than that of the other two algorithms, so its overall initiation track
quality is low.
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Figure 10.20 Comparison of overall initiation track qualities for the algorithms (environment 1)
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Figure 10.21 Comparison of overall initiation track qualities for the algorithms (environment 2)
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The center algorithm conducts track establishment simply based on the center point of the group,
and its false track initiation rate is relatively low. However, its real track initiation rate is low and the
initiation rate of omitted tracks is high, so its overall quality of initiation track is low.
Compared with the logic algorithm, the group algorithm might have a slightly lower correct track

initiation rate but a much lower false track initiation rate, so its overall track quality is higher. In
comparison with the logic algorithm, its false track initiation rate might be the same, but its correct
track initiation rate is far higher. Therefore, its overall track quality is far higher as well.
Figures 10.22 and 10.23 serve to compare the overall quality of initiation track for each algorithm

in the 50 simulations, respectively, of environments 1 and 2. It can be seen that the logic algorithm
has the highest overall track accuracy, the group algorithm takes second place, and the center
algorithm is the worst. The reason is that each of the measurements in the logic algorithm is
used to initiate many tracks, and the optimal association point can be found for each track. The
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Figure 10.22 Comparison of overall initiation track accuracies for the algorithms (environment 1)
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group algorithm is pre-emptive, and each measurement can associate with only one track. Measure-
ment association errors of one track will cause disturbance to the other tracks in finding their true
association points, so the overall quality of initiation track will be somewhat reduced. The center
algorithm initiates tracks by use of the center point of the group, but in the presence of clutter, the
clutter might be involved in the group which is being segmented, so that the center point deviates
from the true value. Therefore, a group’s accuracy of the track initiated by means of the center point
is relatively low.
In order to verify the adaptability of each algorithm to clutter and sensor measurement error, two

evaluation indicators are brought in.

i. The ratio of the number of correct tracks to the number of true tracks is defined as

PCorrect =
Tinitiation
Ttrue

ð10:45Þ

where Tinitiation is the number of correct tracks initiated by algorithms, while Ttrue is the number
of true tracks. The larger Pcorrect is, the more capable the algorithm is of initiating the track
correctly.

ii. The ratio of the number of false tracks to the number of true tracks is defined as

PError =
Tfalse + Tseep

Ttrue
ð10:46Þ

where Tfalse is the number of false tracks initiated by algorithms, and Tfalse =Tnum−Tinitiation.
Tnum is the total number of tracks initiated by algorithms. Tseep is the number of true tracks that
fail to be initiated successfully by the algorithms, and Tseep = Ttrue−Tinitiation. It needs to be noted
that since Tfalse may be larger than Ttrue, so PError may be larger than 1. The larger PError is, the less
capable the algorithm is of initiating true tracks and suppressing false tracks.

In Tables 10.2 and 10.3, the variations of PCorrect and PError are compared for each algorithm in
environment 3.
As shown in Table 10.2, with the increase in clutter, PCorrect of the logic algorithm remains the

highest, and can nearly ensure the initiation of all the true tracks, because this algorithm conducts
track establishment for all the measurements meeting association requirements without considering
the repetitive use of measurements. Hence, the true tracks must be contained in the tracks estab-
lished by it, and Tseep is nearly 0. However, in this way, the cost is that multiple false tracks have
been established, and PError is much higher than those of the other two algorithms. When the

Table 10.2 Comparison of PCorrect and PError varying with the number of clutters between the algorithms

Clutter
λ1 1 2 3 4 5 6
λ2 2 4 6 8 10 12

PCorrect

logic 1 1 0.9990 1 1 0.9990
group 0.8850 0.7490 0.7050 0.6490 0.6090 0.5360
center 0.3450 0.3570 0.3720 0.3730 0.2120 0.1970

PError

logic 1.3360 2.6470 4.4870 6.7910 9.4050 12.9870
group 0.4280 0.6530 0.7490 0.9910 1.2703 1.5370
center 0.7230 0.7980 0.9430 1.1000 1.0400 0.9680
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clutter number is (6, 12), PError is as high as 12.9870, that is, the algorithm can initiate over
120 false tracks, which is more than 10 times that of the other two algorithms.
The center algorithm’s PCorrect is reduced to some degree, and is always below 0.4, which cannot

meet practical demands, because this algorithm can establish only one track for one group. Although
Tfalse is lower, Tseep is higher and when the clutter is dense, its Tfalse will increase.
Since it undertakes special processing of the measurements within the group based on relative

position vector, the group algorithm is less affected by clutter. Although PCorrect falls a little,
and PError rises slightly, its overall initiation effectiveness keeps at a higher level, and its robustness
towards clutter is better than that of the other two algorithms.
It can be seen in Table 10.3 that as the measurement error increases, PCorrect of the three algo-

rithms all decreases to some degree, and PError all rises to some degree. The variation amplitude
of the center algorithm is the smallest, because its track initiation is composed of the group track
initiation and the track initiation of a common target, the measurement error impacts slightly on
the group segmentation, and the number of group tracks formed by this algorithm is only related
to the number of groups, thereby the formation of group tracks is less affected. Hence, the
impact of measurement error on the algorithm results only from the impact on the track of a
common target.
The variation amplitude of the logic algorithm is moderate, because this algorithm treats group

targets as common targets. Hence, the measurement error also affects the tracks of the group
targets.
The variation amplitude of the group algorithm is relatively large, because the premise for this

algorithm to conduct fine initiation of the targets in a group is that the relative positions of each
target in the group drift slowly. But larger measurement errors enlarge the amplitude of affine trans-
formation of the overall shape of each target measurement in the same group at the phase of track
initiation, and reduce the accuracy in judging the fine association relationship between the meas-
urements in the group based on relative position vector, which leads to mistaken measurement asso-
ciation and increases the initiation rate of false tracks. Figures 10.24 and 10.25 show the
measurement distribution of the group targets in the first four cycles, respectively, under the two
measurement errors. It can be found that the amplitude of affine transformation for the same group
targets in each cycle of the latter is obviously larger than that of the former.

10.3.5 Discussion

In order to solve the problems of fine association of the targets within a group, this section proposes
a gray fine track initiation algorithm for the group targets based on relative position vector. The
advantages of this algorithm are as follows.

Table 10.3 Comparison of PCorrect and PError varying with measurement errors between the algorithms

Measurement error
σρ 20 40 60 70 80 100
σθ 0.1 0.3 0.5 0.7 0.9 1.2

PCorrect

logic 1.0000 1.0000 0.9880 0.9180 0.8380 0.7360
group 0.7950 0.7860 0.7380 0.6800 0.6190 0.5590
center 0.3450 0.3430 0.3370 0.3070 0.2770 0.2340

PError

logic 1.3060 1.3070 1.2000 1.3250 1.5300 1.8240
group 0.4120 0.4310 0.4560 0.5630 0.6270 0.6960
center 0.7980 0.7210 0.7110 0.7590 0.8090 0.8680
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1. It classifies targets into group targets and common targets, avoiding the high false track rate when
traditional algorithms are used to initiate group targets.

2. It conducts a precise treatment of the successfully pre-associated group and establishes tracks,
respectively, for the targets within the group based on relative position vector by means of gray
theory, thus avoiding the loss of posture and decrease in track accuracy when the existing track
initiation algorithms for group targets are used to establish tracks, simply based on the group’s
equivalent measurement.

3. It maximally removes the clutter in the group by means of the relative position vectors of the
measurements within the group and has a greater adaptability to the clutter, thus avoiding the
production of a large amount of false measurements, and ensuring the overall accuracy for
the initiation tracks as well.

The disadvantages of this algorithm are that when the measurement error is very large, the affine
transformation of the group shape might be large, and the algorithm is no longer applicable. And this
algorithm, which accounts only for the case of single sensors, needs to be extended to multi-sensor
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Figure 10.24 First four cycle measurements of group target (σθ = 0:3�, σr = 40m)
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systems. Therefore, it is necessary to further investigate the track features of the group targets, estab-
lish the unscented variables for the measurement errors, and solve the problems of fine track
initiation for multi-sensor group targets when the measurement error is large.

10.4 Centroid Group Tracking

Centroid group tracking (CGT) was proposed by Frazier and Scott in the 1970s [248]. The CGT
algorithm conducts track initiation by human assistance or automatically. It tracks the group center
directly by use of the Kalman filter, and is the most direct tracking algorithm for group targets. This
algorithm has good real-time performance, but yields poor results in cases of group measurement
loss or in the presence of dense clutter. In the late 1990s, Blackman made a summary of the tracking
algorithms for group targets in Design and Analysis of Modern Tracking Systems, focusing on the
implementation procedures and merits/demerits of the CGT algorithm and formation tracking
algorithm [45]. That summary is a milestone in the history of group target tracking.
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The tracking coordinate system for the CGT algorithm is usually chosen between the Cartesian
and the polar coordinate systems. References [248, 249] select the Cartesian coordinate system but
given the distance variation rate, the polar coordinate system is preferable, and the distance and
angle can be selected as the state variables.
State variables use standard state variables for tracking but in the case of ground-moving targets,

their speed and azimuth angle should be included in the state variables [248]. Supposing that
the amplitude of the speed’s variation is less than that of the azimuth angle, the speed magnitude
can be smoothed.

10.4.1 Initiation, Confirmation, and Cancellation of Group Tracks

The initiation of group tracks can be completed with the assistance of operators [248], and it can also
be done automatically by the many measurements which have not been assigned to the existing
group tracks. If the group initiation is automatic, the group segmentation can be done by use of
the spatial distance segmentation or the circulatory threshold value method. And the estimation
of group velocity can be done by means of the direct estimation method. These algorithms have
been discussed fully in Section 10.2.
As with single-target or multi-target tracking algorithms, if a group track has been associated

successfully at several successive moments, then it is considered determined. On the contrary, if
a group track cannot be detected for several successive moments, it will be revoked.

10.4.2 Track Updating

Consider a sensor which is tracking T groups in clutter. The system’s dynamic equation can be
denoted by

X t k + 1ð Þ=F kð ÞX t kð Þ+G kð ÞV t kð Þ, k = 1,2,…, t = 1,2,… ,T ð10:47Þ

where X t k + 1ð Þ is the overall state vector for the center of group t, and in the two-dimensional
coordinate system X t k + 1ð Þ = x _x y _y½ �0.
The measurement equation is denoted by

zt kð Þ=H kð ÞX t kð Þ +W kð Þ ð10:48Þ

where measurement zt(k) is the measurement value of the center for the group targets t at time k,
which can be gained by means of the measurements falling in group t. Suppose that Z(k) is the meas-
urement set at time k, and

Z kð Þ= zi kð Þf gmk
i= 1 ð10:49Þ

where mk is the number of measurements at time k.
For the filter model on the basis of (10.47) and (10.48), the procedure for updating group tracks is

composed of three steps.

1. Establishing the tracking gate for the one-step predicted value of the group center. For tempor-
ary tracks, either the rectangular gate or the ellipse gate can be considered as the tracking gate, the
establishment of which is affected by many factors including the maneuvering of the targets in
the group, the distribution of the targets in the group, measurement noise, etc.
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Suppose that X̂t kjk−1ð Þ is the one-step predicted value of the state of the group track t at
time k. The measurements falling into its validation gate must satisfy

di
2 kð Þ= vti kð Þ0St

G
−1 kð Þvti kð Þ< d2max ð10:50Þ

where vti kð Þ is the innovation of the one-step predicted value ẑt kjk−1ð Þ of the measurement zi(k)
corresponding to the group track t. d2i kð Þ is a normalized distance. d2max is the allowed maximum
value of the normalized distance. St

G kð Þ is a normalized variance matrix [248] defined by
Franzier and Scott, the definition equation of which is

St
G = Ŝ

t
D +Rt

G +HPtH0 ð10:51Þ

where the matrix Ŝ
t
D is related to the distribution of the measurements in group t, which is an

estimate of the distribution of the measurements in the group. Rt
G is the covariance matrix of

measurement error for group t. It is different from the covariance matrix defined in the case
of single-target tracking. Usually, Rt

G can be derived by the following equation:

Rt
G =CRt

mC
0 ð10:52Þ

where Rt
m is the error covariance matrix of group measurement t under the measurement coord-

inate system, and C is the transformation matrix from the measurement coordinate system
(e.g., the antenna coordinate system) to the tracking coordinate system.
The matrix HPtH0 represents the uncertainty of the center of group t caused by the dynamic

change or maneuver of the target. In this matrix, it includes the one-step prediction covariance
matrix Pt kjk−1ð Þ for group t and the measurement matrixH, which is similar to the correspond-
ing parameters in single-target tracking.
As a result of extrapolation, the ellipse gate will probably be increased too much. Hence, on

the basis that (10.50) is satisfied, it is still necessary to check the actual (un-normalized) distance
[248] from the measurement to the group center.

2. Establishing new groups based on the measurements falling in the validation gate. New groups
are established as follows.
i. Suppose that measurements meeting (10.50) exist. Select from them the measurement with

the minimum normalized distance d2 as the seed measurement for a group t. On the basis of
the seed measurement, establish the group G0.

ii. Check the other measurements meeting (10.50). If the measurements meet an approximate
standard set for the seed measurement, for example, if the measurement falls in an ellipse
gate with the seed measurement as the center, then the measurement will be temporarily
joined in the group G0.

iii. Set an additional logic process to determine which measurements can finally be retained in
the group G0.

Select the measurements which have not fallen into the group G0 as the seed measurements.
Repeat the above procedure until there is no measurement for choice. After the establishment
of all the groups, calculate the group center and distribution matrix.
The establishment of a group is a process inwhich newmeasurements are constantly added to the

measurements already in the group. The groups established must follow a particular rule, such as:
• Any measurement in the group must meet the two distance standards with respect to the group
center and the seed measurement.

• The number of measurements for each group cannot surpass the upper limit set for the number
of measurements in the group.

235Group Target Tracking



• Given the group’s distance range in each sampling interval, the distance variation of all the
measurements in the group must be confined to this range.
If the above rules cannot be followed in establishing a new group around the seed measure-

ment, a new group should be established surrounding the next nearest measurement until the
group is successfully established or there is no measurement for choice. This procedure can
be applied to all the existing group tracks.

3. Associating group measurements with group tracks after the establishment of all the groups. It is
likely that we will encounter problems inherent in the association of measurements and tracks,
that is, how the group measurements are assigned to the group tracks. The most direct method to
solve this problem is to directly assign the group measurements to the group tracks producing
seed measurements.

Suppose there are multiple group measurements in the validation gate of the group track t, and
define an association algorithm in which the group track t can possibly associate with all measure-
ments in the group. Just as the problem of association of tracks and measurements for a single target
is solved, we can calculate the one-step predicted value ẑ kjk−1ð Þ for the center of the group track t
and the normalized distance for each group measurement center. By use of the normalized distance,
their association can finally be realized.
The group measurement set G0 is used to update the group track t, and Kalman filtering is used

to conduct state updating of the group track t. The first step is to determine the covariance matrix Rt
c

of measurement noise used to calculate the Kalman gain, that is,

Rt
c =

Rt
G

N0
+ f N0, N̂t

� �
Ŝ
t
D ð10:53Þ

where N0 is the number of measurements in G0; N̂t is the predicted number of measurements in the

gate of the group track t; Ŝ
t
D is related to the measurements distribution in the group t, representing

an estimate of the measurement distribution in t; and f N0, N̂t

� �
is a weight factor, which is a function

of the number of measurements in the group and the expected number of measurements in the gate
of the group track.
The covariance matrix Rt

c of measurement noise determined by (10.53) is a sum of two matrixes.
The first matrix isRt

G=N0, which indicates the error of the center of the group measurement resulting
from the radar measurement error, and decreases with the number of measurements in the group.
The second denotes the uncertainty of the group center. Since not all measurements in the group can
be observed, indeterminacy exists. If the number of measurements in the group is known as Nt, and
there is no false echo (so N0 ≤Nt), then the weight factor is defined as

f N0,Ntð Þ= Nt −N0ð Þ
Nt −1ð ÞN0

ð10:54Þ

It follows from (10.54) that the weight factor is 0 when all the measurements in the group are
detected, and 1 when there is only one measurement detected.
It follows from the Rt

c given by (10.53) that standard Kalman filtering can be used in state esti-
mation. As for the number of measurements in the group track and the group distribution matrix,
their recursive estimate can be gained by use of α trackers, that is,

N̂t kð Þ= 1−αð ÞN̂t k−1ð Þ+ αN0

Ŝ
t
D kð Þ = 1−αð ÞŜtD k−1ð Þ+ αŜDG0 kð Þ

(
ð10:55Þ
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where k is the time mark, α is the common filtering gain of the position component of the target
state, and ŜDG0 is the estimate distribution matrix corresponding to G0. Finally, it should be noted
that (10.55) should be used to update N̂i and ŜDi before calculating Rt

c with (10.53).

10.4.3 Other Questions

As can be found from the updating of group tracks, when the CGT approach is employed to conduct
group tracking it is necessary to estimate the number of elements in the group for each time, which
can be gained by modifying the number of measurements in group detection. In addition, Franzier
and Scott [248] defined the maximum number of detected measurements as the estimate number of
measurements in the group. This method features easy calculation, but when there is a very high
clutter density, this method will not be precise.
When the tracking of a group is conducted by means of CGT, it is still necessary to estimate the

matrix ŜD related to the measurement distribution in the group. As for the two-dimensional tracking
(x, y), ŜD is defined as

ŜD =
s2x s2xy

s2xy s2y

" #
ð10:56Þ

where s2x and s2y are the group’s estimate covariances, respectively, in the direction of x and y, and
s2xy is the cross-covariance in the direction of x and y. For a given group, the standard method
can be used to calculate the estimate of center variance s2x ,s

2
y

	 

and mean �x,�yð Þ. The cross-

covariance s2xy is

s2xy =
1
N

XN
i= 1

xi−�xð Þ yi−�yð Þ ð10:57Þ

where (xi, yi) is the ith measurement in the group, and N is the number of measurements in
the group.
Another important question in group tracking is to deal with splitting and combining. This is cru-

cial to ensuring the timely adjustment of the size of group targets and the stable tracking of group
targets. This question focuses on the elements, rules, algorithms, etc. for splitting and combining the
members in the group targets. If the size of the group tracking gate and the range of the measure-
ments in the group are restrained, a split target group should automatically form a new group track.
On the contrary, when two or more groups are combined into a new one, this group will contain the
measurements of other groups. The centers of the groups will also be combined, and in order to
retain only one group track in the same target set, it is necessary to conduct redundancy detection
for each group track.
CGT using the group center to track the group directly features less calculation and is easier to

understand. However, when there are false measurements in the environment for tracking or the loss
of true measurements happens as a result of external causes, the tracking effectiveness of CGT
might worsen, because the false measurements within the group will destroy the original distribu-
tion matrix of the group, thus leading to an over-large number of measurements in the group. The
loss of true target measurements may seriously affect the estimation of group velocity when the
target is covered. For example, suppose a motorcade being tracked as a group target enters a covered
region, where the pace car cannot be discovered, then the estimate of the group velocity will deviate
seriously from its true value.
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10.5 Formation Group Tracking

10.5.1 Overview of Formation Group Tracking

In order to reduce the impact of clutter and measurement loss on the calculation of a group center,
Flad [250] and Taenzer [237, 251] proposed the formation group tracking (FGT) algorithm. This
algorithm is used to track the targets in the group while tracking the center of a group, but because of
the necessity to maintain the position estimation of individual targets, the calculation of the result is
hard to deal with. In the 1980s, in order to enhance the engineering utility of tracking group targets,
Farina came up with the functional flowchart [17] for formation target tracking. Here it needs to be
clarified that although the ideas are similar, the specific tracking methods proposed by Flad and
Taenzer are to some degree different from each other. The algorithm proposed by Flad is used
to track only individual targets in the group instead of the center of the formation, without consid-
ering the impact of measurement loss. The algorithm proposed by Taenzer, by use of the estimated
center track and the relative position between the center and the formation members, establishes
track files, so the center’s stability can still be maintained when the measurement is lost.

10.5.2 Logic Description of Formation Group Tracking

The FGT algorithm calculates the group velocity also by means of the variation of the group center.
This algorithm extrapolates the measurements in the group by using the group velocity and sam-
pling interval, and the next moment, so that the maintenance of a single-target track is implemented.
The advantages of this algorithm can be summarized as follows [45, 233]:

1. Saving the radar and computer resources.
2. Providing position estimation of a single target.
3. Weakening the bad influence of measurement loss and false measurements.
4. The same tracking logic is adopted for both group tracking and single-target tracking.

Both FGT and CGT have the first advantage. When group tracking is conducted, multiple targets
(as a group) are tracked by the radar. It is unnecessary to track each target individually, so radar
resources are saved. The other three advantages represent FGT’s improvement over CGT.
The FGT algorithm makes an improvement on the CGT algorithm discussed in the previous sec-

tion. Examples are given as follows. The process under consideration is that of a group composed of
four targets entering a covered region [45]. Suppose that all four targets can be detected in the first
scanning, the two front targets are covered in the second scanning, and the two front targets are
detected when leaving the covered region while the two rear targets are covered in the third scan-
ning. zij is the position of target i in the jth scanning. Zj and Z∗

j are, respectively, the measurement
center and the true center of the group in the jth scanning. Note that Z1 and Z∗

1 are the same, since all
four targets in the group can be detected in the first scanning.
In such a scenario, the procedure for track updating with FGT can be described as follows.

1. Prediction of measurements. The single target in the group should be extrapolated by use of the
estimate of group velocity and the sampling interval to get the predicted position for each target.
The single measurement zi1 gained in the first scanning is extrapolated by

ẑi2 = zi1 + vGT ð10:58Þ
where vG is the estimate of group velocity and T is the sampling interval.
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2. Association of measurements. Establish the gate with each extrapolation point as the center,
and associate the extrapolation point with the measurement point gained in the next scanning.
If the association is done successfully, the associated measurements are the measurements in
the group. If there is one measurement which succeeds in association, the measurement will
be used in estimation of the center and velocity of the group. If there are multiple measurements
succeeding in association, select the measurement with the minimum normalized distance for the
estimation of the group center and velocity. If the association fails, the measurement is lost.
Then, the lost measurement should be replaced with the predicted position of the target so as
to estimate the group center and velocity.
The gate is established with each extrapolation point as the center, and the extrapolation point

is associated with the measurement point gained in the second scanning. In the same way as the
tracking of single targets or multi-targets, the tracking gate for the predicted position zî2 can be
represented finally as d2 =~y0ijS

−1
i ~yij through the variance matrix. Therefore, if measurement zj2 is

to be considered to have fallen into the tracking gate of the group center, it must satisfy

d2 =~y0ijS
−1
i kð Þ~y0ij < d2max ð10:59Þ

where d2max is the allowed maximum value of the normalized distance function; Si is the
covariance matrix of measurement error; ỹij is the error of the measurement zj2 from the predicted
position zî2, which can be represented as

~yij = zj2− ẑi2 ð10:60Þ

After testing, in the second scanning, the measurements z12 and z22 fell into the tracking gates
of the extrapolation points z1̂2 and z2̂2. However, as targets 3 and 4 were covered, there is no
measurement falling into the tracking gates of the extrapolation points z3̂2 and z4̂2. In the updating
of group tracks, substitute the predicted values of z3̂2 and z4̂2 for the lost measurements. Finally,
use z12, z22, z3̂2, and z4̂2 to calculate the measurement center of the group to update the estimate of
the group velocity.

3. Updating of group tracks. By use of associated measurements and the predicted position of the
target, FGT estimates the center and velocity of the group, and updates the group tracks.

In the group tracking environment with a covered region, the group center gained by means of
CGT is not precise. The group velocity estimated from the group center is unstable. If CGT is used
for tracking in such an environment, when the front targets emerge from the covered region, the
group track will probably be lost. However, FGT undertakes position estimation of the single targets
in the group, and substitutes the predicted values for the lost measurements. So, a stable group center
can be gained. The group velocity estimated in this way is more precise than that estimated by CGT.
FGT also establishes a simple revocation rule to ensure that the target which has sent false alarms

or has broken away from the group will not be extrapolated. For example, in the system described in
Refs [237, 251], if the measurement of a target is lost two successive times, the track of this target
will be revoked. Before the estimate of group velocity is updated, the group measurement which is
determined to be revoked should not be involved in the current or previous group center calculation,
so that the group velocity gained by this algorithm is more precise.
For FGT, there are some differences between Flad’s and Taenzer’s approaches in determining

which measurements belong to the group track. Flad holds that the newmeasurements can be joined
in the group only after having fallen into the tracking gate of the measurements in the group. In

239Group Target Tracking



contrast, Taenzer takes all the measurements falling into the tracking gates of distance and angle
surrounding the predicted value of the group center into consideration.
Finally, what needs to be emphasized is that, for FGT, although it is necessary to conduct

a position estimation of a single target in the group, it is unnecessary to undertake position
smoothing. The measurement detected can be regarded as the optimal current estimate of the state
for each target in the group, and these estimates can be extrapolated forward in time by use of the
estimate of group velocity. Hence, FGT describes the group by use of the position estimate of each
target in the group, and directly employs these unsmoothed measurements to calculate the center
and velocity of the group.

10.6 Performance Analysis of Tracking Algorithms for Group Targets

10.6.1 Simulation Environment

In order to analyze and compare the performances of the tracking algorithms for group targets in this
chapter, two typical simulation environments are hypothesized.
Environment 1: Tracking 20 targets. The first 10 targets constitute the first group, in which the

initial position of each target is randomly selected from (500 m, 1000 m) and (−5000m, −3000m).
The initial velocity is (200 m/s, 400 m/s). The remaining 10 targets form the second group, in
which the initial position of each target is randomly selected from (2000 m, 2500 m) and
(2000 m, 3000 m), with initial velocity (400 m/s, 200 m/s).
Environment 2: On the basis of environment 1, a covered region is added. From the 10th sam-

pling interval to the 25th sampling interval, the rear 5 targets of the first group are in the covered
region. From the 26th sampling interval to the 40th sampling interval, the front 5 targets in the first
group are in the covered region.
The process noise component is q1 = q2 = 0:01, the sampling time interval for 2D radar is 1 s, the

sampling duration is 50 s, the distance measurement error is σr = 30m, the angle measurement error
is σθ = 0:03 rad, the detection probability is PD = 0:997, and the gate probability is PG = 0:997. The
non-parametric Poisson distribution clutter model is adopted in simulation, and the expected
number of false measurements within the gate is m = 1:8.

10.6.2 Simulation Results

The simulation results are shown in Figures 10.26–10.35.

10.6.3 Simulation Analysis

Figure 10.26 shows the tracks of the 20 batches of targets in environment 1. As shown in the figure,
the 20 batches of targets are clearly divided into two groups when they are moving. Figure 10.27
serves to compare the true motion tracks of the two group centers with the filtering tracks for the two
tracking algorithms for group targets. Figures 10.28–10.31, respectively, compare the RMS position
and velocity errors when the sensor detection probability PD = 0:997 for CGT and FGT is used to
track the two groups. As shown in the figure, the tracking accuracy of FGT is more stable and gen-
erally better than that of CGT, whose fluctuation range of tracking accuracy is relatively large.
Figure 10.32 compares the algorithms’ single-update durations varying with clutter numbers.

As shown in the figure, with the increase in average number of clutters within the gate, the

240 Radar Data Processing with Applications



single-update duration for FGT is far larger than that for CGT, and the increase in amplitude of
duration for the former is higher than that of the latter.
Figure 10.33 compares the algorithms’ correct association rates varying with clutter numbers. As

shown in the figure, for the same clutter number, the effective tracking rate of FGT is higher than
that of CGT. With the increase in average number of clutters within the gate, the decrease in amp-
litude of the former is lower than that of the latter.
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Figure 10.26 Tracks of the targets of 20 batches in environment 1
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Figures 10.34 and 10.35 compare the RMS position and velocity errors, respectively, of CGT and
FGT in environment 2. As shown in the figure, compared with CGT, FGT is more stable in tracking
accuracy. A great fluctuation of the tracking performance of CGT occurs. Especially when some
targets in the group are in the covered region, the RMS position error for CGT is greater than
100 m. Hence, the algorithm is unable to conduct effective tracking of the group. In contrast, the
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RMS position error for FGT is less than 20 m, and it can still effectively track the group targets.
Therefore, it has a better tracking effect than CGT.
It is known from the above comprehensive comparison that, compared with CGT, FGT has better

tracking effectiveness, but it consumes more time than CGT, because the latter only conducts
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treatment on the group center, but the former needs to process the measurements falling in the
group while processing the group center. That is why FGT is obviously better in terms of tracking
effectiveness than CGT when a covered region exists.

10.7 Summary

This chapter begins in Section 10.2 with a discussion of the basic algorithms for initiation of the
tracks of group targets, and points out that group initiation usually includes group segmentation,
group association, and group velocity estimation. Group segmentation and group velocity esti-
mation are two difficult points for group initiation algorithms, which are different from other
algorithms for target tracking. A few algorithms have been discussed concerning these two
aspects.
In Section 10.3, in order to solve the problem of fine track initiation of targets in a group in a

cluttered environment, a complete framework for the track initiation of group targets is given,
and a gray fine track initiation algorithm for the group targets based on the relative position vector
is proposed. After being verified by the simulation data, this algorithm has a better comprehensive
performance in terms of initiation of true tracks, suppressing false tracks, and clutter robustness
compared with the modified logic algorithm or the initiation algorithm for multi-formation track
based on cluster and Hough transformation.
Sections 10.4 and 10.5, respectively, discuss two typical group target tracking algorithms: CGT

and FGT. CGT is the most direct algorithm for group tracking, since it undertakes prediction and
estimation only of the group center without tracking the individual targets in the group. However,
when a group element is lost or a false alarm is mistakenly taken for an element in the group, this
algorithm is unreliable in calculation of the group center. Then, the group velocity cannot be esti-
mated accurately so the track is lost.
The FGT algorithm is able to use the information contained in a separate measurement to realize

the tracking of a single target in the group. The advantage of this is that the estimation of the group
center is more stable, and the estimation of the group velocity is more stable as well. However, since
it is necessary to make a position estimate of a single target, the amount of calculation will be greatly
increased. FGT is most applicable to the tracking of air targets, as the number of air group targets is
limited, and the single target is given more consideration. For the tracking of ground targets, when
the covered region exists or the specific tactical significance of the single target needs to be iden-
tified, this algorithm can bring its own advantages into full play and achieve better tracking
effectiveness.
Finally, Section 10.6 conducts a test and analysis of comprehensive tracking performance for this

chapter’s two algorithms in a simulation environment. It can be found from the simulation results
that, compared with CGT, FGT has better tracking effectiveness. However, in terms of algorithm
duration, CGT consumes less time than FGT.
In addition to the algorithms discussed in this chapter, scholars have also proposed other algo-

rithms like group tracking algorithms based on conventional data association methods [8, 120, 180,
256–258] like JPDA [176], MHT [177], particle filter [178], and Bayesian recursion [259], etc., and
group tracking algorithms based on the genetic algorithm [260], dynamic network [261], general
Janossy measurement density equation [262], and probabilistic hypothesis density filter (PHDF)
[240]. These algorithms have partly solved the problem of tracking group targets and targets in
a group, but the premise for most of them is that the detection system is able to completely identify
the targets in the group. In reality, because of the targets’ coverage of each other and inadequate
sensor resolution, etc., group targets are usually only partly identifiable.
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Therefore, Ref. [240] investigates the group structure and state estimation when the measurement
origin is obscure. Meanwhile, Refs. [263, 264], based on the random set, explore the data associ-
ation and track maintenance of partly identifiable group targets and extended targets, and Ref. [265]
proposes a tracking algorithm for partly identifiable group targets based on SMC-PHDF, which can
directly gain the group number and the state/shape of the group mass center. However, these
algorithms are all unable to gain precise tracks of targets in a partly identifiable group, and their
derivation environment is relatively singular. Also, it is hard for them to be applied in complex
situations involving multiple-sensor system error [266–269] and unequal dimensions of the sen-
sor [270], etc.
In the region of maneuver tracking, current research focuses mostly on working out the logical

relationship of groups splitting, combining, and crossing in terms of position, direction, and track
history, etc. Then, the maneuver treatment for the group is completed based on the PDA [271], mode
space [272], Markov chainMonte Carlo (MCMC) particle filter [273], sequential Monte Carlo prob-
abilistic hypothesis density filter (SMC-PHDF) [265], etc. However, research still focuses on the
whole group, less attention is paid to the track changes of the targets in the group in the maneuver
situation, and especially the effectiveness in maneuver treatment needs improvement for the
targets in the group when the group is partly identifiable. From a comprehensive perspective,
the current algorithms underestimate the complexities of the echoes of the targets in the group,
and are defective to some degree in track initiation, track maintenance, and maneuver tracking,
etc. Details are specified as follows.

1. So far, track initiation for the group targets has not been solved effectively. Especially,
track initiation for the targets in a partly identifiable group is not yet covered in the
references.

2. The existing references are unable to solve the problems caused by the measurement loss,
target glint, and other specific situations, which make it difficult for the tracks of the targets
in a group to be maintained when the detection system can only partly identify the targets in
the group.

3. The available references contain a lot of theoretical description about maneuver treatment of the
targets in the group, but their practical tracking results are not as good as expected. In addition to
the typical splitting, combining, and crossing, there are another two special maneuvers: the
group’s sudden dispersal (as in a flock of birds being scared or the tactical dispersal of aircraft)
and the parallel maneuver of the group (as in the formation of aircraft firing missiles in salvoes).
As yet, there is no research on such subjects.

4. In order to improve the precise tracking effectiveness for partly identifiable targets in a
group, in practice, it is necessary to use different equipment to gain group target measure-
ments in different measurement directions from the perspective of the measurement system to
undertake data association and integration, etc. However, the available references are only
concerned with group tracking with a single sensor, without considering the more complex
multi-sensor cases.

Appendix 10A

Suppose that Z1 and Z2 are two pre-associated groups at neighboring moments. For the sake of our
discussion, define that {z11, z12, z13} in Z1 and {z21, z22, z23} in Z2 correspond to the target {t1, t2, t3}
at the two respective moments. z12, z13 constitute the basic coordinate system, and z22, z23 the
reference coordinate system.
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1. Derive the impact of measurement error on measurement right-angle coordinates. Suppose

that the standard deviation of measurement error is σ = σρ,σθ
� �0

, z11 = Pol x11,y11½ �0 = ρ11,θ11½ �0,
and the corresponding true measurement for the target is z011 = Pol x

0
11,y

0
11

� �0
= ρ011,θ

0
11

� �0
. Then

x011 = ρ
0
11 cosθ

0
11 = ρ11 +Δρ11ð Þcos θ11 +Δθ11ð Þ

= ρ11 cosθ11 cosΔθ11−ρ11 sinθ11 sinΔθ11 +Δρ11 cosθ11 cosΔθ11 +Δρ11 sinθ11 sinΔθ11
≈x11 cosΔθ11−y11 sinΔθ11 +Δρ11 cosθ11

ð10A:1Þ

where Δρ11 2 −σρ,σρ
� �

, Δθ11 2 −σθ,σθ½ �, then

x11−x
0
11 = x11 1−cosΔθ11ð Þ−y11 sinΔθ11 +Δρ11 cosθ11 ð10A:2Þ

Likewise,

y11−y
0
11 = y11 1−cosΔθ11ð Þ+ x11 sinΔθ11 +Δρ11 sinθ11 ð10A:3Þ

Through derivation, we get

x11−x011 2 x11 1−cosσθð Þ− jy11 sinσθj− jσρ cosθ11j,x11 1−cosσθð Þ+ jy11 sinσθj+ jσρ cosθ11j
� �

y11−y011 2 y11 1−cosσθð Þ− jx11 sinσθj− jσρ sinθ11j,y11 1−cosσθð Þ + jx11 sinσθj + jσρ sinθ11j
� �

ð10A:4Þ
A similar procedure can be applied to z12, z13.

2. Derive the impact of measurement error on relative position vector in the right-angle

coordinate system. Suppose that z01 = z11−
z12 + z13

2
= x01,y01½ �0, with a true value

z001 = z
0
11−

z012 + z
0
13

2 = x001,y
0
01

� �0
, then

x01−x001 =
2 x11−x011
� �

− x12−x012
� �

− x13−x013
� �

2

≥
2x11−x12−x13ð Þ 1−cosσθð Þ− y11j+ jy12j + jy13j jð Þsin; σθ; − cosθ11j + jcosθ12j+ jcosθ13j jð Þσρ

�
2

ð10A:5Þ

Since {z11, z12, z13} belong to the same pre-segmentation group,

jx11−x12j ≤ d0 , jx11−x13j ≤ d0 ð10A:6Þ

in which d0 is the threshold value for group segmentation, so
2x11−x12−x13j j

2
≤ d0. Because σθ

is assigned a smaller value,
2x11−x12−x13ð Þ 1−cosσθð Þ

2
≈0, sinΔθ≈Δθ. Equation (10A.5) can

be simplified as
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x01−x
0
01 ≥ −

y11j + jy12j+ jy13j jð Þσθ + cosθ11j+ jcosθ12j+ jcosθ13j jð Þσρ
2

= − Aσθ +Bσρ
� � ð10A:7Þ

where A01 =
y11j+ jy12j+ jy13j j

2
, B01 =

cosθ11j+ jcosθ12j + jcosθ13j j
2

. It follows that

x01−x
0
01 2 − Aσθ +Bσρ

� �
,Aσθ +Bσρ

� � ð10A:8Þ

Likewise,

y01−y
0
01 2 − Cσθ +Dσρ

� �
,Cσθ +Dσρ

� � ð10A:9Þ

where C01 =
x11j+ jx12j+ jx13j j

2
, D01 =

sinθ11j+ jsinθ12j+ jsinθ13j j
2

.

3. Derive the impact of the measurement error on the relative position vector in the polar
coordinate system. Suppose that w01 = Pol x01,y01ð Þ = ρ01,θ01ð Þ, with a true value
w0
01 = Pol x001,y

0
01

� �
= ρ001,θ

0
01

� �
. Equations (10A.8) and (10A.9) define the range of deviation

from the relative position vector to the true value in the right-angle coordinate system. Through
derivation, we have

jρ01−ρ001j 2 −E01,E01½ �, jθ01−θ001j 2 −F01,F01½ � ð10A:10Þ

where

E01 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A01

2 +B01
2

� �
σ2θ + C01

2 +D01
2

� �
σ2ρ + 2 A01B01 +C01D01ð Þσθσρ

q
F01 =max arctan

A01σθ +B01σρ
C01σθ +D01σρ

j, jarctanC01σθ +D01σρ
A01σθ +B01σρ

 � � ð10A:11Þ

Likewise, the range of deviation from the relative position vector w02 of z21 to its true value in
the reference coordinate system is

jρ02−ρ002j 2 −E02,E02½ �, jθ02−θ002j 2 −F02,F02½ � ð10A:12Þ

4. From (10A.10) and (10A.11), and (10.34) and (10.35), it follows that γ 2 ε,1½ �, where

ε =
σ θð Þσmax ρð ÞG ρð Þ + σ θð Þσmax ρð ÞG θð Þ

σ ρð Þσmax θð Þ+ σ θð Þσmax ρð Þ ð10A:13Þ

with G ρð Þ= σ ρð Þ
σ ρð Þ + E01 +E02ð Þ , G θð Þ = σ θð Þ

σ θð Þ+ F01 +F02ð Þ.
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11
Multi-target Track Termination
Theory and Track Management

11.1 Introduction

In addition to the filter estimation method, track initiation, data correlation, and maneuvering target
tracking, track termination and management are also a concern in the field of multi-target tracking.
When the target being tracked escapes from the surveillance region at any time, the tracker must

terminate the track and delete the redundant track files [40, 41]. Currently, the main multi-target
track termination technologies are the sequential probability ratio test [40, 274–276], tracking gate
[171, 277, 278], cost function [40, 279], Bayesian [280, 281], and all-neighbor Bayesian algo-
rithms [282].
In view of the complicated relations between radar tracks in the increasingly complicated battle-

field environment, the initiation, confirmation, maintenance, and cancellation criteria for target
tracks have proven crucial in engineering applications. Consequently, battlefield track management
[283–285], especially in terms of track batch [286, 287] and quality [17, 23, 49, 288], has become a
vital link in the procedure for radar data processing. Thus, this chapter will address itself to track
termination and management.

11.2 Multi-target Track Termination Theory

11.2.1 Sequential Probability Ratio Test Algorithm

The sequential probability ratio test (SPRT) algorithm proposed in Refs [40, 274–276] is mainly
applied to track initiation as well as track termination. It adopts the hypothesis testing approach
for track initiation or termination.
First, two hypotheses H1 and H0 should be established, among which H1 refers to the track main-

tenance hypothesis and H0 the track termination hypothesis.
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Second, the likelihood function of each hypothesis, P1k and P0k, should be calculated,
respectively:

H1 :P1k =P
m
D 1−PDð Þk−m ð11:1Þ

H0 :P0k =P
m
F 1−PFð Þk−m ð11:2Þ

where PD and PF are the detection and the false probability, respectively, m the detection number,
and k the scanned number. The likelihood ratio function corresponding to the two hypotheses is
defined as

Uk =
P1k

P0k
ð11:3Þ

The corresponding thresholds are set as C1 and C2.

Third, the decision logic of the SPRT algorithm should be arranged as follows:

1. If Uk ≥C2, hypothesis H1 is accepted and the track maintained.
2. If Uk ≤C1, hypothesis H0 is accepted and the track maintained.
3. If C1 <Uk <C2, testing continues.

The decision thresholds C1 and C2 above satisfy

C1 =
β

1−α
ð11:4Þ

C2 =
1−β
α

ð11:5Þ

where α and β are the predefined permissible error probabilities. α is the probability that H1 is
accepted when hypothesis H0 holds, or the probability of missed cancellations (the probability that
no cancellation is decided for tracks which should be cancelled), while β is the probability thatH0 is
accepted when hypothesis H1 is true, or the probability of false cancellations (the probability that
cancellation is decided in the presence of real tracks).
The logarithmic form of the likelihood ratio function can be obtained by evaluating the logarithm

of (11.3) and capitalizing on (11.1) and (11.2). Thus, the decision logic equation becomes

lnUk = ln P1k=P0kð Þ =ma1−ka2 ð11:6Þ

where the parameters a1 and a2 are

a1 = ln
PD= 1−PDð Þ
PF= 1−PFð Þ ð11:7Þ

a2 = ln
1−PF

1−PD
ð11:8Þ

Define the test statistical variables ST(k):

ST kð Þ=ma1 ð11:9Þ
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lnUk = ST kð Þ−ka2 ð11:10Þ

and define the decision threshold at time k as

TU kð Þ = lnC2 + ka2 ð11:11Þ
TL kð Þ= lnC1 + ka2 ð11:12Þ

Then, the decision logic of track termination can be expressed as follows:

1. If ST kð Þ ≥ TU kð Þ, hypothesis H1 is accepted and the track maintained.
2. If ST kð Þ ≤ TL kð Þ, hypothesis H0 is accepted and the track maintained.
3. If TL kð Þ< ST kð Þ< TU kð Þ, testing continues.

Specifically, if measurements fall into the wave gate of a track at time k, then the statistics ST(k)
increases by a1; if there is no measurement in the wave gate of the track, ST(k) remains unchanged,
while thresholds TL(k) and TU(k) increase by a2 at every moment. When the statistics ST(k) is higher
than the threshold TU(k), the algorithm decides track maintenance; when the statistics ST(k) is lower
than the threshold TL(k), it decides track termination and cancellation; otherwise, the test continues.

11.2.2 Tracking Gate Method

This method applies the optimal track threshold γ0 [171, 277, 278] to the criteria for determining
track termination, with γ0 expressed as

γ0 = 2ln
PD

1−PDð Þβnew 2πð ÞM=2 ffiffiffiffiffiffi
Sj jp ð11:13Þ

where PD is the detection probability, βnew the new echo density,M the observation dimension, and
|S| the determinant of the innovation covariance matrix.
The tracking gate rules show that the echo received by the detector most probably originated from

the target being tracked when the innovation norm ψ(k) generated by the tracking filter meets the
relation equation

ψ kð Þ ≤ γ0 ð11:14Þ

Therefore, as long as γ0 > 0, there exists a possibility of updating the track of the target. On the
contrary, if γ0 < 0, the echo received most probably came from the new target rather than the target
being tracked:

γ0 < γmin ð11:15Þ

If the size of the elliptical tracking gate γ has been calculated, then a criterion follows naturally for
track termination: a track is considered terminated when and only when

γ0 < γmin ð11:15Þ

holds valid. In the above, γmin refers to a minimal threshold that could be obtained by the standard
χ2M distribution with M (observation dimension) degrees of freedom lest the track be terminated in
the presence of a predefined track-update probability.
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11.2.3 Cost Function Method

It is known that when the dynamic model of the target is accurate enough and the observation/track
are correctly matched, the innovation norm of the target ψ(k) follows a χ2M distribution with M
degrees of freedom, where v(k) refers to the innovation vector of the target, S(k) refers to the innov-
ation covariance matrix, and M is the observation dimension:

ψ kð Þ= v0 kð ÞS−1 kð Þv kð Þ ð11:16Þ

Reference [279] defines a cumulative χ2 cost function normalized by the renewal times Ni for
track i:

Ci =
1
Ni

XNi

k = 1

ψ kð Þ ð11:17Þ

It follows from the definition above that NiCi follows a χ2MNi
distribution with MNi degrees of

freedom. Therefore, according to the χ2MNi
distribution or the Gauss approximation, the threshold

can be set as

ηi = μci + ασci , 8α ≥ 3 ð11:18Þ

where μci and σci refer to the mean value and the standard deviation of Ci, respectively:

μci =E Ci½ � ð11:19Þ

σci =

ffiffiffiffiffiffiffiffi
2μci
Ni

s
ð11:20Þ

Finally, when

Ci > μci + ασci ð11:21Þ

or

Ci < μci −ασci ð11:22Þ

is satisfied, the algorithm accepts the hypothesis of track termination.
In this algorithm, along with the increase in number of updates Ni, the previous data will be

heavily weighted but new data lightly weighted by the cost function Ci defined in (11.17), which
may result in false track termination. One of the solutions to this problem is to set the attenuation
coefficient δ(k) in the cost function Ci, that is,

C∗
i =

1
Ni

XNi

k = 1

δ kð Þψ kð Þ ð11:23Þ

where δ Nið Þ= 1 and δ k + 1ð Þ> δ kð Þ.
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The modified cost function follows a Aχ2VΓ
distribution with VΓ degrees of freedom (refer to

Ref. [41] for proof), where

A=

XNi

k = 1

δ2 kð Þ

XNi

k = 1

δ kð Þ
ð11:24Þ

VΓ =M

XNi

k = 1

δ kð Þ
" #2

XNi

k = 1

δ2 kð Þ
ð11:25Þ

Another solution is to take a fixed number of updates Ni and conduct track termination testing
with a sliding window of length Ni for the track such that the cost function Ci always includes the
latest Ni innovation vectors.

11.2.4 Bayesian Algorithm

ABayesian algorithm [280, 281] could be used for track initiation as well as track termination. First,
the posterior probability Pr TjZð Þ that a track is true, given the measurement set Z, is calculated.
According to the Bayesian algorithm,

Pr T jZð Þ= Pr ZjTð ÞP0 Tð Þ
Pr Zð Þ ð11:26Þ

where

Pr Zð Þ= Pr ZjTð ÞP0 Tð Þ+ Pr ZjFð ÞP0 Fð Þ ð11:27Þ
P0 Fð Þ= 1−P0 Tð Þ ð11:28Þ

and Pr ZjTð Þ and Pr ZjFð Þ refer to the probabilities, respectively, of receiving the measurement set Z
in the presence of true targets and false targets; P0(T) and P0(F) stand for the prior probability for the
true target and the false target; Pr(Z) means the probability of receiving a measurement set.

Defining the likelihood ratio of statistics as L Zð Þ = Pr ZjTð Þ
Pr ZjFð Þ and combining (11.26)–(11.28)

yields

Pr T jZð Þ= L Zð ÞP0 Tð Þ
L Zð ÞP0 Tð Þ + 1−P0 Tð Þ ð11:29Þ

Assume that Lk is the statistics likelihood ratio of the kth scan and Pr T jZkð Þ refers to the prob-
ability that the target is true by the end of the kth scan, then (11.29) becomes

Pr T jZkð Þ = LkPr T jZk−1ð Þ
LkPr T jZk−1ð Þ + 1−Pr T jZk−1ð Þ ð11:30Þ
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where

Lk =
Pr Zk−1jTð Þ
Pr Zk−1jFð Þ =

PDVj kð Þexp −ψ j
2 kð Þ=2� �

PF 2πð ÞM=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sj kð Þ�� ��q , detection

1−PD

1−PF
, miss detection

8>>>><>>>>: ð11:31Þ

with Vj(k) the volume of the correlation region of the jth target, Sj(k) the innovation covariance
matrix, ψ j(k) the innovation norm,M the observation dimension, PD the radar detection probability,
PF the false alarm probability, and

PF = βFT �Vj ð11:32Þ

where βFT is the false alarm density.
With the track termination threshold set as Pel, the track is considered terminated when and

only when

Pr TjZkð Þ<Pel ð11:33Þ

Through this method, it is possible to carry out track confirmations and track terminations at the
same time; after each track is confirmed, the track termination test will start with a larger initial
target probability P0.

11.2.5 All-Neighbor Bayesian Algorithm

The aforementioned Bayesian algorithms are nearest-neighbor algorithms, applicable to target track
termination under the sparse echo environment. To conduct maneuvering multi-target track termin-
ations (MMTT) in very dense multiple-echo environments, Bayesian algorithms can be modified
such that modified probabilities are used for associations. To be more specific, the all-neighbor
equivalent innovations in the secondary filter algorithm are used to replace the “nearest” innov-
ations in the Bayesian algorithms so as to obtain a method for calculating a new data likelihood ratio.
The basic equation of the all-neighbor Bayesian algorithm is

Pr T jZkð Þ= LkPr TjZk−1ð Þ
LkPr TjZk−1ð Þ+ 1−Pr T jZk−1ð Þ ð11:34Þ

where

Lk =

PDVj kð Þexp −φj kð Þ=2� �
PF 2πð ÞM=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sj kð Þ�� ��q , detection

1−PD

1−PF
, miss detection

8>>>><>>>>: ð11:35Þ
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with φj(k) the equivalent innovation norm of the jth target, namely

φj kð Þ = Zj kð Þ−H kð ÞX̂j kjk−1ð Þ� �0
S−1
j kð Þ Zj kð Þ−H kð ÞX̂j kjk−1ð Þ� �

, j = 1,…,n ð11:36Þ

where n refers to the number of targets.
Because extra echoes form a uniform distribution in the surveillance region, in order to meet the

needs of the high-density echo environment, redefine

PF =
Vj

VT
, j= 1,…,n ð11:37Þ

where VT refers to the volume of the surveillance region.
Likewise, set the track termination threshold PTT such that the hypothesis of track termination is

accepted when and only when

Pr T jZkð Þ<PTT ð11:38Þ

11.2.6 Performance Analysis of Several Algorithms

11.2.6.1 Simulation Environment and Parameter Setting

Two typical multi-maneuvering-target environments are chosen below.

Environment 1. Initiation state of targets: X 0ð Þ= 60000m, 0m=s, 40 000m, 600m=s½ �0 at t = 30 s,
ax = 35m=s2, ay = 35m=s2. The termination time of the target motion is t = 50 s.

Environment 2. Assume that the targets keep emerging in the surveillance region, with the number
of targets increasing gradually from 5 to 60. Their initial positions are subject to a Gaussian
distribution in the area shown in Figure 11.1. The initial velocities and headings are uniformly
distributed between 4–1200 m/s and 0–2.

In Figure 11.1, r1 is the observation radius, r01 is the radius of the blind zone, and o0 is the local
coordinate origin; r1 = 110 km, r01 = 2km, a= b = 125km, x1 = 380 km, y1 = 270 km.

A

B

D (x1,y1)

(a,b)

r1

r′1
o′

XO

Y

Figure 11.1 Schematic diagram for radar observation region
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Other numerical values used in the simulation are: the interval for radar sampling, T = 2 s; range-
finding errors, σr = 100 m; angle-finding errors, σθ = 0:03 rad; simulation runs, N = 50. The param-
eters of each algorithm were set as follows.

1. Sequential probability ratio test algorithm: detection probability PD = 0:95, false alarm probabil-
ity PF = 0:1, probability of missed cancellations α= 0:15, probability of false cancella-
tions β = 0:1.

2. Tracking gate algorithm: detection probability PD = 0:95, new target echo density βnew = 0
(environment 1), βnew = 0:2 (environment 2), minimal threshold value γmin = 0:103.

3. Cost function algorithm: sliding window length Ni = 8.
4. Bayesian algorithm: detection probability PD = 0:95, false alarm probability PF = 0:1, termin-

ation threshold Pel = 0:7, initiation probability P0 = 0:01.
5. All-neighbor Bayesian algorithm: detection probability PD = 0:95, false alarm probability

PF = 0:1, termination threshold PTT = 0:7, initiation probability P0 = 0:01.

11.2.6.2 Simulation Results and Analysis

Environment 1
Table 11.1 offers a comparison of the termination time required by the various track deletion algo-
rithms. As shown by the simulation results, the all-neighbor Bayesian algorithm needs the shortest
termination time, thus rapidly providing information about the deletion of the track; it is followed by
the cost function algorithm. The Bayesian algorithm and the sequential probability ratio test algo-
rithm need a longer termination time. The tracking gate algorithm consumes the longest time with
weak real-time performance.

Environment 2
Figure 11.2 offers the comparison results of each algorithm’s false termination rate varying with the
target batch number. The false termination rate of the all-neighbor Bayesian algorithm and the
sequential probability ratio test algorithm slowly rises with the target batch number, while that
of the tracking gate algorithm and the Bayesian algorithm rapidly grows with the target batch num-
ber. However, compared with the tracking gate algorithm and the Bayesian algorithm, the false ter-
mination rate of the cost function algorithm is much lower when the target batch number is less than
40; with a target batch number over 40, its false termination rate will gradually exceed that of the
aforementioned two algorithms.
Therefore, from the perspective of track termination time and the false termination rate of the

algorithm: the all-neighbor Bayesian algorithm has better real-time performance and strong stabil-
ity; the sequential probability ratio test algorithm requires a longer track termination time but

Table 11.1 Track termination time of each algorithm

Termination
algorithm

Sequential
probability ratio
test algorithm

Tracking gate
algorithm

Cost function
algorithm

Bayesian
algorithm

All-neighbor
Bayesian
algorithm

Termination
time (s)

6 8 5 6 4
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acquires strong stability, with similar real-time performance to that of the all-neighbor Bayesian
algorithm; the cost function algorithm has lower false termination rate when there is a smaller target
batch number and higher false termination rate when there is a larger target batch number. The
Bayesian algorithm and the tracking gate algorithm all consume a longer track termination time with
poor stability. From the perspective of algorithm classification, the sequential probability ratio test
algorithm, tracking gate algorithm, cost function algorithm, and Bayesian algorithm all belong to
the nearest-neighbor algorithms, which determines that the application of these algorithms is limited
only to the sparse target echo environment and non-maneuvering target environment. By utilizing
all-neighbor information, the all-neighbor Bayesian algorithm is a track termination technology that
could be applied in the very-dense multiple-echo environment and the multi-maneuvering-targets
environment, because the algorithm provides reliable and rapid track termination decisions. For this
reason, it possesses practical engineering values.

11.3 Track Management

11.3.1 Track Batch Management

Each radar tracking system must have its own track file management system. Track management is
usually done by track numbering. The track batch, as it implies, is the numbering of the track, which
serves as a reference for all the parameters related to the given track. For one thing, the track is
marked in track management for the correlation processing. For another, it can be used for the stat-
istical analysis of the processing effect afterwards. Furthermore, the management of the track batch
could be utilized to describe the battlefield situation and be fed back to the information processing
inside the track.
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Figure 11.2 Comparison of each algorithm’s false termination rate varying with the target batch number
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The application, cancellation, maintenance, as well as the calculation and operation of tracks in
track batch management calls for the establishment of a track batch array and a track batch linked
list. This is done as follows:

1. The track batch array DT with NN (where NN is an integer) dimensions is established and
initialized to DT ið Þ= i, i= 1,2,3,…,NN.

2. Assume NU is the pointer entering into the radar surveillance region with initial value 0.
3. The application for track batch. NU =NU + 1 when the new track appears in the surveillance

region, with assigned track batch NT =DT NUð Þ.
4. The deletion of track batch. If the track NT1 is deleted, DT NUð Þ =NT1 and NU =NU−1.

Considering that the track batch serves as the first parameter for all operations of the track, it is
necessary to establish the assignment track linked list for the radar surveillance region so as to facili-
tate the continuous and effective operation of all tracks in the region. The procedure of managing the
track batch storage and conversion in the surveillance region is as below:

1. Set up the track batch storage array IDT1 with the initial value of IDT1 set to 0. Set a variable TB1
and store the first track batch NT1 in TB1.

2. The track batch is stored in IDT1 such that IDT1 NT1ð Þ =NT2 and IDT1 NTmð Þ =NTm+ 1
accordingly.

3. With regard to the operation of the track in the surveillance region, the first track batch NT1 is
obtained from TB1 and then in sequence NTm= IDT1 NTm−1ð Þ, till 0 appears.

4. The cancellation of the track.

Assume that NT is the current track batch under processing and NTL the last processed track
batch, then the cancellation process is:

1. If NTL = 0, TB1 = IDT1 NTð Þ and IDT1 NTð Þ= 0.
2. If NTL 6¼ 0, NT1 NTLð Þ = IDT1 NTð Þ and IDT1 NTð Þ= 0.

Besides, the track batch assignment serves as the key process in the track batch management. The
following subsections offer an investigation and analysis of the single-track batch dispatch method
in the radar tracking system, a multiple-track batch dispatch method on this basis, as well as a
method for the expanded-track batch cubic figures. The introduction of track batch cubic figures,
in particular, provides a new technique for track management.

11.3.1.1 Single-Track Batch Assignment Method

While executing the attack mission in a certain attacking area, the formations usually perform man-
euvers, respectively, to enhance their combat capability. Under such circumstances, the formation
tracking is similar to the case of a target entering into the highly cluttered area, with many meas-
urements appearing in the shared wave gate. In general, the method of multiple hypothesis is
adopted, according to which the track is split into two or more tracks in accordance with the meas-
urement data in the wave gate; the originally accumulated track information is taken as the shared
information after the track is split. After recursion for a few time steps, according to their own asso-
ciation points, the two split tracks are true if they can still be maintained, or one of them is terminated
in the case of false alarms. In the process of treating splitting tracks, identifying the relationship
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between consecutive tracks can only be implemented through a change of track batch. How do we
dispatch the track batch so as to identify the variation characteristics of the tracks?
There are three methods for splitting tracks.

Method 1. Assign according to Figure 11.3(a). Although the information on track 6 is reserved in the
new tracks 7 and 8, the connections between tracks 7, 8, and 6 have already disappeared along
with the innovation of the track batch at a higher level, which means that tracks 7 and 8 are similar
to the reinitiation track, whose historical information suffers the greatest loss.

Method 2. Dispatch according to the method in Figure 11.3(b). The original track information is
reserved in track 6 or 7. The original continuity of track 6 is maintained in the system, however,
two situations emerge: (i) No information will be lost if the new track 6 is the real continuation of
the original track 6; (ii) If the new track 6 is a false one and soon terminates, the loss of historical
information is the same as in method 1. Here, track 7 could be regarded as the temporary track
(unlike the temporary track at track initiation). After a few time steps, its existence is checked to
determine whether to maintain it or not. If track 7 remains but track 6 terminates, then batch 7 is
changed into batch 6 so as to retain this continual relationship. If tracks 6 and 7 are both reserved,
then batch 7 is officially allocated to this initiated track.

Method 3. Dispatch according to the method in Figure 11.3(c). The application of one track batch to
two tracks violates the common principle: there should be only one track batch identification.
However, the advantage is the maintenance of the continual relationship of one track. These
methods can be applied on occasions where the track batch can be repeated.

An in-depth investigation of method 2 reveals that the assignment of a temporary track batch and
its maintenance for a certain period of time are a thorny problem. This method cannot identify from
the track batch whether the track knows its state. Therefore, it is suggested to maintain two track
batches on each track in areas where tracks are prone to intersect and split, such as within some
specific track clusters. Among these two track batches, one serves as the former track batch and
the other as the latter track batch. The former track refers to the assigned track batch before splitting
tracks, which is free from intersection or mergence. The latter track refers to the assigned track batch
after the intersection or mergence occur. In this way, the continual transformation relation is main-
tained, which makes the processing more flexible.

11.3.1.2 Double-Track Assignment Method

The double-track assignment method provides a series of assigning mechanisms. For convenience,
the positive number x can be used to express the former track batch and the positive number y to
refer to the latter track batch. Generally:

Track 6
Track 7

(a) (b) (c)

Track 8

Track 6
Track 6

Track 6
Track 6

Track 6Track 7

Radar sampling point The batch changing position

Figure 11.3 Description of splitting tracks with the single-track batch assignment method
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• at the track maintenance step, x= y;
• the track initiation step, y = 0, restricted time is τi;
• track cancellation step, x = 0, restricted time is τc;
• track transformation step (intersection, mergence, and splitting), x 6¼ y, restricted time is τt.

The process from track combination to track splitting and finally the deletion of one of the tracks
is described in Figure 11.4.
The track at the initiation stage (x = 7, y = 0) will enter into the maintenance stage after a certain

period of time (x = y= 7) and combines with another track (x= y = 6) that also exists at the mainten-
ance stage. During the period of mergence, the track batch is (x = 6, y = 7), whose order remains
obscure. If the track existence time is higher than τt, after mergence, the track batch is (x = y = 6)
or (x = y= 7). If it splits during τt, and exists longer than τt, the track batch will revert to track
(x = y = 6) and (x = y= 7). The corresponding relation of the track batch before and after inter-
section can be determined through the application of some rules and experience. For example, a
common track usually has no “V” turn. If the track (x = y= 6) enters the cancellation stage at this
moment, the track batch turns into (x = 0, y= 6).
The description of track initiation, maintenance, splitting, and mergence is presented in

Figure 11.5.

11.3.1.3 Descriptive Diagram and Characteristics of the Double-Track Batch

According to the double-track dispatch method, the batch of a track includes two positive number
values: x and y. If placed in the XY plane, it simply corresponds to a point in a plane (whose coord-
inate is positive). For a multi-track environment corresponding to a closely spaced target, the dis-
tribution of track batches forms an area, the size of which is susceptible to the limitation of the
maximum (the maximum assignable track batch – e.g., if the batch limit is 120, then the track batch
ranges from 1 to 120, and the maximum is 120) of tracking multiple targets.
As shown in Figure 11.6, axis x is the collection of the track batches at the initiation stage, axis y is

the collection of the track batches at the cancellation stage, the straight line x = y is the collection of
the track batches at the maintenance stage, the area between x and x = y is the collection of the track

Track (6, 6)

Track (7, 7)

(6, 7) or (7, 6)

(7, 7)(7, 0)

(6, 6)

(0, 6)

Figure 11.4 The typical process of the double-track batch descriptive method

(6, 0) (6, 6)

(6, 7) (7, 7)

(6, 7)
(6, 6)

(6, 6) or (7, 7)

Figure 11.5 Track batch assignment of the whole process including track initiation, maintenance, splitting,
and mergence
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batches at the combination stage, and the area between y and x= y is the collection of the track
batches at the split stage. Thus, the points within this area are characterized by the following fea-
tures: the track batches at the maintenance stage are distributed on the straight line x = y, such as t1;
the track batches at the initiation stage are distributed on axis x (y = 0), such as t2; the track batches at
the cancellation stage are distributed on axis y (x = 0), such as t3; the tracks at the transformation
stage (intersection, mergence, and splitting process) are distributed in the two areas A and Bwithout
the boundaries in the first quadrant, such as t4.
The general changing process of tracks includes: first, the track exists at the initiation point (k, 0)

on the x axis, then at the maintenance stage of the track, the point appears at the point of
intersection (k, k) of the x = k, x = y segment; if splitting occurs, the two split points (k, l1)
and (k, l2) appear on the x = k segment; if the track (k, l1) is cancelled, it will appear on the point
(0, l1) on the y coordinate axis with the track (k, l2) returning to the state of (k, k) at the steady main-
tenance stage. The whole changing process is demonstrated in Figure 11.7. This method is used to
identify the two track transformations mentioned above, namely, splitting and mergence, as shown
in Figure 11.8.
The number of points on x= k indicates the historical splitting of the track. The features of track

mergence and intersection can be demonstrated as follows: there is a point (x, y) in the transform-
ation area; if points exist on both (x, x) and (y, y) beforehand, then track (x, y) is formed after track
mergence; if the two points (x, x) and (y, y) appear in the follow-up time, they are formed after
track intersection; if only (x, x) or (y, y) appears, then it is obtained through track mergence and soon
enters into the maintenance stage.

11.3.1.4 Solid Figure Description of the Double-Track Batch

Solid Figure
Previous studies focus on the transient dispatch characteristics of the track batch. If the existence
time of each stage is taken into consideration, it is necessary to introduce the time axis to constitute
the three-dimensional track batch structure, which contains more elements.
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Figure 11.6 The plane graph of the track batch

262 Radar Data Processing with Applications



Because radar records data at a certain sampling interval, the existence time of the track batch is
discrete – just as the track batch itself. Its solid figure is presented in Figure 11.9(a).
The following subsection offers an analysis of the meaning of each plane: as shown in

Figure 11.9(b), the points in the x = y plane all refer to the tracks at the track maintenance stage,
with the sustained time stretch standing for the track life in a general sense. In view of the fact that
the track life is rated as an important factor reflecting the features of tracking, the number of tracks
within this plane whose life exceeds a certain value could be calculated in a simulation so as to
evaluate the track effect. The state estimate of the tracks that correspond to the points within this
plane possesses the highest reliability and the best target identification capability.
The XT plane is shown in Figure 11.9(c). The whole process of simulation reflects the quantity of

initiated tracks as well as the sampling points needed, which is attributable to the method adopted for
track initiation. For example, with regard to the n/m rule of the sliding-window method, the number
of points k and the quantity of track batches at the same location on the x coordinate demonstrate the
adaptability of this method to the environment. This measure of adaptability, used to guide the selec-
tion of the track initiation method, is prone to two restraints and is a compromise between the

y

(0, l1) (k, l1)

(k, l2)

(k, k)

(k, 0)0 xmax x

Figure 11.7 Description of typical track transformation process with track batch figure
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Track splitting
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Figure 11.8 Description of track splitting and mergence with the track batch figure
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capacity of rapid initiation of track and the production of false tracks, for which the statistics of the
YT planar points offers a fairly good basis. The restricted time for the track initiation is τi,
with k∗T < τi.
Figure 11.9(d) records the process of track cancellation. As the inverse process of track initiation,

the statistics of its points is also of evaluation significance. The restricted time is τc, meaning that it is
insignificant to reserve the information of the track whose cancellation time exceeds τc and can be
cancelled. However, it is of prime importance to reserve the batch of the track that exists at the can-
cellation stage, because it can trace back the past and adjust the assignment of the correlative track
batch. As shown in Figure 11.10, the batch of track (6, 6) at the cancellation stage is (0, 6), which
could be used to transform the temporary track (6, 7) into the reliable track (6, 6).
The region between the four planes is the most complicated; the significance of points should be

evaluated on the basis of their locations on the four planes. For example, (3, 6, 3) is interpreted as:
track 3 splits into track 6 and has lasted for 3 T. The locations of the points describe the causal rela-
tionship of track transformation as well as the contemporary state, and provide a method for track
batch description in processing tracks of multiple targets in clutter, which facilitates the realization
of multi-target track algorithms such as the multiple-hypothesis filtering and JPDA. Meanwhile, as
it reflects the dynamic combination and transformation features of the track in the overall situation,
it is possible to roughly estimate the joint and cooperative operational characteristics of the target on
the basis of combining other features of tracks, such as the spatial position and properties.

Initiation and Management
The description and realization of track batch management by the solid figure of the track batch
necessitates the following initializations.

Track (0, l1) has been initiated Track (0, l1) has been cancelled

Track (0, l2) is at the cancellation stage

Track (1,1,6) has maintained for 6T

Track (0, l2) is at the initiation stage
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Figure 11.9 Solid figure
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1. The maximum track number that can be contained is xmax = ymax.
2. The track initiation time constant is τi.
3. The track cancellation time constant is τc.
4. The initialization of the transformation rules, concerning mainly the points that are not on the

reference plane:
i. the data correlation rules of the point (track) from the straight line x= y to the transformation

region, including those for measurement-to-track and track-to-track correlations;
ii. the data association rule of the point (track) returning from the transformation region to the

straight line x = y, mainly referred to as track-to-track correlations.

The region management algorithms of the solid figure are as follows.

1. Initiation face: track initiation algorithms, like the n/m rule.
2. Maintenance face: track maintenance algorithms, like the adaptive track algorithm.
3. Cancellation face: track cancellation algorithms, like the logic-based method.
4. A zone: track combination management algorithms.
5. B zone: track splitting management algorithms (see Figure 11.6).

The track batch solid figure can meet the urgent need of track management. Its main functions are
as follows.

1. To evaluate the performance of methods used in track initiation, cancellation, and maintenance.
2. Dimension separation processing of the solid figure, which can be taken as a single index in self-

adaptive control of a certain parameter in track management.
3. A solid figure with spatial position could be used to analyze attack attributes of the target, instruct

the attribute identification, comprehend its tactical intention and threat level, and feed back to the
state estimation for model prediction.

11.3.1.5 Storage of Track Data

Track data within a certain period of time has to be stored according to the requirement of data
processing algorithms to facilitate subsequent data processing. But in real systems, various events
such as crossing, bifurcation, combination, and disappearance may take place for the targets when
they enter or leave the detection zone. Therefore, the storage of track data should be allocated and
freed dynamically so as to manage data updating flexibly.
The trackdataof radars are stored in the formofaunidirectional linked list, as shown inFigure11.11.

When a new track turns up, a track batchDT (NU) is assigned according to the track batch array, and
the memory space of a fixed number of storage units is dynamically opened to store the track data.
When DT (NU) is removed, the memory space is released and the pointers in the two adjacent units
are revised so that the two become neighboring units. At last, the track batch DT (NU) is revoked.

(6, 6)
(6, 6)

(0, 6)

(6, 6)
(6, 7)

Figure 11.10 Significance of the track batch at the cancellation stage
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The data of each track are stored in accordance with the sliding circulative time window, as shown
in Figure 11.12. Assume that there areM storage units of track data, and the current moment is k. As
illustrated in Figure 11.12(a), when k <M, the new measurement k of the track is stored at the cor-
responding storage point k, and is stored in turn afterwards. When k =M, the new measurement k is
stored at the corresponding storage pointM, as shown in Figure 11.12(b). When k =M + 1, the new
measurement is stored in unit 1, as illustrated in Figure 11.12(c). The subsequent measurements are
stored in the same manner. This guarantees that the track data stored in the circulative time window
are always those at the latest M moments. M is set according to the specific system requirements.

11.3.2 Track Quality Management

As an integral part of track management, track quality management can help initiate tracks promptly
and accurately to set up new target files, or revoke tracks in the same fashion to remove redundant
target files. Track quality management has two main goals:

1. To initiate new tracks correctly and rapidly, and suppress false ones from initiating.
2. To delete the already set-up false tracks correctly and promptly, and keep true ones from being

deleted.

11.3.2.1 Select Initiation Rule and Delete Tracks According to Track Quality

Initiation Response Time
To conduct a theoretical analysis of track quality management, track initiation and cancellation will
be illustrated with the sliding-window detector. The sliding-window detector has been discussed in
Chapter 6. As it requires a small amount of calculation and can be analyzed with the Monte Carlo
method (or analytic method), it has been adopted in many practical tracking systems.

Track DT(1)

Track DT(2)

Track DT(3)

Track DT(NU)

Figure 11.11 Sketch map of unidirectional chained list storage of radar tracks
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The general principle of sliding-window detectors is as follows. Assume the sequence (Z1,
Z2,…, ZN) represents N times of radar scanning. If there is measurement in the correlation gate
of the ith scan, let Zi = 1; otherwise, let Zi = 0. If the detected number in a sliding window with size
n reaches m, then track initiation is successful, otherwise the sliding window moves ahead.
At present, the common technical index for track initiation is the initiation response time. This

refers to the duration from a target’s entrance into a radar power coverage to the establishment of the
track, and it usually takes the number of radar scanning cycles as its unit. A quick track initiation
usually takes 3 or 4 scanning cycles, while a slow one usually takes 8 to 10 scanning cycles.
In sliding-window detection, the result of Hammers (see Table 11.2 [283, 284]) can be used dir-

ectly to calculate the time that conventional criteria take to detect a target. In track initiation, the
probability of a true track is equal to the probability of it being found by radar in target detection.
Assume that p is the probability of Zi = 1, and Pc (N) is the probability state difference equation for
succeeding at the Nth detection. It is shown in Table 11.2 that, under the circumstance of certain
rule, the initiation response time is the uniform function of p. With a given initiation response time,
a number of n/m rules with response time smaller than the rated response time can be singled out.
Given different rules and p, the initiation response time and the probability of success at the Nth
initiation can be obtained according to Table 11.2.
When the initiation response time is smaller than that required by the system index, the common

criterion for n/m logic sliding detection is shown in Table 11.3.
As shown in the table, it is difficult to determine the required initiation rule only with a given

initiation response time.
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Figure 11.12 Sketch map of storage units in the sliding time window: (a) k <M; (b) k =M; (c) k =M + 1
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False Track Initiation Probability
To reflect the inhibition of track quality management systems against false track initiation, define
the probability of false track initiation as PFTI. The characteristics of false track initiation have to be
studied in order to calculate the probability of false tracks.
The probability of false targets turning up is

Pc = 1− 1−PFð ÞL ð11:39Þ

where PF is the radar’s probability of false alarms and L is the number of radar resolution units in the
initiated wave gate. For 2D radars,

L=
π VmaxTð Þ2
Δρ ρΔθð Þ ð11:40Þ

whereΔρ andΔθ are the distance resolution and orientation resolution of the radar, respectively, ρ is
the distance between the initiated wave gate and the radar, Vmax is the maximum expected target
velocity, and T is the radar scanning cycle.
Assume that ρ = 50km, Δθ = 0:026 rad, Δρ = 300m, σθ = 0:014 rad, σρ = 150m, Vmax = 600m=s,

T = 1 s, and PF = 105, then Pc = 5:9 × 10−4 can be obtained according to (11.39) and (11.40). Sub-
stituting Pc into the state difference equation in Table 11.2 as p (false targets’ probability of detec-
tion) yields PFTI, the probability of false track initiation under different rules, as listed in Table 11.4.
Make it smaller than PFTIT, the probability index of false track initiation of the system, that is,
PFTI ≤PFTIT. It is shown in Table 11.4 that PFTI under the 3/3 rule is the minimum. Given
PFTIT = 5 × 10−5, 2/2 can be chosen.

Table 11.2 State difference equation for the Nth initiation’s probability of success

Rule Initiation response time State difference equation for the Nth initiation’s probability of success

2/2 1 + pð Þ
p2

Pc Nð Þ= p2δN2 + 2−pð ÞPc N−1ð Þ− 1−pð Þ2Pc N−2ð Þ−p 1−pð ÞPc N−3ð Þ
when N < 2, Pc Nð Þ= 0

2/3 2−q2

p 1−q2ð Þ, in which q= 1−p
Pc Nð Þ= p2δN2 + p2 1−pð ÞδN3 + 2−pð ÞPc N−1ð Þ

+ p−1ð ÞPc N−2ð Þ+ p 1−pð Þ2Pc N−3ð Þ
−p 1−pð Þ2Pc N−4ð Þ

when N < 2, Pc Nð Þ= 0
3/3 1 + p+ p2

p3
Pc Nð Þ= p3δN3 + 2−pð ÞPc N−1ð Þ− 1−pð Þ2Pc N−2ð Þ

−p 1−pð Þ2Pc N−3ð Þ−p2 1−pð ÞPc N−4ð Þ
when N < 3, Pc Nð Þ= 0

(Note: when N = i, δNi = 1; otherwise, δNi = 0).

Table 11.3 Criteria by which the initiation response time is smaller than the system index

Initiation time index criterion Pd = 0:9 Pd = 0:8 Pd = 0:7 Pd = 0:6

Quick track initiation (response time ≤4) 2/2, 2/3, 3/3 2/2, 2/3 2/2, 2/3
Slow track initiation (response time ≤8) 2/2, 2/3, 3/3 2/2, 2/3, 3/3 2/2, 2/3, 3/3 2/2, 2/3
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False Track Life and True Track Life
The main task of track cancellation is to promptly delete false tracks and keep true tracks. For this
purpose, false track life and true track life [288] are defined as follows.

Definition 11.1 False track life (LFT) is the average number of scans of a false track from initiation
to cancellation.

Definition 11.2 True track life is the average number of scans of a true track from initiation to
cancellation because it is mistaken for a false track.
When a sliding-window detector is used, the rule for track cancellation is: If there is no meas-

urement detected that is correlated with the track for m times out of n detections, then delete
the track.
The number of resolution units in subsequent correlation gates is related to the size of the gate,

which in turn is related to the accuracy of the filter. It is a function of the observation and prediction
covariance matrix. Assume that prediction error equals observation error, then the number of reso-
lution units in subsequent correlation gates is

L=
2χ2σρσθ
ΔρΔθ

ð11:41Þ

where χ2 is the chi-squared distribution threshold with a given significance level. The measurement
accuracy is generally positively correlated with resolution units, and the number of resolution units
in subsequent gates is related to the SNR and accumulation method. The probability of no false
target being in subsequent correlation gates is Pc = 1−Pc.
According to the Hammers method [284], assume that the parameters in (11.41) are the same as

mentioned previously, and obtain Pc = 0:99996, so the false track life under different rules is
obtained, as listed in Table 11.5.
The following conditions have to be considered when studying true track life:

1. The echo from the target falls in the association region, and there is no false alarm.
2. The echo from the target falls in the association region, and there are false alarms.
3. There is no echo from the target, and there are false alarms.
4. There is no echo from the target, and there is no false alarm.

Under these conditions, it is assumed that the probability of measurements (echoes) falling
in association regions, or the threshold probability, is PG = 1:0. So, the probabilities of the four
events are P1 =Pd × 1−Pcð Þ, P2 =Pd ×Pc, P3 = 1−Pdð Þ ×Pc, P4 = 1−Pdð Þ× 1−Pcð Þ. The measure-
ment will get lost once under the last condition, so the probability that a true track loses
measurements is

Table 11.4 Probability of false track initiation
(conditioned on Pc = 5:9 × 104)

Track initiation rule PFTI

2/2 3:4 × 105

2/3 6:8 × 103

3/3 2:0 × 108
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PTL = 1−Pd−Pc +PdPc ð11:42Þ

The probability of measurement loss and true track life under Pc = 4:0 × 105 and different detec-
tion probability conditions is listed in Table 11.6.
It is shown in Tables 11.5 and 11.6 that, when Pd = 0:9, the 3/3 rule is capable of effectively delet-

ing false tracks and keeping true ones.

11.3.2.2 Optimization of Track Quality Management under Mono-radar Circumstances

To sum up, the rule for track initiation and track cancellation depends mainly on the probability of
detection Pd and the probability of a false target turning up Pc.When a signal detection system is
given, both Pd and Pc are related to the SNR in the constant false-alarm radar.
According to the radar equation, the SNR of received signals is

SNRð ÞdB = Ptð ÞdBw + 2 Gð ÞdB + 2 λð ÞdB cm + σð Þ2dBm−4 Rð ÞdB sea mile− Bð ÞdBHz− NF0
� �

dB− Lð ÞdB
ð11:43Þ

where Pt is transmission power, G is antenna gain, λ is wavelength, σ is radar cross-section, R is
distance from the target, B is system bandwidth, NF0 is effective noise coefficient, L is total system
loss factor of the radar system. A decibel is defined as ten times the logarithm.
The detection probability of the optimum detection of the coherent radar system is

Pd = 1−Φ
ffiffiffi
1
d

r
ln l0 +

1
2

ffiffiffi
d

p
−d

" #
ð11:44Þ

where l0 is the threshold value, which depends on the judgment rule, d = 2E1=N0 is SNR, and

Φ xð Þ =
ðx
−∞

1ffiffiffiffiffi
2π

p e−
v2
2 dv is the Gaussian distribution function.

Table 11.5 False track life (Pc = 4 × 10−5)

Rules False track life

2/2 2.00
2/3 2.00
3/3 3.00

Table 11.6 Measurement missing probability and true track life

Rule Pd = 0:9 Pd = 0:8 Pd = 0:7 Pd = 0:6

2/2 0.1/110.0 0.2/30.4 0.3/14.3 0.4/8.7
2/3 0.1/62.4 0.2/18.9 0.3/9.7 0.4/6.3
3/3 0.1/1110.0 0.2/155 0.3/51.5 0.4/24.9

Note: “/” in the table means measurement missing probability/true track life.
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Given l0, the relation curves (detection characteristic curves) of Pd−
ffiffiffi
d

p
under different false

alarm rates are obtained, as drawn in Figure 11.13. When the rate is given, the relation between
Pd and SNR (expressed in dB) is similar to a linear one. According to (11.43), SNR has a linear
relation with distance. Therefore, the detection probability can be considered to have a linear rela-
tion with distance.
As the detection probability changes with distance, different rules for track initiation and cancel-

lation are applied to different distances. To set up track management rules for different distances,
define the optimum initiation and cancellation rules as below.
Assume that B is the set of available rules

B = Bif g ð11:45Þ

The available rules are 2/2, 2/3, and 3/3; sometimes 3/4, 4/4, etc.
Assume that Si �B, and that the track initiation response time TI is smaller than the rated response

time TIT, that is,

Si = BijTI Bið Þ ≤ TITf g ð11:46Þ

Assume that PFTI (Bi) is the false track initiation probability in the set when rule Bi is adopted,
then define the optimum initiation rule Bopt as

Bopt = Bijmin
Bi2Si

PFTI Bið Þ
� 	

ð11:47Þ
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Assume the set SP �B, and the false track life LFT is shorter than the rated false track life LFTT.
That is,

SP = BijLFT ≤ LFTTf g ð11:48Þ

Assume that LRT(Bi) is the true track life when rule Bi is adopted. Define the optimum cancel-
lation rule Qopt as

Qopt = Bijmin
Bi2Sp

LRT Bið Þ
� 	

ð11:49Þ

If the system index specifies the rated track initiation response time TIT and the rated probability
of false track initiation PFTIT, then define the pseudo-optimum initiation rule.
Assume Sq is the set of rules Bi when the probability of false track initiation PFTI(Bi) is smaller

than the rated false track probability PFTIT, that is,

Sq = BijPFTI Bið Þ <PFTITf gSi ð11:50Þ

Define the pseudo-optimum track initiation rule as

Bsopt = Bijmin
Bi2Sq

TI Bið Þ
� 	

ð11:51Þ

The pseudo-optimum track initiation rule is defined as such because the accuracy of track filtering
is usually related to the number of filterings. Therefore, rules with a shorter track initiation response
time are preferred.

11.3.2.3 Track Quality Management under Multiple Site Circumstances

Under multiple site circumstances, the detection probability, false alarm rate, size of resolution
units, size of association regions, and data rate are different for each radar. So, introduce the con-
cepts of average detection probability of true targets and false targets.
Assume that a certain region Ωj is the common power coverage of NRj radars, and that the scan-

ning cycle of each radar is Ti i= 1,…,NRj

� �
, so the probability of the scanning beams of all radars

pointing at one target is

Pi =
1=TiXNRj

i= 1

1=Ti

ð11:52Þ

Assume that the detection probability of the ith radar is Pdi, so the average detect probability of
the NRjth radar is

E Pdj
� �

=
XNRj

i= 1

PdiPi ð11:53Þ
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Assume that the probability of a false target turning up in the association region for the ith radar is
Pci, then the average probability of false targets turning up for the NRjth radar is

E Pcj
� �

=
XNRj

i= 1

PciPi ð11:54Þ

As the power coverage for every radar is different, E[Pdj] and E[Pcj] are also not the same in
different spaces Ωj. Therefore, one track quality management system is not enough for a mul-
tiple-radar system. The optimum design method of the track quality management subsystem for
multiple-radar systems is given below.

1. Determine the number N of different spaces Ωj. The so-called space difference refers to the dif-
ference in model and number between the radars which detect the space of interest.

2. Each space Ωj can be divided into a number of subspaces (usually based on distance), Ωjk

(k = 1,…,Nj), such that a different optimum (or sub-optimum) track quality management rule
is made for each subspace. The corresponding rule for each subspace is denoted Rjk (k = 1,…,Nj).

3. Combine the Nj ×N rules Rjk based on their variety. Assume there are NB track quality manage-
ment plans after combination. Establish rule allocation matrix A, which is (NB ×Nj ×N)-
dimensional. Its line numbers correspond to the numbers NB of management rules, and its
column numbers to those of Nj ×N subspaces.

When evaluating the quality of a track, determine the subspace that the track belongs to and then
find the corresponding track quality rule and use it to evaluate the track quality. In the other expres-
sion methods of track quality management, the compatibility of rules should be taken into account,
that is, a corresponding relationship should be established between the state of a rule and that of
another.

11.3.3 Track File Management in the Information Fusion System

Along with the rapid development of information fusion technology, the brand new data processing
technology is applied to the operational command system by conducting multi-level and multi-side
processing of observations from various sensors or multi-sources, so as to find the targets and iden-
tify their properties in real time, giving a comprehensive battlefield situation. The track file man-
agement serves as an indispensable and important part of the information fusion system. Unlike a
single sensor, the fusion system needs to promptly carry out time and space registration, data cor-
relation, track integration, and uniform batch numbering on the track data from all sensors and
remove the redundant track and false track, thus forming a clear picture of what is happening on
the battlefield.
To conduct efficient management on the local track from each sensor and the overall track from

the fusion center, and facilitate the fusion center’s multi-sensor data fusion algorithm, many original
track tables are adopted in the system corresponding to the local tracks of the multi-sensors. Hence,
these are fusion track tables coordinating with the fusion tracks generated by the fusion center. Gen-
erally, each fusion track corresponds to at least one original track. To easily find this correlation,
there is a bi-directional linked list structure (correlation list) on each of the track tables that estab-
lishes the relationship between the fusion track and its related original track. The fusion track with
an empty correlation list is called the “isolated track” [289].
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Examples pertaining to the correlation list of the fusion track are presented in Table 11.7. At time
k, sensors 1, 2, and 3 obtain four, two, and two tracks, respectively, with numbering shown in the
table. The number 1 track of sensor 1 is correlated with the number 1 track of sensor 2. Their fusion
generates the fused track with batch 1. The number 2 track of sensor 1 is correlated with the number
2 track of sensor 2 and the number 1 track of sensor 3, the fusion of which generates the fusion track
with batch 2. The number 3 track of sensor 1 is correlated with the number 2 track of sensor 3,
which, after being fused, become the fusion track with batch 3. The number 4 track of sensor 1
has no correlated track, thus being called the isolated track and directly generating the fusion track
with batch 4. At time k + 1, the cancellation of number 4 track in sensor 1 is also accompanied by the
cancellation of number 4 fusion track. Therefore, the example reveals that the correlation list is set
up for each of the fusion tracks to record the source of the track. For one thing, in the process of the
correlation judgment, it could avoid repeated judgment of the tracks and reduce the computational
load; for another, the new fusion tracks may coincide with the batch of the deleted tracks, in which
case the correlation list can indicate the different data sources of the fusion track.
The basic steps for fusion track management are as follows.

1. Establishment of the fusion track. The new original track obtained by the sensor is sent to the
fusion center for correlation processing. Even if there is no correlated track, the batch is still
rearranged to form a fusion track to reveal all the targets promptly. However, the problem is that
the redundant track may emerge in the presence of false track correlations or missed correlations,
which could be resolved by deleting the redundant track in the follow-up processing period.

2. Maintenance of the fusion track. The number of track correlations is recorded through the
track correlation quality, in other words, adding 1 to the correlation quality of the successfully
correlated track and adding 0 to that of the track which fails to be associated. As the 6/8 principle
suggests, a track is confirmed as already correlated when the value of its correlation
quality reaches 6 among the latest 8 times of correlation judgment, but it is considered as a
tentative correlated track if the value is less than 6. The fused track corresponding to the con-
firmed correlated track is maintained and its corresponding correlation list is set, while the
experimental correlated track will not be fused with its corresponding correlation list set
as empty.

3. Cancellation of the fusion track. False tracks and redundant tracks may be generated in the ini-
tiation of original tracks and in processes of tracking and track correlation, and these tracks will
be fused as well. However, correlation calculations are always conducted for tracks which are in
the process of being fused, so that false and redundant ones will be cancelled as the fusion
proceeds.

Table 11.7 Example of the correlation list of the fusion track

Time Track batch of
sensor 1

Track batch of
sensor 2

Track batch of
sensor 3

Fusion track
batch

k 1 1 — 1
2 2 1 2
3 — 2 3
4 — — 4

k + 1 1 1 — 1
2 2 1 2
3 — 2 3
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11.4 Summary

This chapter discussed the multi-target track termination and track management technologies. The
multi-target track termination technology discussed is based mainly on the “nearest”-neighbor algo-
rithms, and falls into two broad categories: target-oriented recursion methods and measurement-
oriented batch processing methods. The former, demanding less calculation, are convenient for
engineering applications but produce poor results in the presence of dense echoes, while the latter
are difficult to apply in engineering because of their excessive computing requirements but yield
significantly better results in the presence of dense echoes. The track management technology dis-
cussed in this chapter includes the track batch and quality management methods, as well as the track
file management method for the information fusion system.
To be specific, this chapter discusses the single and double-track batch management methods and

the track data storage method, which are capable of handling such complicated situations as the
addition, cancellation, splitting, and combination of target tracks in the operation of real systems.
It also analyzes the selection of initiation rules and track cancellations by means of track quality, as
well as the track quality management, respectively, in the single and multiple-site cases, offering a
theoretical basis for the optimal design of the track quality management system. The four technical
indexes proposed in this chapter (namely, initiation response time, initiation probability of false
tracks, life of true tracks, life of false tracks) are of vital importance to engineering applications.
For the information fusion system, the methods for managing track files using tables of original

and fused tracks have been discussed, which can effectively manage local tracks from the individual
sensors and global ones from the fusion center, and facilitate the fusion center’s multi-sensor data
fusion computation.
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12
Passive Radar Data Processing

12.1 Introduction

“Passive radar” refers to the radar system that itself does not radiate electromagnetic waves, but
receives by its antennas data carried by direct waves from the radiation sources of a target or by
reflected or scattered waves from a target irradiated by external radiation sources. In contrast,
“active radar” refers to the radar system that itself radiates electromagnetic waves, and receives
reflected or scattered waves from a target, which carry information useful for target detection. These
waves are sent to the receiver, which, through processing, extracts the useful information and elim-
inates the useless and interference. The resulting data, after being processed, are used to complete
the location and tracking of the target.
Active radars are what are generally referred to as radars. For convenience, no distinction is made,

however, between active and passive radars in this chapter, which focuses on the data processing of
the latter. It starts with an analysis of the characteristics and advantages of passive radars, and pro-
ceeds to discuss the spatial association of passive radars’ measurements, and the optimal deploy-
ment of passive sensors based on the principle of minimum area of positioning fuzzy ellipse and
TDOA location, before concluding with a summary.

12.2 Advantages of Passive Radars

Compared with their active counterparts, passive detection systems are characterized by many
advantages including their better ability to avoid detection and extract information on targets’ attri-
butes. These advantages can enhance their anti-reconnaissance, anti-jamming, and anti-hard/soft
killing abilities in electronic warfare, resulting in their better survivability and performance. In
recent years, the development and maturity of the passive detection technology has enabled it to
be used not only for electronic reconnaissance, but also for surveillance, air defense, and precision
positioning strikes. With current trends towards better covert attack and hard destruction
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performance in military electronic systems, the abilities of electronic countermeasures systems have
proven crucial in deciding the process and outcome of wars. Generally speaking, passive radar
systems have the following features and advantages [75, 78, 290–293].

1. Good stealth ability and survivability. Because passive detection systems themselves do not
radiate high-powered electromagnetic signals and only receive electromagnetic waves radiated,
reflected, or scattered from targets, they have better stealth ability, as a result of which the
exposure probability of their carriers is reduced, and they are difficult to detect by enemy elec-
tronic reconnaissance equipment. Therefore, unlike active radars, which are prone to being
attacked by anti-radiation missiles, cruise missiles, or other precision-guided weapons, passive
radar systems have better survivability.

2. Good anti-jamming capability. Since passive detection systems are characterized by good
stealth ability, enemies cannot implement any targeted electronic jamming. Moreover, adver-
sary electronic jamming of conventional active radars also becomes a signal that can be used by
passive radars to detect the sources of electronic jamming. Passive radars can use these signals
to conduct passive detection, location, and attack.

3. Enormous potential for detecting stealth aircraft. Because they can detect and identify stealth
targets by means of these targets’ electromagnetic radiation signals, communications, elec-
tronic jamming, etc., passive radars have the potential to detect stealth aircraft [294].

4. Good detecting ability for low-altitude targets. Unlike active radars, passive radars cannot be
confused by strong ground and sea-clutter jamming. Therefore, they perform better at detecting
low and super-low-altitude targets [295].

5. Further detection range. Active radar systems receive reflection signals of targets, and the
strength of the received signals is inversely proportional to the fourth power of the range. In
contrast, passive detection systems receive radiation signals from their targets directly, which
are one-way transmitted with the strength inversely proportional to the square of the range.
Therefore, their operational range is much further than that of active ones.

6. Good target identifying ability. Passive detection is characterized by obtaining more target attri-
bute information and measuring fine features of targets’ electromagnetic radiation signals. Pas-
sive radars can conduct, by intercepting parameters of radiation sources and depending on their
database, a fine-grained identification of the characteristics of targets, thereby determining their
attributes, types, quantities, and working states.

7. Broad airspace coverage. Modern passive detection equipment usually has 360� azimuthal
coverage, and 50–60� pitch coverage. Thus, it has broader instantaneous airspace coverage,
higher interception probability, and faster response time [294, 295].

8. Extensive applicability. Any modern weapon system relies on military electronic equipment,
such as radars, communications, and so on, and thus it is inevitable for them to produce elec-
tromagnetic radiation. Therefore, passive detection equipment is widely applied to detecting
operation targets, whether in the air, on the land, or at sea, whether stationary or moving.
As long as they have electromagnetic radiation signals, passive detection equipment can detect
them.

9. Extreme broad frequency coverage. The bandwidth of modern passive detection equipment is
up to tens of gigahertz, able to cover broad frequency domains, including meter, decimeter,
centimeter, and millimeter waves, and the common working wave band of infrared and laser.

10. Smaller volume, lighter weight, and lower costs. Passive detection systems do not radiate
high-powered detection signals. There is no need to build and maintain high-powered transmit-
ters for them, which saves the TR switch and related electronic units, thus lowering their cost.
Besides, they are small in size, light in weight, and easy to maneuver and camouflage.

277Passive Radar Data Processing



12.3 Passive Radar Spatial Data Association

When tracking targets using bearings-only information of passive radars, operators must adopt
angle measurements to identify the position and velocity of the targets of interest relative to the
sensor’s platform. This can be done by the acceleration of this platform. When the relative accel-
eration between this carrier and the target is zero, the target range state is unobservable, and thus its
optimal estimation is not available [296, 297].
Quite a few approaches have been proposed in order to overcome this problem. The pseudo-linear

filter algorithm put forward in Ref. [298] is characterized by the stability of algorithm, simplicity of
calculations, and easy implementation. However, it involves biased estimates. If the extended Kal-
man filter (EKF) is adopted in tracking the target, then the angle measurements, as incomplete loca-
tion observations, cannot be converted into rectangular coordinates for linear filtering. As has been
proved by its application in recursive bearings-only tracking (state equations use rectangular coord-
inates while the measurements are a nonlinear function of the state), even without the unfavorable
effects of false measurements or clutter, the EKF can only provide unstable estimation results and
state [299, 300]. This is because in the rectangular coordinate system, the state equation is linear
while the measurement equation is nonlinear, so a Jacobian matrix is needed for the filtering covari-
ance calculation, which brings inaccurate valuations in the calculation of gain and covariance.
Moreover, in the presence of large range and angle measuring errors, the EKF will introduce big
truncation errors, which lead to filter divergence. In recent years, in addition to angle measurements,
some other information is used for passive location and tracking, such as in the phase change rate
method [301, 302], Doppler change rate method [303, 304], multi-model method [219, 305,
306], etc.
If there is more than one target in the detection area, then track initiation and data association

in multi-target tracking must be realized on the basis of achieving multi-target passive location.
Track initiation in passive location systems is similar to that in active location systems, except
that it is more difficult to deal with, mainly due to the characteristics of passive location
systems [307].

12.3.1 Phase Changing Rate Method

As shown in Figure 12.1, suppose that the phase difference of the coming waves received by the
antenna array elements A1 and A2 on the moving platform is

φ tð Þ =ω0Δt =
2πD
c

f0 sinβ tð Þ ð12:1Þ

whereω0 is the angular frequency of the coming waves,Δt is the time difference of the arrival of the
coming waves to the antenna array elements A1 and A2, c is the propagation velocity of
electromagnetic waves, D is the range between array elements (namely the length of the interfer-
ometer baseline), which is assumed far less than the range between the moving platform and the
radiation source, f0 is the frequency of the coming waves, and β is the azimuth angle of the coming
waves.
The phase changing rate _φ tð Þ can be derived from (12.1):

_φ tð Þ = 2πD
c

f0 cosβ tð Þ _β tð Þ ð12:2Þ
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where

_φ tð Þ= dφ tð Þ
dt

, _β tð Þ = dβ tð Þ
dt

ð12:3Þ

Then, we can obtain

_β tð Þ= _φ tð Þ
2πD
c f0 cosβ tð Þ ð12:4Þ

In addition, as known from geometric knowledge, the target azimuth angle measured at time t
satisfies

β tð Þ= arctan xT tð Þ−xo tð Þ
yT tð Þ−yo tð Þ

� �
ð12:5Þ

where [xT(t), yT(t)] and [xo(t), yo(t)] are, respectively, the locations of radiation source and sensor
platform at time t. For convenience, the moment t is dropped.
Derived from (12.5):

_β tð Þ = _xT − _xoð Þ yT −yoð Þ− xT −xoð Þ _yT − _yoð Þ
xT −xoð Þ2 + yT −yoð Þ2 ð12:6Þ

If we denote x = xT −xo, y= yT −yo, and define the range from the sensor platform to the radiation
source at time t as

r2 tð Þ= xT −xoð Þ2 + yT −yoð Þ2 ð12:7Þ

D sinβ β

A2

Phase
detector

A1

D

Figure 12.1 Difference of phase
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then (12.6) can be described as

_β tð Þ = _xcosβ tð Þ− _ysinβ tð Þ
r tð Þ ð12:8Þ

where

_x = _xT − _xo, _y = _yT − _yo ð12:9Þ

When the radiation source is stationary, the following can be obtained from (12.9):

_x = − _xo, _y = − _yo ð12:10Þ

Derived from (12.8), the relative range from the radiation source to the moving platform at time
t is

r tð Þ = _xcosβ tð Þ− _ysinβ tð Þ
_β tð Þ ð12:11Þ

Substituting (12.4) into (12.11) yields

r tð Þ= 2πD
c

f0 cosβ tð Þ − _xo cosβ tð Þ+ _yo sinβ tð Þ
_φ tð Þ ð12:12Þ

Then, the location coordinates of the radiation source can be obtained:

xT = xo + r tð Þsinβ tð Þ= xo + 2πD
c

f0 cosβ tð Þsinβ tð Þ − _xo cosβ tð Þ+ _yo sinβ tð Þ
_φ tð Þ ð12:13Þ

yT = yo + r tð Þcosβ tð Þ= yo + 2πD
c

f0cos
2β tð Þ − _xo cosβ tð Þ+ _yo sinβ tð Þ

_φ tð Þ ð12:14Þ

As indicated, when the radiation source is stationary, the location of the target can be identified by
conducting calculations on the phase changing rate _φ tð Þ and the azimuth angle β(t) measured by
sensors. The target can be tracked using the Kalman filter method mentioned in Chapter 2 after
obtaining location coordinates of the target. As indicated in (12.11), an assumption implied here
is _β tð Þ 6¼ 0.When both the radiation source and the sensor platform are stationary, _β tð Þ= 0, as shown
in (12.8). When the sensor platform conducts radial motion relative to the target, then

_xo yT −yoð Þ = xT −xoð Þ _yo ð12:15Þ

and it follows from (12.6) that _β tð Þ= 0.When the target is located on the straight line overlapping the
interferometer baseline, it follows from (12.1) that |φ(t)| is maximum. From (12.2) it is known that in
this case, _φ tð Þ= 0. Thus, _β tð Þ cannot be determined by measurements. To sum up, in all three cases
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above, the location coordinates of the target cannot be obtained through (12.13) and (12.14). Hence,
the target is unobservable at this time.
If the radiation source is moving, the situation is more complicated. Since in this case the motion

velocity of the target is unknown, it is impossible to derive the relative motion velocity between the
target and the sensor platform from (12.9). Therefore, the relative range between the radiation
source and the motion platform cannot be derived from (12.11), nor can the target location be
derived from (12.13) and (12.14). In such cases, the estimates of the target location can be obtained
through filtering by using the nonlinear filter method if the observable condition is satisfied. As
known from Refs [301, 302], when the observing platform is maneuvering, no matter what forms
of maneuver it takes, the system is observable. If the system satisfies the observability condition, the
EKF discussed in Chapter 4 can be applied for track processing.
The state equation of the system can be described as

X k + 1ð Þ=F kð ÞX kð Þ−U kð Þ ð12:16Þ

where

X kð Þ= x kð Þ,y kð Þ, _x kð Þ, _y kð Þ½ �0 ð12:17Þ

is the state vector at time k;

F kð Þ =

1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

266664
377775 ð12:18Þ

is the state transition matrix;

U kð Þ = u1 kð Þ,u2 kð Þ,u3 kð Þ,u4 kð Þ½ �0 ð12:19Þ

is the controlled variable, which denotes the maneuver of the sensor platform from time tk −1 to
tk, and

u1 kð Þ =
ðtk
tk−1

tk −τð Þax τð Þdτ ð12:20Þ

u2 kð Þ =
ðtk
tk−1

tk −τð Þay τð Þdτ ð12:21Þ

u3 kð Þ =
ðtk
tk−1

ax τð Þdτ ð12:22Þ

u4 kð Þ =
ðtk
tk−1

ay τð Þdτ ð12:23Þ

where ax(t) and ay(t) are components of motion acceleration of the sensor platform on axes x and y,
respectively.
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The measurement equation of the system can be described as

Z kð Þ= h X kð Þ½ �+W kð Þ ð12:24Þ

where

h X kð Þ½ �=
h1 X kð Þð Þ
h2 X kð Þð Þ

" #
ð12:25Þ

and

h1 X kð Þ½ �= arctan xT −xo
yT −yo

� �
ð12:26Þ

h2 X kð Þ½ �= _φ tð Þ = 2πD
c

f0 cosβ tð Þ _β tð Þ ð12:27Þ

W(k) is the zero-mean, white, Gaussian measurement noise with variance R(k), and

R kð Þ =
σ2β 0

0 σ2φ_

24 35 ð12:28Þ

where σ2β and σ
2
_φ are the variance for measurement noise of azimuth angle and phase changing rate,

respectively.
The one-step prediction of the state is

X̂ k + 1jkð Þ=F kð ÞX̂ kjkð Þ−U kð Þ ð12:29Þ

The one-step prediction of the covariance is

P k + 1jkð Þ=F kð ÞP kjkð ÞF0 kð Þ ð12:30Þ

The prediction covariance (innovation covariance) of measurement is

S k + 1ð Þ= hX k + 1ð ÞP k + 1jkð Þh0X k + 1ð Þ+R k + 1ð Þ ð12:31Þ

where the Jacobian matrix is

hX k + 1ð Þ= ∇Xh
0 k + 1,Xð Þ½ �0X = X̂ k + 1jkð Þ

=
∂h X kð Þ½ �

∂x

∂h X kð Þ½ �
∂y

∂h X kð Þ½ �
∂ _x

∂h X kð Þ½ �
∂ _y

� �
X = X̂ k + 1jkð Þ

ð12:32Þ

The filter gain is

K k + 1ð Þ=P k + 1jkð Þh0X k + 1ð ÞS−1 k + 1ð Þ ð12:33Þ
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The state update equation is

X̂ k + 1jk + 1ð Þ = X̂ k + 1jkð Þ+K k + 1ð Þ Z k + 1ð Þ−hX k + 1, X̂ k + 1jkð Þ� �� 	 ð12:34Þ

The covariance update equation is

P k + 1jk + 1ð Þ= I−K k + 1ð ÞhX k + 1ð Þ½ �P k + 1jkð Þ I +K k + 1ð ÞhX k + 1ð Þ½ �0

−K k + 1ð ÞR k + 1ð ÞK0 k + 1ð Þ ð12:35Þ

Compared with the location methods using angle measuring information only, the location
method, which adopts the phase changing rate on the basis of direction measuring and positioning
technology, is less restricted; besides, it has faster speed and higher accuracy. This technology can
be applied to counter incoherent radar, but the precision of the phase changing rate is critical to the
realization of immediate and accurate location of the radiation source.

12.3.2 Doppler Changing Rate and Azimuth Joint Location

When there is a radial velocity between the target and the observing instrument, Doppler shifts occur
on the observing instrument. Hence, passive location can be conducted using the Doppler changing
rate of the target [304]. For the sake of simplicity, we might as well start with the location in a 2D
plane. Assume that the relative velocity between the observing instrument and the radiation source
is v. In the reference coordinate system which takes the observing instrument as origin, the relative
velocity can be decomposed into the tangential velocity vt and the radial velocity vr, as shown in
Figure 12.2.
Derived from (12.8),

_β tð Þ= vx cosβ−vy sinβ
r tð Þ ð12:36Þ

where vx and vy are components of relative velocity between the observing instrument and the radi-
ation source on the x and y axes, respectively, that is,

vx = _xT − _xo, vy = _yT − _yo ð12:37Þ

Radiation source
π/2 – β

β

Observer

y

O

r

vt

vr

v

x

Figure 12.2 Location principle diagram
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Figure 12.3 is an amplified diagram of this in the dotted-line square of Figure 12.2. From
Figure 12.3, we obtain

vy−vx cotβ

 �

sinβ = vt tð Þ ð12:38Þ

Equation (12.38) can be simplified as

vy sinβ−vx cosβ = vt tð Þ ð12:39Þ

Substituting (12.39) into (12.36) gives

_β tð Þ = −
vt tð Þ
r tð Þ ð12:40Þ

Then r(t), the range from the observing instrument to the radiation source, is

r tð Þ = −
vt tð Þ
_β tð Þ ð12:41Þ

where _β tð Þ is the angle changing rate caused by relative motion, and t is the time. However, since the
motion velocity of the radiation source (the target) is typically unknown, so is the motion velocity
relative to the observing instrument, and vt(t) cannot be obtained. In this case, the range cannot be
measured only using (12.41). In addition, according to the kinematic principle, there is another
equation

€r tð Þ= v2t tð Þ
r tð Þ ð12:42Þ

where the centrifugal acceleration €r is the second derivative of the scalar of the range r.
Combining (12.41) and (12.42) yields the relative equation

r tð Þ= €r tð Þ
_β
2
tð Þ

ð12:43Þ

y

vvy

vt

vr

xvxO
π/2 – β

Figure 12.3 Amplified diagram of location principle
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If the centrifugal acceleration €r tð Þ and the angular velocity _β tð Þ at a certain moment can be
obtained by measuring at this moment, instantaneous range measuring can be achieved. The observ-
ing instrument can generally receive the signals radiated by radiation sources. Hence, the centrifugal
acceleration information can be obtained from the frequency domain of the signals. Its principle is as
follows: according to Doppler effects, the relation between radial velocity vr and Doppler frequency
fd can be described as

vr tð Þ= _r tð Þ= −λfd tð Þ ð12:44Þ

The relation between €r tð Þ and Doppler frequency changing rate _f d tð Þ derived from the above
equation is

€r tð Þ= −λ_f d tð Þ ð12:45Þ

Substituting (12.45) into (12.43) yields

r tð Þ = −λ
_f d tð Þ
_β
2
tð Þ

ð12:46Þ

which is the single-station range-measuring formula based on the Doppler frequency changing rate.
Then, combining it with the target azimuth angle measured by the sensor gives the target coordinates
[x(t), y(t)] in the rectangular coordinate system as

x tð Þ= r tð Þsinβ tð Þ
y tð Þ = r tð Þcosβ tð Þ

(
ð12:47Þ

12.3.3 Doppler Changing Rate and Azimuth, Elevation Joint Location

When locating the spatial target using the azimuth angle, elevation angle, and Doppler frequency
changing rate measured by sensors, suppose that the azimuth angle measured by the sensor at time t
satisfies (12.5), the azimuth angle changing rate is shown in (12.36), and the elevation angle is

ε tð Þ= arctg zT −zoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xT −xoð Þ2 + yT −yoð Þ2

q
0B@

1CA ð12:48Þ

where (xT, yT, zT) and (xo, yo, zo) are locations of the radiation source and sensor platform at time t.
The following can be derived from (12.48):

_ε tð Þ= − xT −xoð Þ zT −zoð Þ _xT − _xoð Þ− zT −zoð Þ yT −yoð Þ _yT − _yoð Þ
xT −xoð Þ2 + yT −yoð Þ2 + zT −zoð Þ2

h i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xT −xoð Þ2 + yT −yoð Þ2

q

+
xT −xoð Þ2 + yT −yoð Þ2

h i
_zT − _zoð Þ

xT −xoð Þ2 + yT −yoð Þ2 + zT −zoð Þ2
h i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xT −xoð Þ2 + yT −yoð Þ2
q

ð12:49Þ
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Using the Doppler frequency changing rate, we have

r tð Þ = −λ
_f d tð Þ

_β tð Þcosε
 �2
+ _ε2 tð Þ

h i ð12:50Þ

According to (12.50) and combining the azimuth angle and elevation angle measured by sensors,
the target coordinates (x(t), y(t), z(t)) in the rectangular coordinate system can be derived as

x tð Þ = r tð Þsinβ tð Þcosε tð Þ
y tð Þ = r tð Þcosβ tð Þcosε tð Þ
z tð Þ = r tð Þsinε tð Þ

8>><>>: ð12:51Þ

12.3.4 Multiple-Model Method

When using single passive sensors to measure the direction of the target, suppose that the target
azimuth angle measured at time k is βm(k), and suppose that the possible furthest and nearest ranges
of the target are Lmax and Lmin, respectively. Divide this space into N sub-intervals [308, 309] with
different range intervals. 2σL(i) and L(i) denote the length and average radial range of the ith sub-
interval, and they satisfy

L ið Þ = L i−1ð Þ+ σL i−1ð Þ + σL ið Þ ð12:52Þ

2σL ið Þ
L ið Þ =

2 ρ−1ð Þ
ρ+ 1

, i= 1,2,…,N ð12:53Þ

where L 0ð Þ =Lmin, σL 0ð Þ = 0, Lmax = L Nð Þ+ σL Nð Þ, ρ=
Lmax

Lmin

� �1
N

.

By simple mathematical calculations, 2σL(i) and L(i) can be derived from (12.52) and (12.53):

2σL ið Þ = ρi−1 ρ−1ð ÞLmin ð12:54Þ

L ið Þ= ρi−1 ρ+ 1ð ÞLmin

2
ð12:55Þ

Establish an EKF model on each sub-interval, then the initial state vector and covariance matrix
of the ith sub-interval are, respectively,

X̂m i,1j1ð Þ=

L ið Þsin β 1ð Þð Þ
L ið Þcos β 1ð Þð Þ
vs sin β 1ð Þð Þ
vs cos β 1ð Þð Þ

266664
377775 ð12:56Þ
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P i,1 1jð Þ=ARP =

L2 ið Þσ2α 0 0 0

0 σ2L ið Þ 0 0

0 0 σ̂2v 0

0 0 0 σ̂2v

266664
377775A0

RP ð12:57Þ

where vs denotes the initial motion velocity of the baseline observing station, σ̂v denotes the esti-
mates of standard deviation of velocity measurement errors, and

ARP =

cos βm 1ð Þ½ � sin βm 1ð Þ½ � 0 0

−sin βm 1ð Þ½ � cos βm 1ð Þ½ � 0 0

0 0 1 0

0 0 0 1

266664
377775 ð12:58Þ

The initial probability of the target in the ith model is

Pr i,1ð Þ= 2σL ið Þ
Lmax−Lmin

ð12:59Þ

The state equation of the target is

X k + 1ð Þ=F kð ÞX kð Þ+Γ kð Þv kð Þ ð12:60Þ

where X(k) denotes the state vector of the target at time k, F(k) the state transition matrix, v(k) the
zero-mean, white, Gaussian process noise with covariance matrix Q(k), and Γ(k) the process noise
distribution matrix.

X kð Þ = x kð Þy kð Þ _x kð Þ _y kð Þ½ �0 ð12:61Þ

F kð Þ =

1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

266664
377775 ð12:62Þ

Γ kð Þ =

T2

2
0

0
T2

2
T 0

0 T

266666664

377777775
ð12:63Þ

where T denotes the sampling interval.

287Passive Radar Data Processing



The measurement equation of the target is

Z kð Þ =h X kð Þ½ �+W kð Þ = arctan y−yl
x−xl

� �
+W kð Þ ð12:64Þ

where (xl, yl) denotes the location of the observing station, (x, y) the location of the target, andW(k)
the measurement noise of the base observing station, which is independent of the process noise v(k)
and is the zero-mean, white, Gaussian noise with covariance matrix R(k).
The one-step prediction of the state equation in the ith model is

X̂ i,k + 1jkð Þ =F kð ÞX̂ i,kjkð Þ−U k + 1ð Þ ð12:65Þ
where U k + 1ð Þ denotes changes in location of the observing station in the time interval from k to
k + 1. If the observing station is assumed to be in uniform rectilinear motion, then

U k + 1ð Þ = vxsT vysT 0 0
� �0 ð12:66Þ

where vxs, vys denote the motion velocities of the observing station in the x and y axis directions,
respectively, and T the sampling interval in the matrix.
The state prediction covariance matrix of the ith model is

P i,k + 1jkð Þ=F kð ÞP i,kjkð ÞF kð Þ0 +Γ kð ÞQ kð ÞΓ kð Þ0 ð12:67Þ
Then, the filter gain of the ith model can be obtained:

K i,k + 1ð Þ=P i,k + 1jkð Þ H i,k + 1ð Þð Þ0 S i,k + 1ð Þð Þ−1 ð12:68Þ
where

S i,k + 1ð Þ =H i,k + 1ð ÞP i,k + 1jkð Þ H i,k + 1ð Þ½ �0 +R k + 1ð Þ ð12:69Þ
is the innovation covariance, and

H i,k + 1ð Þ= ∂h

∂X̂m i,k + 1 kjð Þ =
− ŷ i,k + 1 kjð Þ

x̂ i,k + 1 kjð Þð Þ2 + ŷ i,k + 1 kjð Þð Þ2 ,
x̂ i,k + 1 kjð Þ

x̂ i,k + 1 kjð Þð Þ2 + ŷ i,k + 1 kjð Þð Þ2 , 0, 0
" #

ð12:70Þ

is the measurement matrix.
From (12.65) and (12.68), the state update equation of the ith model can be derived as

X̂ i,k + 1 k + 1jð Þ = X̂ i,k + 1 kjð Þ +K i,k + 1ð Þ Z k + 1ð Þ−h X̂ i,k + 1 kjð Þ� �� 	 ð12:71Þ

The covariance update equation of the ith model can be derived from (12.67), (12.68), and
(12.70) as

P i,k + 1 k + 1jð Þ= I−K i,k + 1ð ÞH i,k + 1ð Þ½ �P i,k + 1 kjð Þ I +K i,k + 1ð ÞH i,k + 1ð Þ½ �0
−K i,k + 1ð ÞR k + 1ð ÞK0 i,k + 1ð Þ

ð12:72Þ

where I is the unit matrix.
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The update probability of the target in the ith model can be derived according to Bayes’ rule as

Pr i,kð Þ= Pr β kð Þji½ �Pr i,k−1ð ÞXN
n= 1

Pr β kð Þjn½ �Pr n,k−1ð Þ
ð12:73Þ

where

Pr β kð Þji½ �= 2πS i,kð Þj j−1
2 exp

− v i,kð Þ½ �0 S i,kð Þ½ �−1v i,kð Þ
2

( )
ð12:74Þ

is the likelihood function of the ith model at time k, which correlates with the innovation v(i, k) and
the innovation covariance S(i, k) of the ith model at time k.
When filtering, compare the update probability with a certain assumed detection threshold con-

stantly, and only when the updating probability is higher than the detection threshold can the sub-
interval be kept [310], and the state estimates and the covariance matrixes of each sub-interval at
different moments can be derived with the constant iteration of filter equations set, including
(12.65), (12.67), (12.68), (12.71), and (12.72). Take the updating probability derived from
(12.73) as weight, and conduct weighted fusion on the filtering results of each sub-interval. The
result after fusion is output as the state estimate and covariance corresponding to the target, that is,

X̂ k kjð Þ=
XN
i= 1

Pr i,kð ÞX̂ i,k kjð Þ ð12:75Þ

P k kjð Þ=
XN
i= 1

Pr i,kð Þ P i,k kjð Þ+f X̂ i,k kjð Þ−�
X̂ k kjð Þ� X̂ i,k kjð Þ−X̂ k kjð Þ�0h io

ð12:76Þ

12.4 Optimal Deployment of Direction-Finding Location

Research on direction-finding location focuses on the direction-finding location algorithm, optimal
deployment of the sensor, and passive data correlation in multi-target environments [311–314]. This
subsection deals chiefly with the optimal deployment of passive sensors under the criterion of
minimum area of position concentration ellipse.

12.4.1 Area of the Position Concentration Ellipse

Suppose that the true location of the target at a certain moment is X = x,yð Þ0, passive sensor 1 is
located at the origin of the coordinate system, and the coordinates of passive sensor 2 are
(x2, y2), as shown in Figure 12.4. The azimuth angles measured by the two sensors are
θi i = 1,2ð Þ, θi 2 0,π½ �, and θ2 > θ1, that is, the target is located on the baseline or above the baseline
of the two sensors. Also, suppose that the measurement noise at a certain time is independent and
additive Gaussian white noise with zero mean, and variance σ2θi i= 1,2ð Þ, respectively. Suppose fur-
ther that the angle-measuring errors of the two passive sensors are not the same; generally, suppose
that the angle measurement error of passive sensor 1 is less than or equal to that of passive sensor 2,
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that is, σ2θ1 = kσ
2
θ2
= kσ2, k ≤ 1. What is worth mentioning is that the figure represents the geometric

distribution between the target and the two sensors at a certain time, and subsequent conclusions can
also be applied to the situation where the positions of the target and sensors are time-varying and to
the situation where the target is located below the baseline.
As shown in Figure 12.4, the cut angle can be defined as θ2−θ1, which can be denoted as θCA.

The distances from the two sensors to the target areDi i= 1,2ð Þ, respectively. The length of the base-
line of the two sensors isD. The vertical distance from the target to the baseline of the two sensors is
d, and d > 0. Suppose l= d=D, that is, l denotes the ratio of the vertical distance to the length of the
baseline. Then, according to the sine theorem, we have

D1 =
Dsinθ2

sin θ2−θ1ð Þ ð12:77Þ

D2 =
Dsinθ1

sin θ2−θ1ð Þ ð12:78Þ

The estimated location of the target is

x̂ =D1 cosθ1 ð12:79Þ
ŷ =D1 sinθ1 ð12:80Þ

Differentiating both sides of (12.79) and (12.80) yields

dx̂ =
Dsinθ2 cosθ2
sin2 θ2−θ1ð Þ dθ1−

Dsinθ1 cosθ1
sin2 θ2−θ1ð Þ dθ2 ð12:81Þ

dŷ=
Dsin2θ2

sin2 θ2−θ1ð Þdθ1−
Dsin2θ1

sin2 θ2−θ1ð Þdθ2 ð12:82Þ

Then, the location error covariance matrix can be obtained as

P=
σ2x σxy

σyx σ2y

" #
=E

dx̂

dŷ

" #
dx̂ dŷ½ �

( )
ð12:83Þ

D1

θ1
θ2

θCA

D

Target (x,y)

Sensor 2Sensor 1

D2

y

x

d

Figure 12.4 Diagram of direction-measuring cross locating under restricted conditions
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where

σ2x =
D2

sin4 θ2−θ1ð Þ sin2θ2cos
2θ2σ

2
θ1
+ sin2θ1cos

2θ1σ
2
θ2

 �
σ2y =

D2

sin4 θ2−θ1ð Þ sin4θ2σ
2
θ1
+ sin4θ1σ

2
θ2

 �
σxy = σyx =

D2

sin4 θ2−θ1ð Þ sin3θ2 cosθ2σ
2
θ1
+ sin3θ1 cosθ1σ

2
θ2

 �

8>>>>>>>><>>>>>>>>:
ð12:84Þ

As to the given vertical range d, it follows from Figure 12.4 that the equation

Dsinθ1 sinθ2
sin θ2−θ1ð Þ −d = 0 ð12:85Þ

is valid.
Under the previous assumptions, the PDF of the estimated location of the target X̂ = x̂, ŷð Þ0 can be

described approximately as [311]

p x̂, ŷð Þ = 2πð Þ−1 Pj jð Þ−1=2 exp −
1
2

X̂−X

 �0

P−1 X̂−X

 �� �

ð12:86Þ

where P denotes the location error covariance andX = x,yð Þ0 the true location of the target. Then, the
concentration area of the target location is an ellipse, called a “position concentration ellipse.” The
long and short semi-axes of the ellipse can be described as

a=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2
σ2x + σ

2
y +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x −σ

2
y

 �2
+ 4σ2xy

r" #vuut ð12:87Þ

b=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2
σ2x + σ

2
y −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x −σ

2
y

 �2
+ 4σ2xy

r" #vuut ð12:88Þ

wherem= −2 ln 1−Peð Þ, and Pe is the probability that the estimated location X̂ = x̂, ŷð Þ0 falls into the
concentration ellipse.
The area of the position concentration ellipse is

S = πab= πm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2xσ

2
y −σ

2
xy

q
ð12:89Þ

Substitute (12.84) into (12.9), to obtain

S = πm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D4sin2θ1sin

2θ2
sin6 θ2−θ1ð Þ σ2θ1σ

2
θ2

s
= πmD2

ffiffiffi
k

p
σ2θ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2θ1sin

2θ2
sin6 θ2−θ1ð Þ

s
=̂πmD2

ffiffiffi
k

p
σ2θ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g θ1,θ2ð Þp ð12:90Þ

where D, σθ2 , and k are known constants.
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12.4.2 Derivation of the Conditional Extremum Based on
the Lagrange Multiplier Method

Minimizing the area of the concentration ellipse S is equivalent to minimizing the value of the dual
function g(θ1, θ2), that is,

min g θ1,θ2ð Þ = sin2θ1 sin
2θ2

sin6 θ2−θ1ð Þ ð12:91Þ

Take (12.85) as constraints, and obtain the conditional extremum by conducting joint optimiza-
tion with (12.91). Here, the Lagrange multiplier method is applied [311, 312].
Let

G θ1,θ2ð Þ= g θ1,θ2ð Þ + λ Dsinθ1 sinθ2
sin θ2−θ1ð Þ −d

� �
ð12:92Þ

where λ denotes the Lagrange multiplier. Take partial derivatives of θ1 and θ2 on both sides of
(12.92) and let the results be zero, to obtain

∂G
∂θ1

=
2sinθ1 sin

2θ2 cosθ1 sin θ2−θ1ð Þ + 6sin2θ1 sin2θ2 cos θ2−θ1ð Þ
sin7 θ2−θ1ð Þ

+ λ
Dsinθ1 sinθ2 cos θ2−θ1ð Þ

sin2 θ2−θ1ð Þ +
Dcosθ1 sinθ2
sin θ2−θ1ð Þ

� �
= 0

ð12:93aÞ

∂G
∂θ2

=
2sin2θ1 sinθ2 cosθ2 sin θ2−θ1ð Þ−6sin2θ1 sin2θ2 cos θ2−θ1ð Þ

sin7 θ2−θ1ð Þ

+ λ −
Dsinθ1 sinθ2 cos θ2−θ1ð Þ

sin2 θ2−θ1ð Þ +
Dsinθ1 cosθ2
sin θ2−θ1ð Þ

� �
= 0

ð12:93bÞ

It follows from (12.93) that

λsin θ1 + θ2ð Þ= −
2sinθ1 sinθ2
Dsin5 θ2−θ1ð Þsin θ1 + θ2ð Þ ð12:94Þ

In order to obtain λ in (12.94), two situations (sin θ1 + θ2ð Þ 6¼ 0 and sin θ1 + θ2ð Þ= 0) need to be
considered, as follows.

1. When sin θ1 + θ2ð Þ 6¼ 0,

λ = −
2sinθ1 sinθ2
Dsin5 θ2−θ1ð Þ ð12:95Þ

Substituting (12.95) into (12.93a) yields

sin2θ1sin
2θ2 cos θ2−θ1ð Þ = 0 ð12:96Þ

It follows from (12.96) and the previous assumptions θ1 6¼ 0 and θ2 6¼ 0 that
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θCA = θ2−θ1 =
π

2
ð12:97Þ

Equation (12.97) indicates that at the moment the target is located on the circumference
(except for the locations of the two passive sensors), the diameter is the baseline of the two sen-
sors, as shown in Figure 12.5. In such cases d ≤D=2, and (12.97) is valid when l= d=D ≤ 0:5.
From Figure 12.5 we have

θ1 = arctan
d

e

� �
ð12:98Þ

According to the shadowed right triangle in Figure 12.5, the following equation is valid:

e D−eð Þ = d2 ð12:99Þ

Solving the above equation yields

e=
D±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2−4d2

p

2
ð12:100Þ

As to (12.100), two situations will be discussed below:

• when θ1 2 0,
π

4

 i
, e ≥D=2, such that

e =
D +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2−4d2

p

2
, θ1 2 ð0, π

4
� ð12:101Þ

• when θ1 2 π

4
,
π

2

h �
, e ≤D=2e ≤D=2, such that

e=
D−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2−4d2

p

2
, θ1 2 ½π

4
,
π

2
Þ ð12:102Þ

For convenience, the solutions to (12.97) and (12.98) can be described as θ01,θ
0
2


 �
. In order to

analyze whether the area of the position concentration ellipse can reach the local minimum

p

e
D

D/2
d

θCA

θ2

θCA

θ1

θCA

Figure 12.5 Optimal cut angle θCA when l ≤ 0:5
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on the stable point θ01,θ
0
2


 �
, the second-order partial derivatives of g(θ1, θ2) can be obtained con-

ditional on (12.85).
Using (12.85) gives

θ1 = arccos
1 + lcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + 2lc + l2c2 + l2
p

� �
ð12:103Þ

where

c =
cosθ2
sinθ2

ð12:104Þ

then

cosθ1 =
sinθ2 + lcosθ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinθ2 + lcosθ2ð Þ2 + l2sin2θ2
q ð12:105Þ

and

sinθ1 =
lsinθ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinθ2 + lcosθ2ð Þ2 + l2sin2θ2
q ð12:106Þ

Combining (12.105) and (12.106) into g(θ1, θ2) of (12.91) yields

g θ1,θ2ð Þ =̂ψ θ2ð Þ= l2 cos2θ2− lsin2θ2− l2−1ð Þ2
sin8θ2

ð12:107Þ

By using (12.107), the second-order derivatives of ψ(θ2) with respect to θ2 can be obtained as

ψ 00 θ2ð Þ = 2l2 −sin2θ2−2lcos2θ2ð Þ2
sin8θ2

−
8l2 cos2θ2 cos2θ2− lsin2θ2− l2−1ð Þ2

sin10θ2

−
16l2 sin2θ2 cos2θ2− lsin2θ2− l2−1ð Þ −sin2θ2−2lcos2θ2ð Þ

sin10θ2

+
2l2 cos2θ2− lsin2θ2− l2−1ð Þ −2cos2θ2 + 4lsin2θ2ð Þ

sin8θ2

+
20l2sin22θ2 cos2θ2− lsin2θ2− l2−1ð Þ2

sin12θ2

ð12:108Þ

Based on the symbol ψ 00 θ02

 �

, we can determine whether the stable point is the local maximum,
minimum, or saddle point [315]. From the representations of e in (12.101) and (12.102), two

situations (θ1 2 0,
π

4

 i
and θ1 2 π

4
,
π

2

h �
) need to be considered, as follows.
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• When θ1 2 0,
π

4

 i
, substituting (12.101) into (12.98), after some cancellations, yields

cosθ2 = −sinθ1 = −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
+

ffiffiffiffiffiffiffiffiffiffi
1
4
− l2

rs
, θ1 2 0,

π

4

 i
ð12:109Þ

cosθ1 = sinθ2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
−

ffiffiffiffiffiffiffiffiffiffi
1
4
− l2

rs
, θ1 2 0,

π

4

 i
ð12:110Þ

Combining (12.109) and (12.110) into (12.108) yields

ψ 00 θ2ð Þ= 16l2 1−4l2ð Þffiffiffiffiffiffiffiffiffiffiffiffi
1−4l2

p
−1

 �2 , θ1 2 0,
π

4

 i
ð12:111Þ

• When θ1 2 π

4
,
π

2

h �
, inserting (12.102) into (12.98), after some cancellations, gives

cosθ2 = −sinθ1 = −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
−

ffiffiffiffiffiffiffiffiffiffi
1
4
− l2

rs
, θ1 2 π

4
,
π

2

h �
ð12:112Þ

cosθ1 = sinθ2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
+

ffiffiffiffiffiffiffiffiffiffi
1
4
− l2

rs
, θ1 2 π

4
,
π

2

h �
ð12:113Þ

Combining (12.112) and (12.113) into (12.108) gives

ψ 00 θ2ð Þ = 16l2 1−4l2ð Þffiffiffiffiffiffiffiffiffiffiffiffi
1−4l2

p
+ 1

 �2 , θ1 2
π

4
,
π

2

h �
ð12:114Þ

As shown in (12.111) and (12.114), when sin θ1 + θ2ð Þ 6¼ 0 and l< 0:5, ψ 00 θ2ð Þ > 0, the area of
the position concentration ellipse reaches the local minimum; when l= 0:5, ψ 00 θ2ð Þ = 0, and it
cannot be determined whether the area of the position concentration ellipse reaches the
extremum.
As shown in Figure 12.5, when l = 0:5, the stable point satisfies θ01,θ

0
2


 �
= 45�,135�ð Þ. Then

ψ 0 135�ð Þ =ψ 00 135�ð Þ =ψ 000
135�ð Þ = 0

and

ψ 4ð Þ 135�ð Þ = 48 > 0

Thus, according to the extremum determination criterion in Ref. [315], the area of the position
concentration ellipse reaches the local minimum.

2. When sin θ1 + θ2ð Þ= 0,

θ1 + θ2 = π ð12:115Þ
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Here, the target and the two passive sensors form an isosceles triangle. As shown in
Figure 12.4,

θ1 = arctan
2d
D

� �
ð12:116Þ

then

sinθ1 = sinθ2 =
2lffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4l2

p ð12:117Þ

cosθ1 = −cosθ2 =
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + 4l2
p ð12:118Þ

According to (12.94), the Lagrange multiplier λ is arbitrary. Now, it cannot be determined yet
whether the solution of (12.115) is the stable point of function ψ(θ2). Equation (12.107) yields

ψ 0 θ2ð Þ= 2l2 cos2θ2− lsin2θ2− l2−1ð Þ −sin2θ2−2lcos2θ2ð Þ
sin8θ2

−
4l2 sin2θ2 cos2θ2− lsin2θ2− l2−1ð Þ2

sin10θ2

ð12:119Þ

Substituting (12.117) and (12.118) into (12.119) gives

ψ 0 θ2ð Þ = 0 ð12:120Þ
Then, it can be determined that the solution of (12.115) is the stable point for ψ (θ2), and sub-

stituting (12.117) and (12.118) into (12.108) yields

ψ 00 θ2ð Þ = −
1−4l2ð Þ 1 + 4l2ð Þ4

128l4
ð12:121Þ

It follows from (12.121) that

ψ 00 θ2ð Þ > 0, l> 0:5

ψ 00 θ2ð Þ = 0, l= 0:5

ψ 00 θ2ð Þ < 0, 0 < l < 0:5

8><>: ð12:122Þ

Therefore, when l > 0:5, the area of the position concentration ellipse reaches its local min-
imum; when 0 < l< 0:5, it reaches its local maximum; when l= 0:5, it is uncertain whether it
reaches its extremum. A procedure similar to that above can be used to prove that the area of
the position concentration ellipse has reached the local minimum under this condition.

Under the criteria for position concentration ellipses, the cut angle has four characteristics.

1. When l > 0:5, the optimal cut angle can be obtained if the target and the two passive sensors form
an isosceles triangle. The optimum mentioned here is in a relative sense, that is, the cut angle
corresponding to the local minimum under constraints. The same is true below.
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2. When l< 0:5, the optimal cut angle can be obtained if the target is located on the circle (except for
the locations of the two sensors), the diameter of which is the baseline of the two sensors.

3. When l = 0:5, the optimal cut angle can be obtained if the target and the two passive sensors form
an isosceles right triangle.

4. The optimal cut angle is unrelated to the variance multiple k.

According to the above conclusions, under the criterion for the minimum position concentration
ellipse, the optimum cut angle can be obtained if and only if the target is located on the solid line
(or arc) in Figure 12.6.

12.4.3 Optimal Deployment by the Criterion that the Position
Concentration Ellipse Area is Minimum

Discussions on how the change in l, which is the ratio of the vertical range to the length of the base-
line, influences the local minimum of the position concentration ellipse are presented below.

• When l ≥ 0:5, θ1 2 π

4
,
π

2

h �
and θ1 + θ2 = π, as shown in Figure 12.6. Substituting (12.115) into

g(θ1, θ2) in (12.91), we obtain

g1 θ1ð Þ= g θ1,θ2ð Þjθ2 = π−θ1 = g1 θ1ð Þ = g θ1,θ2ð Þ θ2 = π−θ1j =
1

64sin2θ1cos6θ1
ð12:123Þ

The following can be derived from (12.123):

g01 θ1ð Þ = 4sin2θ1−1

32sin3θ1cos5θ1
> 0 ð12:124Þ

Then, in the interval
π

4
,
π

2

h �
, g1(θ1) increases monotonically. As shown in Figure 12.6,

θ1 increases with l, that is, g1(θ1) increases with l.

p1

S1 (Sensor 1) S2 (Sensor 2)D

p2p3

p4

p5

l = 3/6

Figure 12.6 The target location distribution (on solid line and arc) when the area of the position concentration
ellipse reaches the local minimum
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• When 0 < l< 0:5, θ2 = θ1 + π=2 and θ1 2 0,
π

4

 �
or θ1 2 π

4
,
π

2

 �
, as shown in Figure 12.6. Substi-

tuting (12.97) into g(θ1, θ2) in (12.91), we obtain

g2 θ1ð Þ = g θ1,θ2ð Þjθ2 = π
2 + θ1

=
1
4
sin22θ1 ð12:125Þ

The following can be derived from (12.125):

g02 θ1ð Þ= sin2θ1 cos2θ1 ð12:126Þ

g02 θ1ð Þ> 0, θ1 2 0,
π

4

 �
g02 θ1ð Þ < 0, θ1 2 π

4
,
π

2

 �
8><>: ð12:127Þ

Then g2(θ1) increases monotonically in the interval 0,
π

4

 �
, and decreases monotonically in the

interval
π

4
,
π

2

 �
. As shown in Figure 12.6, θ1 increases with l in the interval 0,

π

4

 �
, and θ1

decreases as l increases in the interval
π

4
,
π

2

 �
. Thus, when 0 < l< 0:5, g2(θ1) increases with l.

As can be seen from the two situations above, g2(θ1) increases monotonically with l in the
interval 0, +∞ð Þ, and the global minimum of g2(θ1) can be achieved gradually by decreasing
l to zero. In this case, the target tends infinitely to the location of sensor 1 or sensor 2 along
the solid line arc in Figure 12.6, at which moment the relevant stable point satis-

fies θ01,θ
0
2


 �! π

2
,π

 �
or θ01,θ

0
2


 �! 0,
π

2

 �
.

Next a special situation will be discussed: conditional on θ1 + θ2 = π, by letting g01 θ1ð Þ= 0, we can
obtain from (12.123) or (12.124), θ1 = 30� and θ2 = 150

� as

30�,150�ð Þ = arg min
θ1,θ2

θ1+ θ2 = π

g θ1,θ2ð Þ ð12:128Þ

The conclusions obtained here are consistent with those in Ref. [314]. Therefore, under the min-
imum position concentration ellipse principle, the stable point in Ref. [314] is optimal conditional
on θ1 + θ2 = π.
Using (12.128) in (12.116) yields

l=
ffiffiffi
3

p
=6 < 0:5 ð12:129Þ

At this moment, p3 in Figure 12.6 is the target location. Based on the second characteristic of the
optimal cut angle obtained previously, when

l =
ffiffiffi
3

p
=6 ð12:130Þ

there are two target positions, denoted p1 and p2 in Figure 12.6, which have reached the minimum
concentration ellipse.
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12.5 Passive Location Based on TDOA Measurements

12.5.1 Location Model

The time difference of arrival (TDOA) location, also called the “hyperbolic location,” is the process
of locating targets by processing the TDOA data of target signals received by three or more meas-
urement stations [316]. At least three measurement stations are needed to locate 2D targets, and at
least four for 3D targets. One of these stations is set as the main station, and the rest as auxiliary
stations.
In a 2D, three measurement stations can form two pairs of hyperbolas, and the intersection point

of two unilateral hyperbolic planes among these hyperbolas is the location of the target, as shown in
Figure 12.7. In a 3D space, the time difference of the target signal arriving at the main station and
auxiliary stations forms a pair of hyperbolic planes, which take the two stations as foci. Four meas-
urement stations can form three pairs of hyperbolic planes. Among them, two of the unilateral
hyperbolic planes get an intersecting line, which forms an intersection point with one of the third
pair of hyperbolic planes. This intersection point is where the target is located.
Because the time difference location system can extend the baseline and increase the precision of

time difference measurements, it has higher location precision than other methods, such as the
direction-measuring cross location and single-station location.

12.5.2 Two-Dimensional Condition

Set the target location as (x, y), the ranges from the target location to the main station (x0, y0) and to
the two assistant stations (xi, yi) as r0 and ri i = 1,2ð Þ, respectively, and their range difference as Δri:

Δri = ri−r0 =C �Δti0 i= 1,2ð Þ ð12:131Þ

where Δti0 denotes the time difference of the target signal arriving at the main and assistant stations
on the observing platform, that is,

Δt10 = t1− t0 ð12:132Þ
Δt20 = t2− t0 ð12:133Þ

Target

Observer A

Observer B

Observer C

Figure 12.7 Principle of location based on TDOA measurements in planes
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where t0 and t1, t2 are the moments when the target signal arrives at the ground main and assistant
stations, and

r2i = x−xið Þ2 + y−yið Þ2 ð12:134Þ
r20 = x−x0ð Þ2 + y−y0ð Þ2 ð12:135Þ

Move r0 in (12.131) to the left side of the first equality mark, and square on both sides. Combining
(12.134) and (12.135) into (12.131), after some cancellation, yields

x0−xið Þx + y0−yið Þy= ki + r0Δri ð12:136Þ

where

ki =
1
2

Δr2i + d
2
0 −d

2
i

� � ð12:137Þ

d20 = x
2
0 + y

2
0 + z

2
0 ð12:138Þ

d2i = x
2
i + y

2
i + z

2
i ð12:139Þ

Write (12.136) in matrix form, as

AX =B ð12:140Þ

where

A=
x0−x1 y0−y1

x0−x2 y0−y2

" #
ð12:141Þ

X =
x

y

" #
ð12:142Þ

B=
k1 + r0Δr1
k2 + r0Δr2

" #
ð12:143Þ

When the three sensors are not on the same line, matrix A is reversible. This gives

X̂ =A−1B ð12:144Þ

where

A−1 =
1

x0−x1ð Þ y0−y2ð Þ− y0−y1ð Þ x0−x2ð Þ
y0−y2 y1−y0

x2−x0 x0−x1

" #
=
Δ a11 a12

a21 a22

" #
ð12:145Þ

Then, the solutions of x, y containing r0 are

x̂ =m1r0 + n1 ð12:146Þ

300 Radar Data Processing with Applications



ŷ =m2r0 + n2 ð12:147Þ

where

mi =
X2
j= 1

aijΔrj i= 1,2 ð12:148Þ

ni =
X2
j= 1

aijkj i= 1,2 ð12:149Þ

Substituting (12.146) and (12.147) into (12.135), after some cancellation, gives

m1r0 + n1−x0ð Þ2 + m2r0 + n2−y0ð Þ2 + z20 = r20 ð12:150Þ

Equation (12.150) can be further simplified as

ar20 + 2br0 + c= 0 ð12:151Þ

where

a =m2
1 +m

2
2−1 ð12:152Þ

b=m1 n1−x0ð Þ+m2 n2−y0ð Þ ð12:153Þ

c= n1−x0ð Þ2 + n2−y0ð Þ2 + z20 ð12:154Þ

The following can be derived from (12.151):

r0 =
−b±

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2−ac

p

a
ð12:155Þ

Substituting r0 derived from (12.155) into (12.146) and (12.147) yields estimates of the target
location.

12.5.3 Three-Dimensional Condition

Set the target location as (x, y, z), and the range difference from the target location to the main station
(x0, y0, z0) and to the three assistant stations (xi, yi, zi) as

Δri = ri−r0 =C �Δti0 i= 1,2,3ð Þ ð12:156Þ

whereC denotes the velocity of light,Δti0 the time difference of the target signal arriving at the main
observing station and at the assistant observing stations, which can be derived from (12.132) and
(12.133), and
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r0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 + y−y0ð Þ2 + z−z0ð Þ2

q
ð12:157Þ

ri =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−xið Þ2 + y−yið Þ2 + z−zið Þ2

q
ð12:158Þ

Move r0 to the left side of the first equality mark in (12.156), and square on both sides. Substi-
tuting (12.157) and (12.158) into (12.156), with some cancellation, yields

x0−xið Þx+ y0−yið Þy+ z0−zið Þz= ki + r0Δri i= 1,2,3 ð12:159Þ

where

ki =
1
2

Δr2i + d
2
0 −d

2
i

� � ð12:160Þ

d20 = x
2
0 + y

2
0 + z

2
0 ð12:161Þ

d2i = x
2
i + y

2
i + z

2
i ð12:162Þ

Write (12.159) in matrix form, as

AX =B ð12:163Þ

where

A=

x0−x1 y0−y1 z0−z1

x0−x2 y0−y2 z0−z2

x0−x3 y0−y3 z0−z3

264
375 ð12:164Þ

X =

x

y

z

264
375 B =

k1 + r0Δr1
k2 + r0Δr2
k3 + r0Δr3

264
375 ð12:165Þ

When the four sensors are not in the same plane, the rank of the coefficient matrix A is rank
Að Þ= 3, at which point matrixA is reversible. When they are in the same plane, dimension reduction
has to be conducted, that is, conducting 2D location with the long-range target. When they are not
only in the same plane but also on the same line, location is not accessible. If they are not in the same
plane, solving (12.163) yields

X̂ =A−1B ð12:166Þ

where

A−1 =
Δ

a11 a12 a13

a21 a22 a23

a31 a32 a33

264
375 ð12:167Þ
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Then, the solutions of x, y, z containing r0 are

x̂ =m1r0 + n1 ð12:168Þ
ŷ =m2r0 + n2 ð12:169Þ
ẑ=m3r0 + n3 ð12:170Þ

where

mi =
X3
j= 1

aijΔrj i= 1,2,3 ð12:171Þ

ni =
X3
j= 1

aijkj i= 1,2,3 ð12:172Þ

Combining (12.168), (12.169), and (12.170) into (12.157), with some cancellation, yields

ar20 + 2br0 + c= 0 ð12:173Þ

where

a=m2
1 +m

2
2 +m

2
3−1 ð12:174Þ

b=m1 n1−x0ð Þ+m2 n2−y0ð Þ+m3 n3−z0ð Þ ð12:175Þ
c= n1−x0ð Þ2 + n2−y0ð Þ2 + n3−z0ð Þ2 ð12:176Þ

It can be derived from (12.173) that

r0 =
−b±

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2−ac

p

a
ð12:177Þ

Substituting r0 derived from (12.177) into (12.168), (12.169), and (12.170) gives estimates of the
target location, which leads to the passive location of the target using TDOA.

12.6 Summary

Compared with the active location system, the passive location system has better stealth ability,
which makes it difficult to detect by an enemy’s reconnaissance system. Because it receives direct
waves from radiation sources, it has advantages in terms of range, which results in longer early
warning time, thus improving the survivability and combat ability of the system in electronic
warfare.
Based on the analysis of the characteristics and advantages of passive radars, this chapter dis-

cusses the spatial correlation of the passive radar measurement data, including passive location
and tracking using the phase changing rate method, Doppler changing rate, and multi-model
method. Finally, this chapter addresses the optimal deployment under the principle of minimum
area of the position concentration ellipse, and time difference measurements’ passive location.
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13
Pulse Doppler Radar Data Processing

13.1 Introduction

Pulse Doppler (PD) radar is a kind of pulse radar using the Doppler effect to detect target informa-
tion. It is widely applied in meteorological detection, air traffic control, ground air-defense warning,
low-altitude detection, missile guidance, and shipborne fire control, especially in airborne early
warning and fire control. The most important characteristic of the PD radar is that it can obtain
not only target range, azimuth, and elevation (which can all be obtained by conventional radars),
but also radial velocity using Doppler frequency calculations. Therefore, the crux of the data
processing of PD radar lies in how to make full use of this new information, enhancing radar’s
capability to evaluate the target state. The current research mainly involves assisting track initiation,
multi-target data association, and track filtering using Doppler measurements.
In the first place, this chapter introduces the characteristics of PD radar and the composition of its

tracking system. Then, it puts emphasis on the typical data processing algorithms of PD radar,
namely, optimal distance–velocity coupled tracking, multi-target tracking, and target tracking algo-
rithms with Doppler measurements. Since Doppler measurements are characterized by their strong
nonlinearity, a detailed discussion is made of several nonlinear filtering methods in the target track-
ing category which deal with Doppler measurements. Finally, we present a test and analysis of the
tracking capabilities of several PD radar tracking algorithms.

13.2 Overview of PD Radar Systems

13.2.1 Characteristics of PD Radar

The Doppler effect is the change in frequency of the received signal for a receiver in radial motion
relative to its source. It is named after the Austrian physicist Christian Doppler, who proposed it in
his acoustic studies in 1842. In the case of a radar moving relative to its target, the Doppler effect
manifests itself as the inequality in frequencies between echoes and transmitted signals. When the

Radar Data Processing with Applications, First Edition. He You, Xiu Jianjuan, and Guan Xin.
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electromagnetic wave signals transmitted by a radar come across a target which is approaching the
radar, their back-and-forth propagations between the radar and the target due to the Doppler effect
produce electromagnetic wave signals at a higher frequency.
The phase change of signals transmitted by the radar and echo signals is

φ tð Þ= 2π
λ
2R tð Þ ð13:1Þ

where R(t) is the time-varying one-way distance for a radar moving relative to its target, and λ is the
radar signal wavelength. When a target is moving towards a static radar with speed v, then R tð Þ = vt.
Thus, (13.1) can be written as

φ tð Þ= 2π2v
λ
t = 2πfdt ð13:2Þ

where fd = 2v
λ , which is the Doppler effect caused by the moving target. The Doppler frequency is

proportional to the relative speed between the target and the radar when the wavelength of the radar
signal is fixed.
Those radars that conduct target information extraction and processing by utilizing the Doppler

effect caused by the relative motion between the radar and its target are called Doppler radars. Those
which transmit a pulse modulated radio frequency are called PD radars.
PD radars should have:

1. A sufficiently high pulse repetition frequency (PRF), lest the clutter or the observed target suffer
from velocity fuzziness.

2. An ability for Doppler filtering of the single spectral line of the pulse train frequency spectrum
(i.e., frequency domain filtering ability).

3. Great possibilities to produce range fuzziness for the observed target due to its high PRF.

Practical PD radars usually vary greatly [317, 318] in their function and composition. As to their
data processors, the main functions involve data association and filtering, range tracking, angle
tracking, ambiguity-resolving calculations, antenna angle error modification, control of operating
modes, formation of scanning graphs, choice of PRF, prediction of clutter frequency and interfaces
of other systems, etc.
Because of their extraordinary performance in clutter suppression, PD radars have become the cen-

ter of world attention. Improvements in the performance and navigation methods of modern air
vehicles enable them to fly at low and extremely low altitudes, which means that defense against
low-altitude invasions has become a key issue. Therefore, airborne radars, including early warning
and fire-control radars, should have a downward-looking ability, the ability to find weak target signals
in strong ground clutters. That’s the reason whymodern airborne early warning and fire-control radars
both choose PD systems, which can suppress ground clutters efficiently, and have favorable resistance
to passive jamming and active jamming as well [319]. A detailed discussion of the data extraction,
typical filtering algorithms, and multi-target tracking of PD radars will be presented in Section 13.2.2.

13.2.2 PD Radar Tracking System

The raw data for data processing originates from the azimuth, elevation, range, and velocity tracking
loop of the radar. There are two kinds of tracking systems for PD radars: single-target andmulti-target.
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13.2.2.1 Single-Target Velocity (Doppler Frequency) Tracking System

Frequency tracking loops can be classified into frequency-locked and phase-locked according to the
difference in frequency-sensitive elements. The former type use frequency discriminators as their
sensitive elements. Their functional block diagram is shown in Figure 13.1.
At the very beginning, the tracking loop operates in the search mode. A voltage with periodic

variation is given at inputs to the voltage-controlled oscillator (VCO), which is then enabled to vary
within the scope of the predicted Doppler frequency. Once the target is located, with target echo
frequency f0 + fd, subtract the VCO frequency f0− f2 + f 0d, then the resulting beat signals at frequency
f 02 = f2 + fd− f

0
d enter the frequency discriminator via the narrow band filter. At this point, the

additional intercept circuit can be used to control the loop to switch from the search to the track
mode. If f 0d > f2, the central frequency of the beat signals’ spectrum is f 02 < f2. Then, the frequency
discriminator will output a positive voltage to reduce the frequency of the VCO, and f 0d is very close
to fd after closed-loop adjustment. After being switched through the frequency output circuit, the
frequency deviation of the VCO f 0d can output the velocity data of the target. When there is any
change in the Doppler frequency of the target echo, the frequency discriminator determines the
dimensions and direction of these changes, and outputs a control voltage, thereby activating cor-
responding changes in the frequency of the VCO and accomplishing the tracking of automatic
frequencies.
The functional block diagram of phase-locked frequency trackers is shown in Figure 13.2. As

indicated in the diagram, they are essentially the same as frequency-locked frequency trackers
except that the element sensitive to frequency changes is replaced with a phase discriminator.
In order that the phase-locked system remains in tracking mode, the phase of the VCO should syn-

chronize with the changes in signal phase on the whole, in other words, the errors between them should
stay within a certain fraction of the signal period, which sets a high standard for the stability of the radar
facilities. Then, the band of the phase-locked system should be wide enough to ensure that the dynamic
lag in the phase arising from themaneuvers of the target is maintainedwithin tolerance. But the enlarge-
ment of the bandwidth can increase the tracking errors brought about by noise. The phase-locked system
may be subject to the limits of the highest acceleration of the trackable target with its bandwidth fixed.

13.2.2.2 Single-Target Range Tracking System

The basic methods of range tracking are the same as those of conventional pulse radar; the difference
lies in the fact that the velocity selection is added to the range loop of the PD radar. Since signals

Mixer
Band-pass

filter

f0 + fd

f0 – f2 + f ′d

f ′d

f ′2 Frequency
discriminator

Correction
Voltage

controlled
oscillatorSearch

Frequency
calculator

Figure 13.1 Frequency-locked frequency tracking loop
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approximate continuous waves without range messages after going through the single side band and
the narrow band Doppler filter, the range gate must be added to the broad band intermediate fre-
quency amplifier before velocity selection, as shown in Figure 13.3.

13.2.2.3 Multi-target Tracking System

Multi-target tracking can be done by multiplex reception channels. In this system, the range gate
covers the whole pulse interval at different times, and there is a group of Doppler filters in every
channel. When the antenna is scanning, all of the targets will be tested, and be tracked by discrete
data. When the multiple pulse repetition frequency is used to measure the range, the time when the
target is being scanned by the antenna must be divided into several periods in order to meet the needs
of repeated observations required by ranging systems. Since the accumulating time is shortened, the
bandwidth of the Doppler filter must be widened correspondingly, which will reduce the detection
range [320–324]. Meanwhile, in order to avoid ranging fuzziness, several detections must be con-
ducted, which will further weaken its ranging capability. Although the multi-target tracking system
is not specific to pulse Doppler radars, it has unparalleled advantages (as in the single-target tracking
mode) over conventional radars in many cases, especially under the interference of strong clutters.

13.3 Typical Algorithms of PD Radar Tracking

To make the various parameters of describing a target’s moving state as accurate as possible, the
data obtained by radar measurements need further processing because there are unavoidably meas-
urement errors and noises. The algorithms commonly used include the LS algorithm, constant gain
α−β filtering, constant gain α−β−γ filtering, Kalman filtering, extended Kalman filtering, etc.
Theoretically, Kalman filtering is linear unbiased minimum variance estimation with a time-

varying structure, so it is applicable to estimation of the non-stationary process, the detailed descrip-
tion of whose model is given in Chapter 3. However, there are still many problems to deal with when
this algorithm is applied in the practical data processing system of PD radars. These problems
mainly involve the filtering mathematical model, real-time ability, and numerical divergence.

Mixer
Filtering and

limiting

f0 + fd

f0 – f2 + f ′d
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Figure 13.2 Phase-locked frequency tracker
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The Kalman filter performs best only when its mathematical model is certain. The steps to build a
mathematical model include the establishment of state and measurement equations, and confirm-
ation of the statistical characteristics of initial estimation vectors, system noise, and measurement
noise. However it is quite difficult, sometimes even impossible, to establish an accurate filtering
model in most practical implementations. If the filtering model cannot match the mathematical rules
in practical processes, the precision of the filter will suffer. Worse still, divergence of the filter
may occur.
Errors caused by an inaccurate filtering model are allowable under some conditions, and

these errors may gradually disappear with time. However, if model errors go beyond the
permitted limits or more precise filtering is needed, the filtering model should be modified, which
requires the employment of model identification and adaptive filtering techniques. Actually, in the
procedure of applying Kalman filtering to PD radar data processing, the main work lies in the estab-
lishment of a filtering mathematical model and the pursuit of an applicable adaptive filtering
algorithm.
A typical example is how to use radar to track maneuvering targets. In most cases, the air tactical

targets that radar has to track are manned and unmanned air vehicles in the atmosphere. Generally
speaking, the target flies linearly at constant velocity. In that case, extrapolation along a straight line
should be used to predict its location in the future. It is reasonable to consider that this way of flying
is most frequently adopted by an air vehicle based on the fact that its effective velocity goes down
and the time to fulfill its task and stay in dangerous zones extends if it takes lots of turns in the flight.
However, the air vehicle will take such actions as accelerations, decelerations, climbs, dives, and
turns under the condition that it encounters obstacles or radar illumination, or has to dodge enemy
firepower, or perform maneuvers in air battles. Since both the overload that an air vehicle can bear
and its power are limited, so is its maneuver ability, thereby necessitating the utilization of various
adaptive filtering algorithms suitable for tracking maneuvering targets. The corresponding model
description and comparative analysis of their performance have been discussed in detail in
Chapter 9.

13.3.1 Optimal Range–Velocity Mutual Coupling Tracking

Although there is a strict correspondence between the range and velocity of the target, range and
velocity tracking loops are independent of one another in conventional PD radars. Actually, range
tracking error and velocity tracking error are two components of its innovation vector if a Kalman
filter is inserted into the tracking loop. With filtering computing, a connection can naturally be
established between the two tracking loops. This kind of tracking is known as “optimal range–
velocity mutual coupling tracking.” The procedure for getting a closed-form solution to optimal
range–velocity mutual coupling tracking will be discussed below.
Assume that the target’s system model on a certain coordinate axis is a second-order differential

equation

€x tð Þ= v tð Þ ð13:3Þ

where x(t) is the real range of the target and v(t) is the random acceleration whose statistical char-
acteristic is E v tð Þ½ �= 0, E v tð Þv τð Þ½ �= σ2δ t−τð Þ.
The state equation of the target is

_X tð Þ=AX tð Þ +Γv tð Þ ð13:4Þ
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and

X tð Þ= x tð Þ
_x tð Þ

" #
, A=

0 1

0 0

" #
, Γ=

0

1

" #
ð13:5Þ

The measuring model of the PD radar is

Z tð Þ =HX tð Þ+W tð Þ ð13:6Þ

where

Z tð Þ= Zx tð Þ
Z _x tð Þ

" #
, H =

1 0

0 1

" #
, W tð Þ= Wx tð Þ

W _x tð Þ

" #

Generally speaking, Wx(t) and W _x tð Þ are irrelevant zero-mean, white noise processes with stat-
istical characteristics E W tð Þ½ �= 0, E W tð ÞW 0 τð Þ½ � =Rδ t−τð Þ, where R is a stationary diagonal
matrix, R = diag σ2r ,σ

2
v

� �
, with σ2r and σ2v as the range and velocity measurement noise variance,

respectively.
Based on the continuous Kalman filtering theory, the optimal estimate of the target state for the

above-mentioned model can be given by the following differential equations group:

X̂ t + 1ð Þ=AX̂ tð Þ+K tð Þ Z tð Þ−HX̂ tð Þ� � ð13:7Þ
K tð Þ =P tð ÞH0R−1 ð13:8Þ

P t + 1ð Þ=AP tð Þ+P tð ÞA0 +Γσ2Γ0−P tð ÞH0R−1HP tð Þ ð13:9Þ

Equation (13.9) is the famous Riccati equation, in which K(t) is the filter gain matrix, P(t) is the
estimation error covariance matrix, and Z tð Þ−HX̂ tð Þ� �

is the filtering innovation.
In view of the steady filtering problem, (13.9) is degenerated to the matrix Riccati algebra equation:

AP+PA0 +Γσ2Γ0−PH0R−1HP−P= 0 ð13:10Þ

Solving (13.10) yields

P=
σrσv sinφ σrσ cosφ

σrσ cosφ σvσ sinφ

" #
ð13:11Þ

where

cosφ=
1

1 + σrσσ−2
v

ð13:12Þ

Let α= σv=σr and β = σ=σv, then the gain matrix is

K =
αsinφ

β

α
cosφ

αβcosφ β sinφ

24 35 ð13:13Þ
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and

cosφ=
α

α+ β
ð13:14Þ

The steady mutual coupling Kalman filter is steady for any group α, β, and the pole of the system
can be defined by the characteristic equation

s2 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 + 2αβ

q
s + αβ = 0 ð13:15Þ

The acceleration error constant of the system is

Ka =
α2β

α+ β
ð13:16Þ

Therefore, as long as α gets a limited value, the system can track the input process of steady accel-
eration with limited tracking error.
In order to estimate the performance of the optimal mutual coupling tracking system, its range

error variance can be compared with the range tracking error of the tracking loop without mutual
coupling. The measurement equation of the single ranging tracking loop is

Z tð Þ= 1 0½ �X tð Þ+w tð Þ ð13:17Þ

Let σ−2
v = 0 in (13.12), then the steady tracking error covariance matrix of the system can be

obtained, which indicates that the ranging tracking loop is the degenerate form of the mutual coup-
ling tracking loop when the velocity measurement noise covariance approaches infinity. From
(13.12) and (13.14), we get

p∗11 = σr
ffiffiffiffiffiffiffiffiffiffi
2σrσ

p
ð13:18Þ

Define the performance index J as the ratio of the range error covariance of the two systems, then

J =
p∗11
p11

=
1 + xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + x=2

p ð13:19Þ

where

x = σrσσ
−2
v ð13:20Þ

It can be concluded that the performance index increases monotonously from 1 to infinity and J

goes gradually close to
ffiffiffiffiffi
2x

p
when x>> 1. For any kind of practical PD radar, there must be σ2v <∞ ,

so the mutual coupling tracking system always performs better than the single ranging one.
The state model of the target is a three or higher-order differential equation when the random

acceleration of the target is a correlation process. In this case, it is difficult to get the closed-form
solution to the filters. Therefore, computers should serve as an aid in analyzing the performance of
the filters.
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Notice that the precondition of performing mutual coupling filtering is to make sure that velocity
measuring ambiguity [325, 326] is eliminated.
The Kalman filtering model established in line-of-sight coordinate systems has comparatively

high estimation accuracy and adaptability. The tracking system closed by this kind of filter has bet-
ter stability, shown particularly in its angel tracking system, which needs only two-axis stabilization
(by antenna stabilization loops). By doing so, the radar stabilized platform can be spared in the
whole process and the radar structure is greatly simplified. Therefore, it is one of the most frequently
used systems in modern fire control. Yet one of the disadvantages of this filtering model is that it
cannot be used to track multiple targets.

13.3.2 Multi-target Tracking

With the increase in the number of targets that radars have to deal with, it becomes an essential
system for many types of radar to track multiple targets simultaneously. For instance, while imple-
menting long-distance interception, the airborne multi-function radar is required to track multiple
targets at the same time and choose as its targets those which present the greatest threat or have the
highest percentage of hits. Even when used to attack single targets, it still needs to monitor the air
intelligence in the vicinity. Each kind of early warning radar must be provided with the capability to
track multiple targets of different batches simultaneously. Besides, they should be able to identify
and catalog the targets automatically.
Multi-target tracking algorithms mainly include the track splitting, joint maximum likelihood,

0–1 programming, generalized correlation, probabilistic data association, nearest-neighbor, joint
probabilistic data association, optimal Bayesian, and multiple hypothesis algorithms. The differ-
ences between those algorithms lie in the number of targets, detection probability, correlation
between multiple scans, and amount of calculation when they are put into practice, which have been
discussed in detail in Chapters 7 and 8.

13.3.3 Target Tracking with Doppler Measurements

The radars used in practice, especially Doppler radars, can usually perform Doppler measurements.
It has been proved by theoretical computation and practice that tracking accuracy can be greatly
improved by making full use of Doppler measurements.
The EKF is the most frequently used method to solve the target tracking problem with Doppler

measurements. However, since the relationship between radar measurements and the moving state
of the target is completely nonlinear, the result of estimation is often unsatisfactory. For the current
radar target tracking algorithms with Doppler measurements, the common method is to hypothesize
that errors of range, angle, and Doppler measurements are statistically independent. But for some
wave forms, range and Doppler measurements are statistically dependent in terms of errors based on
the latest research [326].

13.3.3.1 Unbiased Sequential Extended Kalman Filtering (USEKF) Algorithm

In order to make the best of Doppler measurements, the following discussion will focus on how to
extend the 2D debiased consistent converted measurement Kalman filtering algorithm, which only
considers position measurements, to the case where Doppler measurements are also included, and
range errors and Doppler measurement errors are statistically dependent.
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Problem Description
In Cartesian coordinates, the moving model of the target can usually be expressed as

X kð Þ=F k−1ð ÞX k−1ð Þ +G k−1ð Þu k−1ð Þ+V k−1ð Þ ð13:21Þ

where X kð Þ = x kð Þ,y kð Þ, _x kð Þ, _y kð Þ,s1 × n−4ð Þ
� �0

is the moving state of the target, x(k) and y(k) are
position components of the target in two directions x, y, respectively, _x kð Þ, _y kð Þ are their correspond-
ing velocity components, s1 × n−4ð Þ is the rest of the state components, F kð Þ 2Rn × n is the state
transition matrix, G(k) is the coefficient matrix of proper dimensions, u(k) is the deterministic
input vector, and V(k) is a Gaussian white noise sequence whose mean value is zero and
variance Qk.
Assume that a 2D radar is located at the origin of the coordinate, then the radar’s measurement

equation in polar coordinates can be expressed as

zm kð Þ= ρm kð Þ,θm kð Þ, _ρm kð Þ½ �0 = f k X kð Þð Þ+ vm kð Þ= ρ kð Þ,θ kð Þ, _ρ kð Þ½ �0 + vm kð Þ ð13:22Þ

where

ρ kð Þ = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 kð Þ + y2 kð Þp

θ kð Þ= arctan y kð Þ=x kð Þð Þ
_ρ kð Þ = x kð Þ _x kð Þ + y kð Þ _y kð Þð Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 kð Þ+ y2 kð Þp
vm kð Þ= eρ kð Þ,eθ kð Þ,e_ρ kð Þ�0

h

8>>>>>>><>>>>>>>:
ð13:23Þ

with ρm(k), θm(k), and _ρm kð Þ the radar’s measurement values of target range, azimuth angle, and

Doppler, respectively. ρ(k), θ(k), and _ρ kð Þ are their corresponding true values; eρ kð Þ, eθ kð Þ, ande_ρ kð Þ are their corresponding additive measurement errors. Suppose that all of them are zero-mean,

Gaussian, white noise sequences with variances σ2ρ, σ
2
θ, and σ2_ρ, respectively, eρ kð Þ and eθ kð Þ are

uncorrelated, so are eθ kð Þ and e_ρ kð Þ, and the correlative coefficient of eρ kð Þ and e_ρ kð Þ is r.

Measurement Conversion
Converting the position (range and azimuth angle) measurements in polar coordinates to Cartesian
coordinates gives

xc kð Þ = ρm kð Þcosθm kð Þ= x kð Þ+ex kð Þ
yc kð Þ = ρm kð Þsinθm kð Þ = y kð Þ +ey kð Þ

(
ð13:24Þ

whereex kð Þ andey kð Þ are components of position-converted measurement errors in two directions x, y
of Cartesian coordinates, respectively.
The strength of nonlinearity between Doppler measurements and the moving state of the target

can be weakened by using the estimated measurement converted equation

ξc kð Þ = ρm kð Þ _ρm kð Þ = x kð Þ _x kð Þ+ y kð Þ _y kð Þ+eξ kð Þ ð13:25Þ
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where eξ kð Þ is the converted error of estimated measurement ξ(k) in Cartesian coordinates.
It follows from (13.24) and (13.25) that the radar measurements, after being converted from polar

to Cartesian coordinates, can be expressed on the whole as

zc kð Þ = xc kð Þ,yc kð Þ,ξc kð Þ½ �0 = hk X kð Þð Þ + vc kð Þ

= x kð Þ,y kð Þ,x kð Þ_x kð Þ + y kð Þ _y kð Þ½ �0 + ex kð Þ,ey kð Þ,eξ kð Þ
h i0 ð13:26Þ

True Bias and Covariance of Converted Measurement Errors
Given the real position of the target and Doppler, the true mean and covariance of converted meas-
urement errors can be obtained based on the known condition of radar measurement errors from
(13.22) as

μt kð Þ =E vc kð Þ ρ kð Þ,θ kð Þ, _ρ kð Þj½ �= μxt kð Þ,μyt kð Þ,μξ kð Þ� �0
Rt kð Þ= cov vc kð Þ ρ kð Þ,θ kð Þ, _ρ kð Þj½ �=

Rxx
t kð Þ Rxy

t kð Þ Rxξ
t kð Þ

Ryx
t kð Þ Ryy

t kð Þ Ryξ
t kð Þ

Rξx
t kð Þ Rξy

t kð Þ Rξξ
t kð Þ

26664
37775

8>>>>>><>>>>>>:
ð13:27Þ

and

μxt = ρ kð Þcosθ kð Þ e−
σ2
θ
2 −1

0@ 1A
μyt = ρ kð Þsinθ kð Þ e−

σ2
θ
2 −1

0@ 1A
μt

ξ kð Þ = rσρσ _ρ

Rxx
t = var ex ρ kð Þ,θj kð Þ½ �= ρ kð Þð Þ2e−σ2θ cos2θ kð Þ cosh σ2θ

� �
−1

� �
+ sin2θ kð Þ sinh σ2θ

� ��� �
+ σ2ρe

−σ2θ cos2θ kð Þcosh σ2θ
� �

+ sin2θ kð Þ sinh σ2θ
� ��� �

Ryy
t = var ey ρ kð Þ,θj kð Þ½ �= ρ kð Þð Þ2e−σ2θ sin2θ kð Þ cosh σ2θ

� �
−1

� �
+ cos2θ kð Þ sinh σ2θ

� ��� �
+ σ2ρe

−σ2θ sin2θ kð Þcosh σ2θ
� �

+ cos2θ kð Þ sinh σ2θ
� ��� �

Rxy
t =Rt

yx = var ex,ey ρ kð Þ,θ kð Þj½ �= sinθ kð Þcosθ kð Þe−2σ2θ σ2ρ + ρ kð Þ½ �2 1−eσ
2
θ

� �n o
Rt

xξ kð Þ =Rt
ξx kð Þ= σ2ρ _ρ kð Þ+ ρ kð Þrσρσ _ρ

� �
cos θ kð Þ½ �e−σ2θ=2

Rt
yξ kð Þ =Rt

ξy kð Þ= σρ2 _ρ kð Þ + ρ kð Þrσρσ _ρ

� �
sin θ kð Þ½ �e−σ2θ=2

Rt
ξξ kð Þ= ρ kð Þ½ �2σ2_ρ + σ2ρ _ρ kð Þ½ �2 + 1 + r2ð Þσ2ρσ2_ρ + 2ρ kð Þ _ρ kð Þrσρσ _ρ:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð13:28Þ

which are the true bias and covariance of converted measurement errors.
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True Bias and Covariance of Average Converted Measurement Errors
Equation (13.27) cannot be applied directly in practice, since the real position of the target and
Doppler are always unknown. In order to make it applicable, the mathematical expectation of
the above-mentioned true mean and covariance can be solved, under the condition that measure-
ments are known, as

μa kð Þ=E μt kð Þ ρm kð Þ,θm kð Þ, _ρm kð Þj½ �= μxa kð Þ,μya kð Þ,μξa kð Þ� �0
Ra kð Þ =E Rt kð Þ ρm kð Þ,θm kð Þ, _ρm kð Þj½ � =

Rxx
a kð Þ Rxy

a kð Þ Rxξ
a kð Þ

Ryx
a kð Þ Ryy

a kð Þ Ryξ
a kð Þ

Rξx
a kð Þ Rξy

a kð Þ Rξξ
a kð Þ

26664
37775

8>>>>>><>>>>>>:
ð13:29Þ

and

μxa = ρ
m kð Þcos θm kð Þ½ � e−σ

2
θ −e−σ

2
θ=2

� �
μya = ρ

m kð Þsin θm kð Þ½ � e−σ
2
θ −e−σ

2
θ=2

� �
μa

ξ kð Þ= rσρσ _ρ

Rxx
a = ρm kð Þ½ �2e−2σ2θ cos2 θm kð Þ½ � cosh 2σ2θ

� �
−cosh σ2θ

� �� �
+ sin2 θm kð Þ½ � sinh 2σ2θ

� �
−sinh σ2θ

� �� �	 

+ σ2ρe

−2σ2θ cos2 θm kð Þ½ � 2cosh 2σ2θ
� �

−cosh σ2θ
� �� �

+ sin2 θm kð Þ½ � 2sinh 2σ2θ
� �

−sinh σ2θ
� �� �	 


Ryy
a = ρm kð Þð Þ2e−2σ2θ sin2 θm kð Þ½ � cosh 2σ2θ

� �
−cosh σ2θ

� �� �
+ cos2 θm kð Þ½ � sinh 2σ2θ

� �
−sinh σ2θ

� �� �	 

+ σ2ρe

−2σ2θ sin2 θm kð Þ½ � 2cosh 2σ2θ
� �

−cosh σ2θ
� �� �

+ cos2 θm kð Þ½ � 2sinh 2σ2θ
� �

−sinh σ2θ
� �� �	 


Rxy
a =Ryx

a = sin θm kð Þ½ �cos θm kð Þ½ �e−4σ2θ σ2ρ + ρm kð Þ½ �2 + σ2ρ
h �

1−e−σ
2
θ

� �
�

Ra
xξ kð Þ=Ra

ξx kð Þ= σ2ρ _ρ
m kð Þ + ρm kð Þrσρσ _ρ

h i
cos θm kð Þ½ �e−σ2θ=2

Ra
yξ kð Þ=Ra

ξy kð Þ= σ2ρ _ρ
m kð Þ + ρm kð Þrσρσ _ρ

h i
sin θm kð Þ½ �e−σ2θ=2

Ra
ξξ kð Þ= ρm kð Þ½ �2σ2_ρ + σ2ρ _ρm kð Þ½ �2 + 3 1 + r2ð Þσ2ρσ2_ρ + 2ρm kð Þ _ρm kð Þrσρσ _ρ:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>: ð13:30Þ

Generally speaking, although converted measurement errors are not Gaussian distributed, (13.29)
can be proven as the consistent estimation of the first second-order moment of converted measure-
ment errors, which, during the process of tracking filtering, can thus be approximately considered as
Gaussian. In that case, the converted measurement equation (13.26) can replace the radar’s practical
measurement equation (13.22).

Tracking Filter
It follows from (13.26) that converted measurement is the nonlinear function of the moving state of
targets. Therefore, linearization of hk[X(k)] must be done in order to finish tracking filtering. And
one of the most commonly used methods is to extend hk[X(k)] by Taylor series around the one-step
prediction value X̂ k k−1jð Þ of the state. However, since position-converted measurement is a linear
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function of the moving state of targets, the corresponding state filtering value X̂p k kjð Þ should be
obtained by sequential filtering estimation (i.e., dealing with converted position measurements
in preference), after which the nonlinear function of estimated measurement can be extended by
Taylor series according to X̂p k kjð Þ, which would certainly reduce the errors generated from linear-
ization. It can be concluded from (13.29) that there is correlation between position and converted
errors of estimated measurements. So, this correlation must be removed first to realize sequential
filtering estimation. The partition of the covariance matrix Ra(k) based on position and estimated
measurement can be described as follows:

Ra kð Þ= Rp
a kð Þ Rξp

a kð Þ� �0
Rξp
a kð Þ Rξ

a kð Þ

" #
ð13:31Þ

Suppose

L kð Þ = −Rξp
a kð Þ Rp

a kð Þ� �−1
= L1 kð Þ,L2 kð Þ� �

B kð Þ =
I2 0

L kð Þ 1

" #
8>><>>: ð13:32Þ

Pre-multiply both sides of (13.26) and B(k), then the following can be obtained by Cholesky
factorization of the matrix:

zc,p kð Þ=Hc,p kð ÞX kð Þ + vc,p kð Þ
εc kð Þ= hkε X kð Þ½ �+eε kð Þ

(
ð13:33Þ

where

zc,p kð Þ= xc kð Þ,yc kð Þ½ �0
Hc,p = I2,02 × n−2ð Þ

� �
vc,p kð Þ= ex kð Þ,ey kð Þ½ �'
E vc,p kð Þ½ � = μpa kð Þ= μxa kð Þ,μya kð Þ� �0
cov vc,p kð Þ½ �=Rp

a kð Þ
εc kð Þ= L1 kð Þxc kð Þ+ L2 kð Þyc kð Þ+ ξc kð Þ
hεk X kð Þð Þ = L1 kð Þx kð Þ +L2 kð Þy kð Þ+ x kð Þ _x kð Þ+ y kð Þ _y kð Þeε kð Þ =L1 kð Þex kð Þ+ L2 kð Þey kð Þ+eξ kð Þ
E eε kð Þ½ �= μεa kð Þ= L1 kð Þμxa kð Þ+ L2 kð Þμya kð Þ+ μξa kð Þ
var eε kð Þ½ �=Rε

a kð Þ=Rξ
a kð Þ−Rξp

a kð Þ Rp
a kð Þ� �−1

Rξp
a kð Þ� �0

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

ð13:34Þ

and eε kð Þ and vc,p(k) are uncorrelated.
Thus the filtering estimation of the moving state of targets can be carried out sequentially with the

targets’moving state equation (13.21) and the measurement equation (13.33) by following the four
steps below.
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• Step 1: update filtering estimation with time.

X̂ k k−1jð Þ =F k−1ð ÞX̂ k−1 k−1jð Þ +G k−1ð Þu k−1ð Þ
P k k−1jð Þ =F k−1ð ÞP k−1 k−1jð Þ F k−1ð Þ½ �0 +Q k−1ð Þ

(
ð13:35Þ

• Step 2: update filtering estimation with position measurement.

Kp kð Þ=P k k−1jð Þ Hc,p kð Þ½ �0 Hc,p kð ÞP k k−1jð Þ Hc,p kð Þ½ �0 +Rp
a kð Þ� �−1

X̂p k kjð Þ= X̂ k k−1jð Þ+Kp kð Þ zc,p kð Þ−μpa kð Þ−Hc,p kð ÞX̂ k k−1jð Þ� �
Pp k kjð Þ = In−Kp kð ÞHc,p kð Þð ÞP k k−1jð Þ

8>>><>>>: ð13:36Þ

• Step 3: update filtering estimation with pseudo measurement.
It follows from (13.33) that the pseudo-measurement is the quadratic function of the moving state
of targets. Consequently, the nonlinear tracking filtering of the targets’ moving state can best be
achieved using second-order EKF only. That is,

Kε kð Þ=Pp k kjð Þ Hε kð Þ½ �0 Hε kð ÞPp k kjð Þ Hε kð Þ½ �0 +Rε
a kð Þ+A kð Þ� �−1

X̂ε k kjð Þ= X̂p kjkð Þ+Kε kð Þ εc kð Þ−μεa kð Þ−hε
k X̂p k kjð Þ� �

−
1
2
Δ2 kð Þ

� �
Pε k kjð Þ = In−Kε kð ÞHε kð Þð ÞPp k kjð Þ

8>>>>><>>>>>:
ð13:37Þ

where Hε(k) is still the Jacobian matrix of hεk[X(k)] in the position of X̂p k kjð Þ, that is,

Hε kð Þ= L1 kð Þ+ _̂xp k kjð Þ, x̂p k kjð Þ,L2 kð Þ+ _̂yp k kjð Þ, ŷp k kjð Þ,01 × n−4ð Þ
� � ð13:38Þ

Meanwhile δ2(k) is formed by the second-order derivative of hεk[X(k)], that is,

δ2 kð Þ= 2Pp
k 1,3ð Þ+ 2Pp

k 2,4ð Þ ð13:39Þ

and A(k) is

A kð Þ = Pp
k 1,1ð ÞPp

k 2,2ð Þ +Pp
k 3,3ð ÞPp

k 4,4ð Þ

+ 2Pp
k 1,3ð ÞPp

k 2,4ð Þ+ 2Pp
k 1,4ð ÞPp

k 2,3ð Þ + Pp
k 1,2ð Þ� �2

+ Pp
k 3,4ð Þ� �2 ð13:40Þ

where Pp
k i, jð Þ stands for the element which is in row i and column j of the position filtering error

covariance matrix Pp(k|k).
• Step 4: final filtering estimation.

X̂ k kjð Þ= X̂ε k kjð Þ
P k kjð Þ=Pε k kjð Þ

(
ð13:41Þ
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13.3.3.2 Unbiased Sequential Unscented Kalman Filtering (USUKF) Algorithm

The way that unscented Kalman filters can be applied to deal with the estimation of strong nonlinear
systems has been introduced in Section 4.3. Therefore, after the position measurement is filtered in
the USEKF algorithm in Section 13.3.3.1, the UKFmethod can be used in place of the second-order
EKF algorithm. The unbiased converted measurement filtering process of position measurement,
and the decorrelation process of distance measurement and Doppler measurement, are the same
as (13.21)–(13.34) in the USEKF algorithm. Then, the UKF algorithm can be used to deal with
Doppler measurements [327, 328] under the following procedure.

• Step 1: update filtering estimation with time.

X̂ k k−1jð Þ=F k−1ð ÞX̂ k−1 k−1jð Þ+G k−1ð Þu k−1ð Þ
P k k−1jð Þ =F k−1ð ÞP k−1 k−1jð Þ F k−1ð Þ½ �0 +Q k−1ð Þ

(
ð13:42Þ

• Step 2: update filtering estimation with position measurement.

Kp kð Þ=P k k−1jð Þ Hc,p kð Þ½ �0 Hc,p kð ÞP k k−1jð Þ Hc,p kð Þ½ �0 +Rp
a kð Þ� �−1

X̂p k kjð Þ= X̂ k k−1jð Þ+Kp kð Þ zc,p kð Þ−μpa kð Þ−Hc,p kð ÞX̂ k k−1jð Þ� �
Pp k kjð Þ= In−Kp kð ÞHc,p kð Þð ÞP k k−1jð Þ

8>>><>>>: ð13:43Þ

• Step 3: update filtering estimation with pseudo measurement.
i. Calculate 2nx + 1ð Þ δ sampling points ξi and their corresponding weight values Wi:

ξ0 kjkð Þ = X̂p kjkð Þ, i = 0

ξi kjkð Þ= X̂p kjkð Þ+ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx + λð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pp kjkð Þp� �
i, i= 1,…,nx

ξi+ nx kjkð Þ= X̂p kjkð Þ− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx + λð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pp kjkð Þp� �
i, i= 1,…,nx

8>>><>>>: ð13:44Þ

where nx is the dimension of the state vector, and here nx = 4; λ = nx α2−1ð Þ, and α= 0:01;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx + λð ÞPp kjkð Þp� �

i
is column i in the mean square root matrix nx + λð ÞPp kjkð Þ.

The corresponding weight value Wi is

W mð Þ
0 =

λ

nx + λð Þ , i= 0 ð13:45Þ

W cð Þ
0 =

λ

nx + λð Þ + 1−α
2 + β, i = 0 ð13:46Þ

W mð Þ
i =W cð Þ

i =
1

2 nx + λð Þ½ � , i= 1,…,2nx ð13:47Þ

where β = 2, superscript m stands for the weight value in the state update, and superscript c is
the weight value in the covariance update.
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ii. Measurement update

ςi kjkð Þ= hε
k k,ξi kjkð Þ½ � ð13:48Þ

where hε
k is the measurement equation, then the predicted measurement and corresponding

covariance are

Ẑε kjkð Þ =
X2nx
i= 0

Wiςi kjkð Þ ð13:49Þ

Pzz =Rε
a kð Þ+

X2nx
i= 0

WiΔZε
i kjkð ÞΔZε

i

0
kjkð Þ ð13:50Þ

where ΔZε
i kjkð Þ= ςi kjkð Þ− Ẑε kjkð Þ.

Likewise, the interactive covariance of measurements and state vectors can be obtained as

Pxz =
X2nx
i= 0

WiΔXε
i kjkð ÞΔZε

i i
0 kjkð Þ ð13:51Þ

where ΔXε
i kjkð Þ = ξi kjkð Þ− X̂p kjkð Þ.

iii. The state update and its covariance can be expressed as

X̂ε k kjð Þ = X̂p kjkð Þ +Kε kð Þ εc kð Þ−μεa kð Þ− Ẑε kjkð Þ� � ð13:52Þ

Pε k kjð Þ =Pp kjkð Þ−Kε kð ÞPzzKε0 kð Þ ð13:53Þ
Kε kð Þ=PxzP−1

zz ð13:54Þ

• Step 4: final filtering estimation.

X̂ k kjð Þ= X̂ε k kjð Þ
P k kjð Þ=Pε k kjð Þ

(
ð13:55Þ

13.3.3.3 Doppler Measurement Unscented Kalman Filtering (DUKF) Algorithm

It can be concluded from the measurement equation of Doppler radars (13.23) that every measure-
ment, especially Doppler measurement, of the measurement vector is nonlinear. As for the nonli-
nearity of range and position measurements, converted measurement Kalman filters (CMKFs) are
usually adopted. But they cannot be used to deal with Doppler measurements. Therefore, the
sequential filtering method should be used after the CMKF to deal with the filtering of Doppler
measurements. Since the UKF is not sensitive to the strength of a system’s nonlinearity, the pos-
terior mean and covariance from filtering can both be accurate to second order. Thus, the UKF
method can be applied directly to filter the measurement vectors composed of ρm(k), θm(k), and
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_ρm kð Þ, which avoids converted position measurement filtering and the decorrelation process
between range measurements and Doppler measurements. The specific implementation procedures
are as follows (see Section 4.3). First of all, calculate 2nx + 1ð Þ δ sampling points and their weight
values, and obtain the one-step prediction of point δ according to the state equation. Then, calculate
the predicted measurement by the measurement equation. Finally, update states and state covariance
with the measurements provided by sensors.
What should be emphasized is that the measurement vector discussed in this part includes range,

position, as well as Doppler measurement. Assume that the state estimation vector and the state
estimation covariance of the tracking system at time k are X̂ kjkð Þ and P kjkð Þ, respectively, then
the covariance matrix of measurement noise vm(k) in polar coordinates is

R kð Þ= cov vm kð Þ½ � =
σ2ρ 0 rσρσ _ρ

0 σ2θ 0

rσρσ _ρ 0 σ2_ρ

2664
3775 ð13:56Þ

13.3.3.4 Unscented Kalman Filtering Algorithm for Maneuvering Targets

In the maneuvering target tracking case, the interactive multiple model is a practical multiple-model
estimation algorithm. The IMM-based UKF algorithm can be obtained by a combination of IMM
andUKF on the basis of the establishment of UKFmulti-filter models. Furthermore, the IMM-based
DUKF algorithm can be obtained by applying the UKF, which has splendid nonlinearity, to the case
of maneuvering targets with Doppler measurements.
The IMM-DUKF algorithm has some obvious advantages [329] over the IMM-UKF algorithm

(without Doppler measurement).

• Tracking performance: the IMM-DUKF estimator can diminish the errors in position and velocity
estimation during the maneuvering and non-maneuvering period of the target.

• Maneuvering sensitivity: the IMM-DUKF estimator has a faster speed of response when the target
is taking maneuvering flight.

• Data association: the IMM-DUKF estimator has a smaller error covariance matrix, thus decreas-
ing the number of false associations.

The basic procedures for the IMM-DUKF algorithm are:

1. Establish the UKF model sepatately for the constant velocity (CV), constant acceleration (CA),
and constant turn rate (CT) moving modes.

2. Establish the IMM algorithm formed by the above-mentioned models. For details of the math-
ematical model of IMM, see Section 9.3.5.

3. Introduce Doppler measurements; extend measurement z= x,y½ � into z = x,y, _ρ½ � for filtering
estimation. For details, refer to the previous two sections.
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13.4 Performance Analysis on PD Radar Tracking Algorithms

13.4.1 Simulation Environments and Parameter Settings

Simulation environment 1. Suppose that the values of the initial state of the target X(0), radar ranging
error σρ, angle measurement error σθ, and Doppler velocity measurement error σ _ρ are as shown in
Table 13.1. The correlation coefficient of range measurement and Doppler velocity measurement
γ = 0:5, and the scanning period T = 5 s.
Then, the CMKF, UCMKF, EKF, USEKF will be compared against each other. For every algo-

rithm, the simulation will be conducted 500 times, 30 steps each.
Simulation environment 2. Suppose that the initial state of the targetX 0ð Þ = [10 000, 30, 10 000, 30]

(m, m/s, m, m/s), ranging error σρ = 150m, angle measurement error σθ = 5 mrad, and scanning
period T = 5 s. The values of the correlation coefficient γ of Doppler velocity, measurement error
σ _ρ, and range and Doppler measurement are shown in Table 13.2.
The UKF, USEKF, USUKF, and DUKF will be compared below. For every algorithm, the simu-

lation will be conducted 500 times, 30 steps each.
Simulation environment 3. Consider a target which is moving with initial state X 0ð Þ=

[10 000, −160, 2000, 50] (m, m/s, m, m/s). It has moved for 100 s in a 2D surface. It was in constant
motion within the periods 0–20 s and 40–60 s, respectively, in constant turning within the periods
20–40 s and 60–80 s, and has been in constant acceleration within the period 80–100 s. The angle
velocities within the periods 20–40 s and 60–80 s are 10�/s and −10�/s, respectively, and the accel-
erations in two directions are, respectively, 5 m/s2 and 5 m/s2 within the period 80–100 s. The ran-
ging error σρ = 150m, angle measurement error σθ = 5mrad, scanning period T = 5 s, and the
correlation coefficient of Doppler velocity measurement error σ _ρ and range and Doppler
measurement γ = 0:1.
Then the IMM-DUKF and IMM-UKF algorithms will be compared with each other. For every

algorithm the simulation will be conducted 500 times, 30 steps each. The true movement track of the
target is shown in Figure 13.13.

Table 13.1 Simulation environment 1 parameter settings

No. X(0) (m, m/s, m, m/s) σρ (m) σθ (mrad) σ _ρ (m/s) Simulation figure

1 [10 000, 30, 10 000, 30] 150 5 1 Figure 13.4
2 [100 000, 30, 100 000, 30] 150 5 1 Figure 13.5
3 [10 000, 30, 10 000, 30] 150 5 100 Figure 13.6
4 [10 000, 30, 10 000, 30] 50 5 1 Figure 13.7
5 [100 000, 30, 100 000, 30] 150 40 1 Figure 13.8

Table 13.2 Simulation environment 2 parameter settings

No. σ _ρ (m/s) γ Simulation figure

1 0.01 0.9 Figure 13.9
2 0.01 0.1 Figure 13.10
3 10 0.1 Figure 13.11
4 10 0.9 Figure 13.12
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The performance of these algorithms can be compared using the RMS position and velocity error:

RMS Posk =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM
i= 1

xik − x̂
i
kjk

� �2
+ yik − ŷ

i
kjk

� �2

vuut ð13:57Þ

RMS Velk =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM
i= 1

_xik − _̂x
i
kjkÞ

2
+ _yik − _̂y

i
kjkÞ

2
��vuut ð13:58Þ

and the average normalized estimation error square [330]

ANEESk =
1
Mn

XM
i = 1

xik − x̂
i
kjk

� �T
Pi
kjk

� �−1
xik − x̂

i
kjk

� �
ð13:59Þ

13.4.2 Simulation Results and Analysis

The simulation results of environment 1 are shown in Figures 13.4–13.8, those of environment 2 in
Figures 13.9–13.12, and those of environment 3 in Figure 13.14.
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As suggested in Figure 13.4, the USEKF algorithm using Doppler measurements has better tar-
get tracking performance: both the RMS position error and the RMS velocity error of targets are
obviously reduced; the EKF algorithm is largely influenced by the initial states, and shows more
position errors in the first few steps, which converge rapidly later on, and has more errors on
the whole.
By comparing the simulation condition of Figure 13.5 with that of Figure 13.4, it can be seen that

the USEKF algorithm cannot actually improve its tracking accuracy when there is a long distance
between the radar and its target. Furthermore, Figure 13.4 illustrates that the tracking accuracy of the
USEKF is close to those of other algorithms as a target is going away from the radar.
A comparison of simulation conditions between Figures 13.6 and 13.4 demonstrates that the

USEKF algorithm does not show high tracking accuracy either in the presence of low-accuracy
Doppler velocity meansurements. This means that the Doppler velocity message, influenced by
its own accuracy, cannot necessarily improve the target tracking accuracy.
From the comparison of Figures 13.7 and 13.4, it is seen that the tracking accuracy of the USEKF

is not greatly different from those of other algorithms where the accuracy of target ranging is high.
This result, combined with the simulation of Figure 13.6, leads to a conclusion that the proportional
relationship between velocity measuring accuracy and ranging accuracy has an influence on the
behavior of the radial velocity message in improving tracking accuracy.
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As indicated by the comparison of Figures 13.8 and 13.5, in the case of significant long-distance
angle-measuring error, the UCMKF shows the highest tracking accuracy, followed by the CMKF,
USEKF, and EKF sequentially. Therefore, it can be concluded that under such a simulation con-
dition, the use of a velocity measurement message cannot improve the tracking accuracy, and
the UCMKF algorithm displays the best tracking performance while the EKF displays the worst.
Figure 13.9 reveals that the algorithms using a Doppler message can improve their accuracy of

position and velocity estimation when the correlative coefficient between ranging measurement and
Doppler measurement is quite large and the error of Doppler velocity measuring is small. However,
the direct filtering methods of DUKF and UKF show a better estimation consistency than the
sequential filtering methods USEKF and SUKF.
By comparing Figure 13.10 with Figure 13.9, it can be seen that the algorithms using a Doppler

message can also improve their accuracy of position and velocity estimation when both the error of
Doppler velocity measuring and the correlative coefficient between the ranging measurement and
the Doppler measurement are quite small. However, the estimation consistency of the sequential
filtering methods USEKF and SUKF has been somewhat improved.
It can be discovered from Figure 13.11 that the algorithms using a Doppler message cannot appar-

ently improve their accuracy of position and velocity estimation when the correlative coefficient
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between the ranging measurement and the Doppler measurement is quite small and the error of the
Doppler velocity measurement is quite large. The estimation consistencies of all the methods are
close to one another.
It is seen from Figure 13.12 that when both the error of Doppler velocity measuring and the cor-

relative coefficient between ranging measurement and Doppler measurement are quite large, the
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algorithms using a Doppler message cannot improve their estimation accuracy of the target’s state.
Instead, they have poorer performance and worse estimation consistency than UKF algorithms
without use of Doppler measurements.
It can be deduced from Figures 13.9–13.12 that the accuracy of Doppler measurements should be

considered when choosing the algorithm for system design. To be more specific, the accuracy of
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target tracking can be improved by using Doppler measurements which show high accuracy. On the
contrary, the accuracy of target tracking might be reduced by low-accuracy Doppler measurements
and by strong correlations between range measurements and Doppler measurements. Doppler meas-
urements are inappropriate in such cases, so further research will focus on how to quantitatively
describe the conditions of using Doppler measurements.
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As shown by Figure 13.14, if the IMM and UKF are combined to track the target under the
environment of Figure 13.13, the IMM-DUKF algorithm can apparently improve its performance
of target tracking, including position and velocity tracking accuracy, maneuver response time, and
maneuver tracking stability.
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13.5 Summary

This chapter mainly discusses the data processing technique of PD radar. On the basis of the intro-
duction of PD radar systems, it presents the characteristics of PD radars and the composition of their
tracking system. Then, it focuses on certain typical tracking algorithms of PD radar, namely, the
USEKF, USUKF, and DUKF algorithms. It also provides a comparative analysis, with respect
to two simulation environments, of the requirements of Doppler measurements for improving
the accuracy of target tracking and of the performance of several Doppler measurement processing
algorithms. Finally, it addresses the problem of tracking maneuvering targets by combining inter-
active multiple models with the UKF; the simulation results show that the introduction of Doppler
measurements can apparently improve the performance of target tracking.
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14
Phased Array Radar Data Processing

14.1 Introduction

Phased array radar represents a significant development in radar systems, eliminating the restric-
tions imposed on conventional radars, such as fixed beam sojourn time, fixed scan modes, fixed
emission power, and data rates. With its flexible and swift beam scanning, controllable space power
assignment, and time resource assignment, phased array radar shows one important feature –multi-
functionality – to conduct scanning and accurate tracking of multiple targets simultaneously.
First, this chapter introduces the main features, system structure, and working process of phased

array radars. Second, it puts emphasis on the single/multi-target tracking algorithm in clutter, adap-
tive sampling period algorithm, and real-time task scheduling strategy in phased array radar data
processing.
The first problem that needs to be solved for target tracking in the presence of clutter is data asso-

ciation. Therefore, how to improve the performance of single/multi-target data association using
Doppler information obtained from a phased array radar is a hot topic for research. Phased array
radars, with their unique variable sampling period ability, are able to adaptively adjust their sam-
pling periods based on the maneuvering state of the target, as a result of which their stability in
maneuver tracking increases, accompanied by reductions in their maneuver-free tracking load.
Phased array radars are multifunctional, that is, they are supposed to be capable of executing vari-

ous tasks such as scanning, tracking, and identification alternately for each of the multiple targets at
the same time. Which strategy should be used to schedule these many different tasks for these many
targets efficiently in real time? The choice of an appropriate task scheduling strategy (i.e., with flex-
ible, efficient, real-time performance) is another key technique for the data processing of phased
array radars.
Finally, this chapter gives a detailed simulation analysis of several adaptive sampling period

algorithms of phased array radar.
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© 2016 Publishing House of Electronics Industry. All rights reserved. Published 2016 by John Wiley & Sons
Singapore Pte. Ltd.



14.2 Characteristics and Major Indexes

14.2.1 Characteristics

With its distinctive capability for beam agility, the phased array radar has many advantages such as
multiple functions, multi-target interception and tracking, and adaptive capability. Controlled by
computer, it can alter the relevant technical parameters adaptively to fit the changing environment.
Specifically, it can select the working modes and technical parameters as needed to accomplish
various missions such as target detection, tracking, orbit measuring, cataloging, prediction, and
identification.
Compared with conventional radar, the phased array radar has the following technical character-

istics [331–334].

1. Mutual independence between surveillance (scanning) and tracking. The phased array radar
uses the sequential detection method to detect the target. Therefore, it switches to the track mode
based on the result of a single detection in the surveillance (scanning) mode, which decided
whether the target is in existence (a track has already been initiated) or is a new track. The data
rate and beam sojourn time of target tracking are self-adaptive. In the track mode, a phased array
radar can conduct the estimation of target track parameters (such as range, angle, and radial vel-
ocity) with optimal signal waves, pulse repetition frequencies, and polarization formats, thus
enhancing its function of tracking miniature targets in complicated environments.

2. Function of tracking and processing multiple maneuvering targets. Compared with ordinary
radars, the phased array radar has an incomparable function in tracking and processing multiple
maneuvering targets, which relies on the swift agility of its antenna, and its powerful function of
filtering tracking and multi-target association processing as well.
The modern multi-target tracking technique is an integration of data association processing

and modern filtering theories. Multi-target tracking includes the formation of association gates,
data association, and the initiation, maintenance, and termination of tracks, among which data
association is the key and difficult point. The association gate technique, a procedure of asso-
ciation processing essentially, is usually adopted in applications of phased array radar data pro-
cessing. The space resolution of a radar is decided by its association scope instead of the beam
width and bandwidth after the association gate technique is applied.

3. High data rate. Since the data rate is only restricted by a beam’s sojourn time, the valid data rate
of phased array radars can be greatly increased by reducing the time interval of their surveillance
(scanning) or increasing the number of parallel channels, on the basis of the flexibility of phased
array antennas’ beam scanning and mutual independence between surveillance (scanning) and
tracking functions.

4. Power adaptive management. The phased array radar is capable of exerting optimal control over
its transmitting power according to the state/feature and environment of the target, and its own
working mode to ensure best possible performance within power and time constraints, and adapt-
ability to the instantaneous requirements of various tasks.

5. High resolution. In order to obtain more information from target echoes, the phased array radar
can control the beam sojourn time to have better angle and Doppler resolution for the facilitation
of target classification and identification.

6. Space filtering. The phased array antenna is able to have adaptive zero-point control, especially
with the digital beam forming (DBF) technique. The combination of signal processing and
antenna techniques leads to the formation of beams of various special shapes and an enhance-
ment of the radars’ capability to suppress jamming, clutter, and multi-path effects.
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7. Multiple functions. The phased array radar can work in the track-while-scan mode based on the
time division principle, and implement the scanning, tracking, guiding, and identification of
friend or foe (IFF) of multiple batches of targets at the same time by changing parameters such
as beam shape, beam sojourn time, signal form, and pulse repetition frequency. In that case, one
multiple functional phased array radar could be used in place of several specialized conventional
radars.

14.2.2 Major Indexes

The indexes of phased array radars can be divided into two categories: tactical and technical. This
section only involves the tactical index, which is closely related to radar data processing.

1. Radar surveillance airspace. Includes minimum and maximum detection ranges; azimuth and
elevation surveillance scopes; radar tracking, steering, and guidance ranges.

2. Radar measuring index and measuring accuracy. The measuring indexes include those which
indicate the coordinate position of the target, such as range, azimuth, and elevation, and those
which indicate the movement features of the target, for instance, velocity and acceleration. The
measuring indexes of special-purpose radars may also contain those indicating such character-
istics of the target as the amplitude of fluctuation, and spectral and polarization characteristics of
target signals.

3. Resolution. Covers range, azimuth, elevation resolution, and velocity resolution.
4. Capability to process multiple targets.Mainly includes the capability to track multiple batches of

targets in real time and process track associations of multiple batches of targets.
5. Radar survivability. Includes such requirements for radar as anti-jamming, anti-ARM, and anti-

bombing capabilities.

One advantage that the phased array radar has is the ability to process multiple targets, so the
phased array technique is the sole solution to scanning the whole surveillance region while tracking
under condition of multiple batches of targets.

14.3 Structure and Working Procedure

14.3.1 Structure

The phased array radar system is similar to the traditional mechanical scanning radar in that it is
composed of a transmitter, a receiver, and a data processor. But it also has unique devices such
as an array antenna, T/R component, received multi-beams forming network, radar controller,
and beam controller. The typical structure of a phased array radar system is shown in
Figure 14.1. The antenna may work as a T/R specified antenna or a community antenna, and the
latter is shown in Figure 14.1. The received multi-beam forming network can work with overlapping
received multiple beams, or sum/difference beams required by monopulse angle measurement. The
beam controller is peculiar to the phased array radar, which serves as a replacement for the servo-
driven unit in traditional mechanical scanning radars. It receives instruction from the radar control-
ler, and solves the wave control codes for the phase shifter on each antenna unit. With these codes,
the phase shifter controls the beam pointing of the array antenna [335].
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The radar controller, also called the “radar scheduler” or “center computer,” is the control center
of a phased array radar system, which is in control of the operation of other subsystems, and in
charge of the management of the whole system’s task execution, working modes and parameters,
etc. The scan of a specified airspace can be conducted by this controller, which controls the
transmitted waveform and the received beam according to pre-written programs. When the target
is captured (i.e., under the control of the controller), the track of a new target will be set up by the
controller which, at the same time, manages multiple targets being tracked, thus fulfilling the
scan-and-track function of the radar. In the case of track loss, the controller should manage and
accomplish the complementary illumination of the target in order to maintain its track. Alterna-
tively, it may perform self-adaptive power management, and change the waveform of the transmit-
ted signal, the signal repetition frequency, and the number of transmitted pulses based on the
intensity of the target’s echo signal.

14.3.2 Working Procedure

The general working procedure of a phased array radar is as follows.
First, the echo signal of the target received by its antenna should be processed by the receiving

network and the receiver before being sent into the signal/data processor where the detection, meas-
urement, association, filtering, and prediction of the target are completed.
Then, based on the above results, including the pointing, transmitting time, frequency, working

waveform, and sojourn time of the beam, the radar controller generates sojourn commands for the
beam, which are sent into the transmitter and beam controller.
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Figure 14.1 Structure of the phased array radar system
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After that, following these commands, the transmitter produces corresponding working wave-
forms, which will be sent via the transmitting network into the array antenna, where they radiate out.
At the same time, the beam controller calculates, according to the beam angle, the wave control

code needed by the phase shifter, which in turn controls the beam direction of the array antenna to
execute the task commands given by the radar controller.
Thus, a closed loop of task processing is formed. The specific procedure is shown in Figure 14.2.
After spotting a target by scanning, the phased array radar has to continue searching for other

targets while tracking this one. Therefore, it has two typical working modes: track-while-scan
(TWS) and track-and-scan (TAS).

14.3.2.1 TWS Working Mode

This working mode is usually adopted by the 1D phased array scanning radar. For radars of this
type, the tracking sampling interval is the same as the scanning one (i.e., the tracking data rate
is the same as the scanning one). The TWS can easily be controlled while its tracking data
rate is not high enough to meet the demands of high-precision tracking or guiding, thus failing
to bring the best out of the phased array radar.

14.3.2.2 TAS Working Mode

For radars working in this mode, the data rate of tracking is different from that of scanning. There-
fore, a relatively long time interval should be used for scanning to lower the load of the radar, while
a relatively low tracking data rate is needed to ensure certain tracking precision and stability. Actu-
ally, this problem can be solved effectively by putting tracking tasks into the intervals of scanning
ones, which also causes a significant increase in the time utilization ratio of the phased array radar.

14.4 Data Processing

With its technical features such as swift scanning of antenna beams, adjustable beam forms, and
synthetic space power, the phased array radar can work in various modes. To be more specific,
it can, by enhancing the signal power at some key directions, conduct the “burn through” working

Array antenna

Receiving signal Signal processing Data processing

Transmitting
waveform

Generation of
wave control code

Beam sojourn
command

Other commands

Figure 14.2 Working flowchart of phased array radar
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mode, widening the scanning or tracking range [336], besides scanning, target interception, and
multi-target tracking. This section focuses on the discussion of specific problems in data processing
of phased array radars, which mainly covers single/multi-target tracking algorithms of phased array
radars in clutter, adaptive sampling period algorithms, and real-time task scheduling strategy.
The application of a multi-target tracking system in phased array radars can accomplish the track-

ing of single or multiple targets and better realize the capability for multi-target tracking systems,
especially with its beam agility and controllability. The basic principle of single-radar multiple-
target tracking is shown in Figure 14.3. After a target is detected by the radar, the plot extractor
extracts information about the target’s position, which forms measurements (known as plots).
The new measurements, after pretreatment, perform data associations with the existing track,
and the associated ones are used to update the corresponding track information (filtering) while
the unassociated ones are used to initiate a new track. A track that fails to be associated with the
measurements several successive times should be terminated. Therefore, it can be concluded that
the key techniques for multi-target tracking include those of track initiation and termination, data
association between measurements and tracks, and tracking filtering [337–339].
The radial velocity information provided by the phased array radar can be used to enhance

its tracking capability [41, 340]. Specifically, to accelerate initialization, increase the estimation
accuracy of the target’s parameters (particularly when the target shows a dramatic change), and
decrease the ambiguity about the association between measurements and tracks in multiple-echo
cases.

14.4.1 Single-Target-in-Clutter Tracking Algorithms

The IMM is an effective maneuvering target tracking algorithm for targets with complicated move-
ment capability, but it must first handle the data association of measurements and tracks in the pres-
ence of clutter. The probability data association filter (PDAF), as one of the typical algorithms to
solve data association, can conduct target tracking in clutter [341, 342] by combining maneuvering
target tracking algorithms and data association algorithms. The phased array radar is capable of pro-
viding Doppler information (i.e., radial velocity measurements) of the target. These measurements,
when added to the procedure of phased array radars for data processing, can enhance the target
tracking performance. This section focuses on the IMM-PDAF algorithm with Doppler radial
velocity.

14.4.1.1 Observation Equation with Doppler Radial Velocity

If it is two-dimensional, then

Z kð Þ =H kð ÞX kð Þ +W kð Þ= x kð Þ y kð Þ v kð Þ½ �0 +W kð Þ

=

ρ kð Þcos θ kð Þð Þ

ρ kð Þsin θ kð Þð Þ

_ρ kð Þ

266664
377775+W kð Þ=

1 0 0 0

0 0 1 0

0 cos θ kð Þð Þ 0 sin θ kð Þð Þ

266664
377775

x

_x

y

_y

266666664

377777775
+W kð Þ

ð14:1Þ
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where the covariance matrix of W(k) is

R=

σ2x σxy 0

σxy σ2y 0

0 0 σ2v

264
375 ð14:2Þ

which indicates that this measurement equation shows nonlinearity for this state model, therefore,
the corresponding optimal filtering algorithm is nonlinear as well. In order to reduce the complexity
of nonlinearity, let x, y, and ε= ρ kð Þ _ρ kð Þ take the place of x, y, and _ρ kð Þ, then

Z1 kð Þ=H1 kð ÞX1 kð Þ +W1 kð Þ=
ρ kð Þcos θ kð Þð Þ
ρ kð Þsin θ kð Þð Þ
ρ kð Þ _ρ kð Þ

264
375 +W1 kð Þ ð14:3Þ

Hence, the covariance matrix [128] of W1(k) is

R1 =

σ2x σxy σxε

σxy σ2y σyε

σxε σyε σ2ε

2664
3775 ð14:4Þ

Although the observing error of variable ε is not Gaussian, it can still be supposed to follow the
equivalent zero-mean Gaussian distribution with variance

σ2ε = σ
2
ρσ _ρ

2 + ρ kð Þ½ �2σ _ρ
2 + _ρ kð Þσ2ρ ð14:5Þ

σxε = _ρ kð Þσ2ρ cos θ kð Þ½ � ð14:6Þ
σyε = _ρ kð Þσ2ρ sin θ kð Þ½ � ð14:7Þ

Likewise, if it is three-dimensional, then

Z kð Þ =H kð ÞX kð Þ +W kð Þ= x kð Þ y kð Þ z kð Þ v kð Þ½ �0 +W kð Þ

=

ρ kð Þcos θ kð Þ½ �cos ε kð Þ½ �

ρ kð Þsin θ kð Þ½ �cos ε kð Þ½ �

ρ kð Þsin ε kð Þ½ �

_ρ kð Þ

26666664

37777775+W kð Þ

=

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 cos θ kð Þ½ �cos ε kð Þ½ � 0 sin θ kð Þ½ �cos ε kð Þ½ � 0 sin ε kð Þ½ �

26666664

37777775

x

_x

y

_y

z

_z

26666666666666664

37777777777777775
+W kð Þ

ð14:8Þ
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The analysis of the covariance matrix of W(k) can be done by the reader.
From the above measurement equations, it can be concluded that nonlinear filtering methods

should be adopted because of the strong nonlinearity of Doppler radial velocity measurements.
The procedure of adding the Doppler radial velocity processing algorithm to the process of filtering
can be found in Chapter 13.

14.4.1.2 IMM-PDAF Algorithm Procedure

The procedure of the IMM-PDAF algorithm is shown in Figure 14.4, and the definition for corres-
ponding variables can be found in Table 14.1.
Since the IMM algorithm has been discussed in detail in Chapter 9, this section focuses on the

topic of adding Doppler radial velocity information to the process of data association based on
specific conditions of phased array radars.
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14.4.1.3 PDAF Algorithm with Doppler Radial Velocity

The state update and covariance update with Doppler radial velocity are almost the same as in the
PDAF algorithm of Chapter 8, except for the calculation of association probability.
Decompose zi(k), the ith measurement at time k, into position measurement ei(k) and radial vel-

ocity measurement vi(k) (i.e., zi kð Þ = ei kð Þ,vi kð Þf g), then the PDF zi(k) is

pi kð Þ≡ p zi kð Þ θi kð Þ,Zk−1
��� �

= p ei kð Þ,vi kð Þ θi kð Þ,Zk−1
��� �

= p ei kð Þ θi kð Þ,Zk−1
��� �

p vi kð Þ θi kð Þ,Zk−1
��� � ð14:9Þ

Denote by θi(k) the event that zi(k) is target-originated, then the PDF of ei(k) is

p ei kð Þ θi kð Þ,Zk
��� �

=P−1
G N ei kð Þ;HeX̂ k k−1jð Þ,S kð Þ� � ð14:10Þ

where PG is the gate probability andHe the position measurement matrix, then the position predict-
ive error covariance S(k) is

S kð Þ =HeP kjk−1ð ÞH0
e +R ð14:11Þ

where R is the covariance of zero-mean Gaussian noise of the position measurement. X̂ k k−1jð Þ and
P kjk−1ð Þ are the state prediction and its covariance at time k−1. The standard KF should be used,
before the PDF of the radial velocity measurement is determined, to estimate the target state:

X̂i− kjkð Þ,Pi− kjkð Þ� �
=KF ei kð Þ,R, X̂ kjk−1ð Þ,P kjk−1ð Þ,He

� � ð14:12Þ

If zi(k) is the target-originated measurement, then the PDF of its vi(k) is

p vi kð Þ θi kð Þ,Zk
��� �

=P−1
G N vi kð Þ;Hv X̂ k k−1jð Þ� �

,Sv X̂i− kjkð Þ,Pi− kjkð Þ� �� � ð14:13Þ

where Hv �ð Þ is the radial velocity measurement function, and the Doppler measurement prediction
covariance Sv(X, P) is

Table 14.1 Definitions of variables in flowchart

i, j= 1,…,rð Þ Labels for models
Zk = R1 R2 … Rk½ � Cumulative measurement matrix at sampling time k

Rk = rk;1 rk;2 … rk;Nk

� �
Measurement submatrix at sampling time k

rk;s = xk;s yk;s zk;s vk;s
� �0 The no. s measurement vector at sampling time k

X̂i k−1jk−1ð Þ State vector estimation of model no. i when measurement is Zk−1

P̂i k−1jk−1ð Þ Estimated covariance matrix of model no. i when measurement is Zk−1

X̂
0j
k−1jk−1ð Þ Mixed state vector estimation when measurement is Zk−1

P̂
0j
k−1jk−1ð Þ Mixed state vector estimation covariance matrix when measurement is Zk−1

μijj kjkð Þ Mixed probabilities from model i to model j at time k
μi(k) Probability of model i at time k
Λi(k) Possibility of model j at time k
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Sv X,Pð Þ = hv X̂ k k−1jð Þ� �
P kjk−1ð Þh0v X̂ k k−1jð Þ� �

+ σ2v ð14:14Þ

where the Jacobian matrix hv �ð Þ of the radial velocity measurement is defined as

hv xð Þ≡ ∂Hv xð Þ
∂x

ð14:15Þ

The position measurement innovation is

νi,e kð Þ= ei kð Þ−HeX̂ k k−1jð Þ ð14:16Þ

Based on position threshold γe, choose measurement

νi,e kð Þ0S kð Þ−1νi,e kð Þ< γe ð14:17Þ

The innovation of the velocity measurement is

νi,v kð Þ= vi kð Þ−Hv X̂ k k−1jð Þ� � ð14:18Þ

Based on position threshold γe, choose measurement

νi,v kð Þ0Sv X̂i− kjkð Þ,Pi− kjkð Þ� �−1
νi,v kð Þ < γv ð14:19Þ

Hence, this gives the data association probability [343]. If no measurement is target-originated at
time k, then

β0 kð Þ= 1−PDPG

1−δk
, i= 0 ð14:20Þ

If zi(k) is target-originated, then

βi kð Þ = PDPG

1−δk
� pi kð Þ
ρ∗i kð Þ , i> 0 ð14:21Þ

where the factor δk can be defined as

δk =PDPG 1−
Xmk

i= 1

pi kð Þ
ρ∗i kð Þ

 !
ð14:22Þ

with clutter density ρ∗i kð Þ = ρ ei kð Þð Þ �p0 vi kð Þð Þ, ρ(ei(k) the clutter density of position measurement,
p0(vi(k) the PDF of Doppler measurements, and mk the number of measurements at time k.
If none of the measurements is correct, the estimate is

X̂0 kjkð Þ = X̂ kjk−1ð Þ ð14:23Þ
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and the error covariance is

P0 kjkð Þ =P kjk−1ð Þ ð14:24Þ

If zi(k) is target-originated, first the KF should be used to update (14.12) and the state should
be updated according to ei(k). Then, nonlinear filtering methods can be applied to deal with
vi(k) of Doppler measurements to update the state. Here, we take the EKF method as an
example:

Kv =Pi− kjkð Þhv X̂i− kjkð Þ� �
Sv X̂i− kjkð Þ,Pi− kjkð Þ� �−1 ð14:25Þ

X̂i kjkð Þ= X̂i− kjkð Þ +Kv vi kð Þ−hv X̂i− kjkð Þ� �� � ð14:26Þ
Pi kjkð Þ= I−Kvhv X̂i− kjkð Þ� �� �

Pi− kjkð Þ ð14:27Þ

The target state estimation and its error covariance are

X̂ kjkð Þ=
Xmk

i= 0

βi kð ÞX̂i kjkð Þ ð14:28Þ

P kjkð Þ=
Xmk

i= 0

βi kð Þ Pi kjkð Þ + X̂i kjkð ÞX̂i
0
kjkð Þ

� �
− X̂ kjkð ÞX̂0

kjkð Þ ð14:29Þ

14.4.2 Multi-target-in-Clutter Tracking Algorithm

When dealing with multiple targets, the JPDA method can be used by incorporating procedures for
the generation and decomposition of validation matrixes before conducting data associations in the
single-target tracking algorithm mentioned in the last section. Since its calculation complexity
grows dramatically with the number of measurements and tracks, the JPDA is not applicable in
the presence of sparse targets in dense clutter, in which case, sub-optimal multi-target tracking
approaches become the best option, say the linear multiple-target (LM) approach whose calculation
complexity shows linear growth [344] with the number of tracks and measurements. The LM
approach takes all measurements from “other” targets as clutter, so that the clutter density within
the tracking gate can be adjusted by these other targets (i.e., it calculates modified clutter density for
each tracking threshold, which is used to estimate the data association probability for each track).
The specific procedure is described as follows.
θτi kð Þ denotes the event that the association probability of the ith (i = 1,2,…,mk) measurement

zi(k) at time k having originated from target τ is approximated as

Pτ
i = Pr θτi kð ÞjZk−1

	 

≈Pτ

DP
τ
G �

pτi kð Þ
ρτi kð Þ

�Xmk

j= 1

pτj kð Þ
ρτj kð Þ ð14:30Þ

where pτi kð Þ is defined by (14.9), ρτi kð Þ is the clutter density in the threshold. As for the non-
parametric method, ρτi kð Þ can be considered as a constant for all clutter measurements in the thresh-
old (i.e., ρτi kð Þ = ρτi ). Therefore, (14.30) can be simplified as
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Pτ
i =P

τ
DP

τ
G �

pτi kð ÞXmk

j= 1

pτj kð Þ
ð14:31Þ

When the track of target τ is updated in the single-target environment, (14.21) and (14.22) both
rely on the ratio of target measurement density to clutter measurement density:

PDPGpτi kð Þ
ρ∗i kð Þ ð14:32Þ

When the track of target τ is updated in the multi-target environment, the target measurement
density can be modified with the probability of zi(k) having originated from no target, represented as

PDPGp
τ
i kð Þ

Y
η 6¼τ

1−Pη
ið Þ ð14:33Þ

Likewise, the clutter measurement density is modified. The measurements of other targets σ 6¼ τ
are added to the clutter density because they are unnecessary, in which case the clutter measurement
equivalent density at the position of zi(k) is

ρ∗i kð Þ
Y
η 6¼τ

1−Pη
ið Þ+

X
σ 6¼τ

pσi kð ÞPσ
i

Y
η 6¼τ,σ

1−Pη
ið Þ=

Y
η 6¼τ

1−Pη
ið Þ ρ∗i kð Þ+

X
σ 6¼τ

pσi kð Þ Pσ
i

1−Pσ
i

 !
ð14:34Þ

where Pσ
i

Y
η 6¼τ,σ

1−Pη
ið Þ is the prior probability of zi(k) having originated from target σ rather than

target τ. Therefore, when the track of target τ is updating, the ratio of target measurement density
to clutter measurement density becomes

PDPGpτi kð Þ
ρ∗i kð Þ !LM

PDPGpτi kð Þ
Y
η 6¼τ

1−Pη
ið Þ

Y
η 6¼τ

1−Pη
ið Þ ρ∗i kð Þ+

X
σ 6¼τ

pσi kð Þ Pσ
i

1−Pσ
i

 ! =
PDPGpτi kð Þ

ρ∗i kð Þ+
X
σ 6¼τ

pσi kð Þ Pσ
i

1−Pσ
i

ð14:35Þ

Hence, the modified clutter density (since there are multi-target measurements) in the threshold of
target τ can be expressed as

Ωτ
i kð Þ = ρ ei kð Þð Þ �p0 vi kð Þð Þ +

X
σ 6¼τ

pσi kð Þ Pσ
i

1−Pσ
i

ð14:36Þ

which is used to replace ρ∗i kð Þ in (14.21) and (14.22). Therefore, using the LM approach [345] yields
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βτi kð Þ= 1
1−δτ kð Þ

1−Pτ
DP

τ
G, i = 0

Pτ
DP

τ
G
pτi kð Þ
Ωτ

i kð Þ , i> 0

8><>: ð14:37Þ

where

δτ kð Þ=Pτ
DP

τ
G 1−

Xmk

i= 1

pτi kð Þ
Ωτ

i kð Þ

 !
ð14:38Þ

14.4.3 Adaptive Sampling Period Algorithm

A specific sojourn time (time when the beam illuminates the target) can be chosen according to
certain demands in phased array radar systems, while conventional mechanical scanning radars
use the same method to deal with all targets. The probability of finding targets can be controlled
by collecting the number of adjustable pulses according to the target characteristics and the battle
environment. The phased array radar is capable of arranging beams in any direction within a short
time, which enables it to track multiple targets at the same time, and conduct scanning and tracking
separately. However, the mechanical scanning radar is different for it has the same data rate in scan-
ning and tracking. While the phased array radar is tracking a certain target, it is not confined to using
a fixed data rate, but takes samples from target tracks according to the optimal rule of certain regu-
lations, which means that the sampling rate for maneuvering targets is higher than that for targets in
rectilinear motion, thus reducing the tracking errors. It can obtain a new measurement if it suffers
from a serious shortage of certain information, for example, the condition for track initiation is not
satisfied. Therefore, the time for track initiation can be greatly shortened. More importantly, there is
no need to enlarge the association gate during the time interval between measurement loss and
repeated observation of the radar, which puts a restriction on the number of false measurements
shown in the required region.
However, since the resources of the phased array radar are limited and shared by its multiple

functions (scanning, tracking, weapon guiding, etc.), a certain task scheduling method must be
adopted to allocate the corresponding beam sojourn time and sampling interval for different targets.
So, the tracking beam can be used effectively to minimize the time resources and maximize the
tracking quality on the whole. Specifically, the system uses short sampling intervals when the target
shows relatively high maneuverability, but long sampling intervals when the maneuverability is
low. Meanwhile, the sampling interval should not be too long or too short, because too long inter-
vals may excessively reduce the tracking accuracy, which tends to cause track divergence and target
loss, while too short intervals can bring about a greater load to the system but contribute little to the
increase in tracking accuracy. Therefore, the adaptive sampling period algorithm should also be
capable of balancing tracking accuracy with system load.
Besides, when the filtering model is stably tracking non-maneuvering targets, the improvement in

its tracking accuracy by increasing the data rate is insignificant. In the case of track divergence for a
maneuvering target, the divergence problem cannot be solved by simply increasing the data rate
without adjustment of the filtering model according to the maneuverability of the target. In order
to analyze the adaptive sampling period algorithm, therefore, those algorithms for maneuvering tar-
get tracking must be employed as well in adjusting the filtering model.
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14.4.3.1 Constant Gain Filtering Method

The constant gain α–β filter is typical in phased array radar tracking. It can be described by the
following recursive filtering equation set:

xp nð Þ= xs n−1ð Þ+ vs n−1ð ÞT n−1ð Þ ð14:39Þ
xs nð Þ= xp nð Þ+ α xm nð Þ−xp nð Þ� � ð14:40Þ

vs nð Þ= vs n−1ð Þ+ β

T n−1ð Þ xm nð Þ−xp nð Þ� � ð14:41Þ

where xm(n) is the position measurement for sampling time T(n), xp(n) the corresponding predicted
position, xs(n) the corresponding smoothing position, vs(n) the smoothing velocity, α and β the fil-
tering parameters of position and velocity, and T the sampling interval.
Assume that the sampling interval is uniform in sections. The parameter relationship for one of

the coordinates described in (14.39)–(14.41) is the same with other coordinates. Let

e nð Þ = xm nð Þ−xp nð Þ ð14:42Þ

In order to weaken the noise effect, an α filter processing as follows can be applied to e(n):

es nð Þ= es n−1ð Þ+ αR e nð Þ−es n−1ð Þ½ � ð14:43Þ

The steady lag error of the predicted position caused by inputting a into the constant acceleration
can be considered as E for the α–β filter with constant sampling interval T, where

E =
aT2

β
ð14:44Þ

Then the predicted position error is proportional to the acceleration and the square of the sampling
interval. Since a maneuvering target’s acceleration can bring about an increase in the tracking fil-
ter’s residual, in order to keep the residual constant, the sampling interval should be decreased fol-
lowing the rule of being in reverse ratio to the square root of the acceleration, as shown in (14.44).
The normalized residual e0(n) is usually adopted in real-time estimations. Here

e0 nð Þ= e nð Þ
σ

ð14:45Þ

where σ is the standard deviation of measuring noise. Therefore,

T nð Þ = T n−1ð Þffiffiffiffiffiffiffiffiffiffiffi
e0 nð Þp ð14:46Þ

Some modification of (14.46) is necessary in implementations of the algorithm. For instance, as
shown by this equation, T(n) can increase or decrease infinitely, so it should be given the limitation
of maximum and minimum according to what takes place in engineering realities. Besides, in prac-
tice, discrete values may be required for the change in sampling intervals instead of the continuous
value as needed in (14.46), for the sampling interval of discrete jumps may not satisfy (14.46) in that
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case. Further, if the measurement dimensions of the target are bigger than 1 and the sampling is
conducted at the same time, then all dimensions of the measurement residuals should be averaged
or consolidated logically. Reference [346] offers an example which uses the residual norm to cal-
culate, and divides sampling intervals into several discrete ranges, so that the adaptive scheduling of
sampling intervals can be done by choosing different range values based on the value of the
residual norm.

14.4.3.2 Interactive Multiple-Model Algorithm

The IMM-based adaptive data rate algorithm proposed in Ref. [347], based on the Singer maneu-
vering target model, synthesizes the process noise of the target with IMM calculations, and calcu-
lates the sampling intervals with the approximate equation in Ref. [348], which shows the
relationship between the sampling update intervals and process noise. The specific procedure is
described as follows.

1. Model target maneuver as correlative noise in the Singer model. Target acceleration can be
modeled as a zero-mean random process with index autocorrelation as follows:

R τð Þ=E a tð Þa t + τð Þ½ �= σ2me−α τj j ð14:47Þ

where σ2m is the variance of target acceleration and α is the maneuvering frequency. The Singer
model can be used to predict and estimate the state of the target by Kalman filtering. For details,
see Section 9.3.2.

2. Denote variance of the position prediction error denoted as σ2ρ k + 1 kjð Þ. Obviously, it grows
with the extrapolation time. Let the measurement error variance be σ20, then the variance reduc-
tive ratio ν0 is

ν20 = σ
2
ρ=σ

2
0 ð14:48Þ

Given the position error accuracy, the relationship between the next sampling update interval
T T = tk + 1− tkð Þ and the prediction accuracy of the steady state is

T≈0:4
σ0

ffiffiffiffiffi
τm

p
σm

 �0:4

� ν2:40

1 + 0:5σ20
ð14:49Þ

where σm is the standard deviation of process noise of the target kinematic model, and τm is the
time constant of target maneuver. It can be concluded that once the standard deviation of position
measurement error σ0 and the target maneuvering parameters σm and τm are defined, the sam-
pling interval can easily be figured out from (14.49) when the steady prediction accuracy is ν0.

3. Estimate maneuvering parameter σm with the IMM algorithm. The IMM algorithm can be used
to track the maneuvers of a target by the interactions among Nmodels Mi : i= 1,…,Nf g, and the
transitions among the models follow the finite Markov chain with known transition probability.
Zk stands for the collection of all the observed values at time tk. The probability of model Mi

within tk−1, tk½ � is
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μi kð Þ =Pr Mi kð Þ Zk
��	 
 ð14:50Þ

The detailed updating procedure of the model probability can be found in Section 9.3.6. Sup-
pose that each model is in the form of (14.47) and that the process noise is σ2mi, then the variance
estimation of target acceleration can be synthesized as follows:

σ2m k Zk
��� �

=
XN
i= 1

μi kð Þσ2mi ð14:51Þ

Thus, the sampling update interval can be obtained by substituting σ2m in the above equation
into (14.48). But this algorithm restricts the type of model collection because it requires that all
the models should be isomorphic, namely, Singer models.

14.4.3.3 Predicted Covariance Threshold Algorithm

The predicted covariance of a target’s state can be, to a certain extent, a reflection of the maneu-
vering features of the target. The stronger the maneuverability the target shows, the greater the pre-
dicted covariance becomes, and vice versa. Based on this theory, Ref. [349] deduces the predicted
covariance threshold algorithm, which compares the position predicted covariance output by the
IMM constantly with the given threshold. When it goes beyond the given threshold, the next sam-
pling should be conducted. The sampling time should satisfy

P tk + 1ð Þ ≤Pth ð14:52Þ

where P tk + 1ð Þ is the predicted covariance matrix at time tk + 1, tk + 1 = tk + T tkð Þ, and Pth is the given
predicted covariance threshold. Likewise, the predicted covariance, using the algorithm based on
IMM adaptive sampling, can be calculated as

P tk + 1ð Þ=
XN
i= 1

μj tk + 1ð Þ Pi tk + 1ð Þ + X̂i tk + 1ð Þ− X̂ tk + 1ð Þ� �
X̂i tk + 1ð Þ− X̂ tk + 1ð Þ� �0n o

ð14:53Þ

X̂ tk + 1ð Þ =
XN
i= 1

μi tk + 1ð ÞX̂i tk + 1ð Þ ð14:54Þ

where X̂i tk + 1ð Þ and Pi tk + 1ð Þ are the target’s predicted state and predicted covariance matrix output
from modelMi. Considering that the main diagonals of the covariance matrix denote the error vari-
ances of the target’s radial range, azimuth, and elevation angle, while the non-diagonals denote their
correlation, the traces of the matrix can be used to make a comparison as follows:

Tr P tk + 1ð Þ½ � ≤Tr Pth½ � ð14:55Þ

The threshold Pth can be a linear function of the measurement noise variance, that is,

Tr Pth½ � ≤ λTr R tk + 1ð Þ½ � ð14:56Þ
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where R tk + 1ð Þ is the measurement noise variance matrix at time tk + 1, and λ > 0 is the adjustable
coefficient. The sampling interval can be controlled flexibly by adjusting this coefficient.
In the predicted covariance threshold algorithm, the definition of each sampling time is done with

a number of comparisons by (14.52). Therefore, the amount of calculation can be huge when the
sampling interval is quite long. In order to reduce the complexity, a group of sampling intervals can
be set in advance before calculating the predicted covariance matrix under each sampling interval.
The sampling interval whose predicted covariance is bigger than the threshold can be a selection
method. The specific selection procedure is as follows [350]:

1. Pre-set one group of typical sampling interval Tif gN1 , in which T1 ≤ Ti ≤ TN .
2. Calculate the predicted covariance of the target Pi tk + 1ð Þ in each sampling interval by the tracking

filtering algorithm, where i= 1,2,…,N.
3. Identify the next sampling interval based on P tk + 1ð Þ ≤Pth.

The sampling interval can be controlled because the coefficient λ in the predicted covariance
control and prior defining sampling interval approaches is controllable. The bigger λ is, the longer
the sampling interval becomes and the lower the tracking accuracy of the target shows, and vice
versa. In this way, the adaptive scheduling of the time resources of the phased array radar can
be realized.

14.4.4 Real-Time Task Scheduling Strategy

The scheduling strategy of the phased array radar is the method by which the computer, conditioned
on the given set of task requests of the radar, outputs the execution sequence for each task request in
order to implement optimal scheduling in a sense when meeting system limitations. Under the con-
trol of computers, the scanning antenna can finish the formation and positioning of radar beams on
the microsecond level to enable the radar to conduct scanning, tracking, recognition, and other tasks
on multiple targets in an alternate way. Since each task (e.g., scanning and tracking) consumes dif-
ferent resources of the radar, which are limited, the method of allocating and using these limited
resources with a flexible and effective task scheduling strategy will exert great influence on the
way the radar’s advantage of multiple functions comes into full play. This is also the major differ-
ence between phased array radars and conventional radars.

14.4.4.1 Influential Factors in Scheduling

The following influential factors must be taken into consideration when effective scheduling
policies are planned.

1. Define relative priority based on task requests. Since different task requests may compete for the
same execution period in the case of multiple tasks, the scheduling algorithm needs to decide
which task to schedule at once and which to delay or decline. The relative priority for each task
serves as a basis for choice for the scheduling strategy. Because each task of the radar is
conducted for a specific target (or airspace), so the definition of its priority is first based on
the relative importance of the corresponding target (or airspace). Besides, the degree of urgency
for the task should also be considered in defining the relative priority of the task.
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2. Define available working modes and their relative priority. Generally, the available
working modes can be divided into five levels: exclusive, crucial, short-range tracking and
scanning, long-range tracking and scanning, and testing and maintaining. Obviously, the more
modes are given priority, the higher operating efficiency the system shows, and the more require-
ments are imposed on the processing and memory of the computer. The number of priority
types is usually based on the comprehensive consideration of many factors, such as the
scheduling efficiency, time of computation, memory occupancy, and method of sorting the
targets.

3. Define constraints on radar resources and design conditions. Since each working mode con-
sumes a certain quantity of radar resources, which are limited, the constraints on radar operations
should be determined to make the fullest use of these resources. The specific constraints on radar
resources and design conditions are as follows.
i. On time resources. The occurrence of each radar event, from the beam location to the com-

pletion of the event, calls for corresponding motion time on the part of the radar. Once the
scheduling interval is defined, the number of radar events which can be arranged within one
scheduling interval is limited even if other constraints are neglected.

ii. On energy resources.As in the case of time resources, each radar event requires one or more
pulses in different shapes transmitted from the transmitter. In other words, each such event
consumes some energy. In order to ensure adequate data quality, more energy may be con-
sumed – especially for targets which are in a long-range or jamming environment. Different
working modes usually require different pulse waveforms (i.e., corresponding duty ratios),
therefore, the average duty ratio of one pulse sequence on a fixed time interval (one or more
scheduling intervals) – the “comprehensive duty ratio” – should be adopted in the design of
the scheduling strategy.

iii. On computer resources. After the completion of each radar event, the radar echo is sent to
the computer via the signal processor for data processing, which will occupy certain process-
ing and memory resources of the computer. Typically, the tracking mode needs more
computer resources than the scanning mode. However, for convenience, the resources occu-
pied by the former are usually considered 1.5 times those of the latter, and the computer
constraints are commonly expressed as the biggest number of tracking beams allowed
per unit of time.

iv. On the design of the radar. Constraints in this respect refer to those caused by the design of
some hardware. For instance, the material of the phase shifter decides the maximum number
of changes in beam locations allowed per time unit for a radar with a closed ferrite phase
shifter, and therefore puts constraints on the number of schedulable working modes per
scheduling interval.

4. Choose scheduling intervals. Scheduling intervals, time intervals for the controlling program of
a system to call its scheduling program, are the basis of the structure of the whole program system
of a computer, which determines the executive frequency of the major sub-program in the control
loop of a radar unit. Since data exchanges are conducted between the radar controller and the
antenna front end once every two scheduling intervals, over-long scheduling intervals cannot
satisfy the system’s requirements for the execution frequency of a certain working mode, while
over-short ones lead to excessive consumption of the computer’s support and housekeeping pro-
grams. Selections are mostly based on the overall compromise between the system’s require-
ments for the frequencies of certain working modes and the principle of minimizing the
number of interruptions and management consumptions.
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5. Choose scheduling strategies. The commonly used scheduling strategies of the phased array
radar include the template scheduling strategy and the adaptive scheduling strategy, and the
former can be further divided into fixed, multiple, and partial template policies.

14.4.4.2 Template Scheduling Strategy

The template scheduling strategy can be divided into the following three kinds.

1. Fixed template strategy.As the simplest one, this strategy can be applied to a fixed group of radar
events by allocating the same time intervals in advance in each scheduling interval T. As shown
in Figure 14.5, the scheduling program arranges five radar events in sequence in each scheduling
interval: verifying–tracking–tracking–scanning–scanning. This strategy is simple: it occupies
relatively few resources because it does not need to rank radar events in real time. However,
it is suitable for specific target environments rather than multiple dynamic ones since it is short
of flexibility and adaptive ability. Therefore, the fixed template strategy is only applicable for
single-purpose or single-function radars.

2. Multiple template strategy.As a simply modified version of the fixed template strategy, this strat-
egy has better flexibility and adaptive ability. It can design several fixed templates in advance to
ensure that each of them matches the specific radar operating environment. The computer, in
real-time scheduling, chooses the optimal template according to the current environment of
the target and certain principles, as shown in Figure 14.6. This strategy’s requirements for
the processing ability of the computer tighten with the increase in number of types of template.
This means that the flexibility and adaptive ability of the scheduling suffer when there are too
many template types. Hence, the multiple template strategy is only applicable for the radar which
has prior knowledge of the target environment and the operating environment.

Verify SearchSearchSearchTrackingTrackingTracking

T

Figure 14.5 Fixed template strategy

Tracking TrackingTrackingTrackingTrackingTrackingTracking

T

Verify SearchSearchSearchTrackingTrackingVerify1

n

Figure 14.6 Multiple template strategy diagram
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3. Partial template strategy. This strategy, in effect, is a partial adaptive strategy. It pre-arranges
one or several events in a scheduling interval, then deals with other operations of the radar during
the remaining time based on the operating priority and various constraints, as shown in
Figure 14.7. Compared with the previous two policies, this strategy improves availability of
the radar. Because of its flexibility and adaptive ability for target environments, it can be applied
to multifunctional and multipurpose radars.

14.4.4.3 Adaptive Scheduling Strategy

The adaptive scheduling strategy is an approach to selecting, subject to the relative priority of vari-
ous working modes, the optimal sequence of radar events for every scheduling interval by balancing
the time, power, and computer resources requested by various radar beams in real time within the
scope of the radar’s design. Figure 14.8 shows the functional block diagram of this strategy [351].
The task queue inputs the requests of various radar events into the priority filter, which will define
the relative priority for each event based on pre-set rules and the external dynamic environment.
Then, the constraint filter set decides, on the basis of radar constraints and priority, whether to accept
or reject the input events, which will be separately scheduled and sent into the rejection queue. Thus,
this strategy satisfies the following adaptive principles:
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search
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Figure 14.7 Partial template strategy diagram
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Figure 14.8 Functions of the adaptive scheduling strategy
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1. Adaptive to dynamic radar environment.
2. Adaptive to relative priority of different working modes.
3. Able to balance time, power, and computer resources requested by radar’s various operations in

real time.
4. Able to satisfy the constraints on the design conditions of the radar.

Since the earliest deadline first (EDF) scheduling algorithm of dynamic priority is adaptive to
dynamic changes in the phased array radar’s tasks, it is a major concern for task scheduling in
the phased array radar system. EDF means that the task with the earliest deadline is of uppermost
priority in scheduling, and is scheduled prior to other tasks. Since the scheduling algorithm of
dynamic priority is adaptive to dynamic changes in the phased array radar’s tasks, the classical
EDF (earliest deadline first) scheduling algorithm is typical. EDF means that the task with the
earliest deadline is of uppermost priority in scheduling, and is scheduled prior to other tasks. This
algorithm can be divided, based on the pre-emptive behavior of the task, into two models:
pre-emptive and non-pre-emptive EDF scheduling. The other three scheduling models (i.e.,
researchers’ promoted modified EDF scheduling [352], task scheduling based on time windows
[353], and task scheduling based on pulse interleaving [354]) are also described.

1. Pre-emptive. The pre-emptive model, which was first proposed by Liu and Layland [355], is a
scheduling algorithm driven by dynamic priority, in which the priority allocated to each task is
decided by its current requirement for the deadline. The task which has an earliest deadline is of
uppermost priority, while the one with a latest deadline should be given lowermost priority. This
algorithm can guarantee that no idle time is available for the processor before the deadline for a
certain task is satisfied. The pre-emptive EDF scheduling algorithm is based on the following
assumptions:
i. Any of the tasks can be pre-empted, and at a negligible cost.
ii. The task’s consumption of processor resources is the only consideration, while the expenses

of memory, I/O, and other resources can be ignored.
iii. The tasks are independent of each other, with no restraint on sequence.
iv. The relative ultimate deadline for every task equals its period.
Based on these assumptions, in the pre-emptive EDF scheduling algorithm, the necessary and

sufficient condition of schedulability for a given set of periodic tasks isXn
i= 1

ei=pi ≤ 1 ð14:57Þ

where ei and pi are, respectively, the execution time and cycle of task i 1 ≤ i ≤ nð Þ in the task set.
As indicated, its biggest advantage is that for any given periodic task set, the set’s schedulability
can be guaranteed on the condition that the utilization rate of the processor is not greater than
100%.
Note: The above-mentioned analysis results are only for the real-time task whose relative

deadline equals its period. This algorithm’s scheduling conditions for the sets of general tasks
(i.e., those whose relative deadlines are not equal to and even earlier than their cycles) can be
found in Ref. [356].

2. Non-pre-emptive. The non-pre-emptive EDF (NPEDF) scheduling algorithm, proposed by Jef-
fay et al. [357], is applicable to periodic and aperiodic tasks. The execution of a task should be
completed without any interruption from other tasks. The scheduling program decides which
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task to execute next only when one task is completed, which is different from the pre-emptive
model, where the task to be executed is decided at each clock unit. The NPEDF can be
described by

8i,L,1 < i ≤ n,p1 <L< pi L ≥ ei +
Xi−1
j= 1

L−1
pj

���� ����ej ð14:58Þ

As indicated, the non-pre-emptive algorithm eliminates the scheduling cost of pre-emption,
but does not guarantee the execution of the task with high priority. Judging from the features
of task scheduling in the phased array radar system, each real-time task corresponds to a radar
beam’s residence within a period of time in a certain direction, and it cannot be interrupted by
other tasks within the illumination period of the beam, which is the reason why the task sched-
uling in the phased array radar system is considered non-pre-emptive.

3. Modified EDF scheduling. The EDF scheduling model is by nature a kind of scheduling strategy
driven by priority, in which the system always chooses the task with highest priority to execute at
any moment during the process of scheduling analysis. In this scheduling model, the priority of a
task is completely decided by its time property (i.e., its deadline). But for a phased array radar
system, since each task also has its own property in terms of working mode priority, the task with
the earliest deadline is not necessarily scheduled to be executed first in this model. In that case,
the ultimate priority of a task is determined by a comprehensive consideration of its various prop-
erties. Reference [358] determines a task’s comprehensive priority by accounting for its deadline
and working mode priority properties, and does the same with other property parameters or with
the case of over three property parameters. It can be concluded from the above-mentioned
analysis that the determination of priority is the key to the scheduling of tasks with multiple
property parameters. Once the priority of a task is determined, a scheduling analysis can be
performed along the lines of the EDF model by drawing an analogy between this priority
and the deadline of the task in this model. For details, see Ref. [358].

4. Task scheduling based on time windows. The concept of a task request time window proposed by
Huizing and Bloemen [359] means that the practical execution time requested by a radar task can
move in a time window within its expected transmitting time [360]. This concept enables the
radar events which conflict in a time arrangement to be scheduled for execution after being
adjusted by the time window, improving the scheduling efficiency of radar event requests
and the radars’ time utilization rate greatly. But this method accounts for the constraints of time
resources rather than such resources of the system as energy and computer resources. With the
improvement in computer performance, the bottleneck for radar computer resources is gradually
disappearing. Hence, emphasis should be put on the overall energy resource constraints on the
system. For details, see Ref. [361].

5. Task scheduling based on pulse interleaving. In order to enhance radars’ time utilization, the
pulse interleaving technology [362] is applied to the field of radar, aiming to schedule the trans-
mitting or receiving pulses of other tasks between the receiving and transmitting pulse of one task
alternately. Though it enhances the system’s efficiency, this technology also extends the radar
transmitter’s continuous working time accordingly. The constraints of the system’s power
resources must be thoroughly considered when using pulse interleaving to warrant the effective
execution of all radar events, lest the consumption of power goes beyond the physical constraints
of the system, which may lead to damage of the transmitter due to overheating. Orman et al.
[363] made further analyses of this technology, solving the problems of task scheduling for a
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radar in practice by the heuristic method, which gives consideration to constraints of both time
and power of the radar system. For details, see Ref. [354].

14.5 Performance Analysis of the Adaptive Sampling Period Algorithm

14.5.1 Simulation Environment and Parameter Settings

The data rate of each Monte Carlo simulation is the same for the target tracking simulation with
fixed sampling intervals. But when the adaptive sampling period method is adopted, since the num-
ber of sample points is different for almost every simulation during a certain simulation period,
the traditional sum/average method is not applicable in the performance analysis. Instead, the
smoothing process [347] should be applied within a short time. Thus, the average sampling interval
Tavg Ta,Tb½ � and the RMS position error Xrms Ta,Tb½ � during each [Ta, Tb] time are as follows:

Tavg Ta,Tb½ � =
XM
j= 1

X
tjk2 Ta,Tb½ �

1

0@ 1A−1

M Tb−Tað Þ ð14:59Þ

Xrms Ta,Tb½ � =
1
�M

X
j2J

X
tjk2 Ta,Tb½ �

x̂ tjk
� �

−x tjk
� �� �2

+ ŷ tjk
� �

−y tjk
� �� �2h i

X
tjk2 Ta,Tb½ �

1

266664
377775
1=2

ð14:60Þ

where tjk is the kth updating time in the jth Monte Carlo simulation,
X

tjk2 Ta,Tb½ �
1 denotes the total times

of tjk 2 Ta,Tb½ �, and

J = j :
X

t jk2 Ta,Tb½ �
1 6¼ 0, j= 1,…,M

8<:
9=;, �M =

X
j2J

1 ð14:61Þ

In the simulation environment, the target sets forth from position (10 000 m, 2000 m) and moves
for 100 s with initial velocity (−160 m/s, 50 m/s), as shown in Table 14.2. For the phased array radar,
the initial scanning period T = 2 s, ranging error σρ = 150m, and angle measurement error
σθ = 5mrad. Assume that the smoothing interval is 2 s, and 500 Monte Carlo runs are performed.
The true movement track of the target is shown in Figure 14.9.

Table 14.2 Information on the target’s movement

Time (s) 0–12.5 12.5–25 25–50 50–62.5 62.5–100

Moving mode Constant
velocity

Constant
acceleration

Constant
velocity

Constant
acceleration

Constant
velocity

Acceleration (m/s2) (0, 0) (10, 50) (0, 0) (50, −30) (0, 0)
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When the constant gain filtering method is adopted, the α – β filter is adopted in the constant gain
filtering algorithm, with filtering parameters set as α= 0:5 and β = 0:167. Figure 14.10 shows the
simulation results by comparing the sampling period of this method with that of the fixed sampling
period algorithm, which also uses α – β filters.
When the IMM algorithm is adopted, three Singer models with different variances of process

noise, whose values are 2.5 m/s2, 20 m/s2, and 80 m/s2, respectively are used. The maneuvering
time constant of the target τm = 10 s. Suppose that ν0 = 0:8, the initial probability of the model is
[0.8, 0.1, 0.1], and the transfer probability matrix P= ½0:95, 0:025, 0:025; 0:025, 0:95, 0:025;
0:025,0:025, 0:95�. Figure 14.11 shows the simulation results by comparing this method with
the fixed sampling period IMM algorithm, which also uses three such Singer models.
When the predicted covariance threshold algorithm is adopted, a multiple model set is formed by

two constant velocity (CV) models, whose variances of process noise are 0 and 10, and one constant
acceleration (CA) model, whose variance of process noise is 20. The initial probability of the model
is [0.8, 0.1, 0.1], the transfer probability matrix P= 0:95, 0:025, 0:025; 0:025, 0:95, 0:025;½
0:025, 0:025, 0:95�, and the sampling period set predefined in this algorithm is {0.5 s, 1 s, 2 s}.
Figure 14.12 shows the simulation results by comparing this method with the fixed sampling period
IMM algorithm, which also uses two CV models and one CA model to form a multiple model set.
Tables 14.3–14.5 offer a comparison between these three methods.

14.5.2 Simulation Results and Analysis

As can be concluded from Figures 14.10–14.12, the adaptive sampling period algorithm can always
yield the expected results of sampling period adaptive control, since the sampling periods are adap-
tive to changes in the moving states of the targets. Specifically, they become shorter during the man-
euvering periods and longer in the absence of maneuvers: all sampling periods in the accelerated
maneuver periods of 12.5–25 s and 50–62.5 s are shorter than those in adjacent time periods. The
constant gain filtering method can adjust the sampling intervals which are set according to target
residuals, the IMM algorithm is able to improve the accuracy of stable prediction, and the predicted
covariance threshold algorithm can adjust covariance thresholds, so that the flexibility of adaptive
sampling periods can be improved by adjusting the radar’s tracking accuracy of the target and the
time resources allocated by the system for this tracking task.
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In order to prove the superiority of the adaptive data rate working mode, the adaptive sampling
period method is compared with the fixed one. The model sets are assumed the same in both
methods, and the latter’s sampling period is set as the average one given by the former’s modified
version, such that they consume the same amount of time resources to conduct the tracking task
under consideration. Figures 14.10(b), 14.10(c), 14.11(b), 14.11(c), 14.12(b), and 14.12(c) show

20 40 60 80 100
0.5

1

1.5

2
(a)

(b)

Time (s)

Sa
m

pl
in

g 
pe

ri
od

 (
s)

Adaptive sampling period
Fixed sampling period

20 40 60 80 100
100

200

300

400

500

Time (s)

R
oo

t m
ea

n 
sq

ua
re

po
si

tio
n 

er
ro

r 
(m

) Adaptive sampling period
Fixed sampling period

(c)

20 40 60 80 100
0

50

100

150

200

250

Time (s)

R
oo

t m
ea

n 
sq

ua
re

ve
lo

ci
ty

 e
rr

or
 (

m
/s

)

Adaptive sampling
period

Fixed sampling
period

Figure 14.10 (a) Sampling period, (b) RMS position error, and (c) RMS velocity error of the constant gain
filtering method

357Phased Array Radar Data Processing



a comparison of the tracking performance between the constant gain filtering method, the IMM
algorithm, and the predicted covariance threshold algorithm successively, and Tables 14.3–14.5 list
the quantitative results of comparison. It can be concluded that both the tracking position and the
velocity error generated by the fixed sampling period algorithm are bigger than those of the three
adaptive ones.
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Figure 14.11 (a) Sampling period, (b) RMS position error, and (c) RMS velocity error of the IMM
algorithm
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Figure 14.12 (a) Sampling period, (b) RMS position error, and (c) RMS velocity error of the predicted
covariance threshold algorithm

Table 14.3 Comparison among position RMS, velocity RMS, and average period of constant gain
filtering method

Method Position RMS (m) Velocity RMS (m/s) Average period (s)

Adaptive sampling period 159.70 63.50
1.53

Fixed sampling period 201.42 78.28

359Phased Array Radar Data Processing



14.5.3 Comparison and Discussion

1. As shown in Figures 14.10(b) and 14.10(c), using the constant gain filtering algorithm, the adap-
tive sampling period method makes a quicker response to error fluctuations than the fixed
method in the presence of target maneuvers. This is mainly because the noise model of the
constant gain filter is zero-mean, Gaussian white noise, and is able to rapidly detect the target’s
maneuver. When the target is maneuvering, the adaptive method can shorten the sampling
intervals immediately to detect the position at the next moment with larger position errors, while
the fixed method keeps the same intervals and shows even larger position errors when detecting
the target at the next moment.

2. As demonstrated by a comparison of Figures 14.11(a) and 14.12(a), using the IMM algorithm,
the response of the adaptive sampling period method to changes in sampling periods lags behind
the time of target maneuvers remarkably. The reason is that the Singer model applied in the IMM
algorithm is a correlative noise model, which brings about decorrelation time in the updating of
its probability caused by target maneuvers. It thus follows from Figures 14.11(b) and 14.11(c)
that improvements in sampling rates reduce tracking errors during the maneuvering period, while
in the maneuver-free period, the adaptive method shows better average tracking performance,
which does not suffer from its longer periods than the fixed method.

3. A comparison of Figures 14.12(a) and 14.11(a) suggests that by using the predicted covariance
threshold algorithm, the adaptive method makes quicker responses to variations in sampling
periods than the fixed method in the presence of target maneuvers, principally because both
the CV and CA models applied by this algorithm are white noise models, which are capable
of having a quicker response to the model probability changes caused by target maneuvers.
Besides, there is a convergent process for the prediction covariance during the tracking phase
(i.e., it shows larger values in the initial stage), so this brings about relatively high sampling rates
to the adaptive method in the initial phase. But the convergent process has little influence on the
whole tracking process, because it is short.

4. By comparing Figures 14.11(c) and 14.12(c), we find that the velocity RMS shows two wave
crests during both maneuvering periods. The time of emergence of the crests shows that the tar-
get’s sampling rate conducted by the phased array radar should be improved when the target is
maneuvering, which is, in essence, to speed up the matching process between the filtering and
the target motion model. When the filtering model matches the target movement, the tracking
accuracy grows gradually, and the sampling rate lowers accordingly when the tracking goes

Table 14.4 Comparison among position RMS, velocity RMS, and average period of IMM algorithm

Method Position RMS (m) Velocity RMS (m/s) Average period (s)

Adaptive sampling period 155.70 66.99
1.46

Fixed sampling period 168.04 70.69

Table 14.5 Comparison among position RMS, velocity RMS, and average period of predicted covariance
threshold algorithm

Method Position RMS (m) Velocity RMS (m/s) Average period (s)

Adaptive sampling period 177.12 71.64
1.52

Fixed sampling period 196.64 70.98
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stable. In addition, the two wave peaks in Figure 14.11(c) are more evident, causing two distinct
peaks in Figure 14.11(b), for the Singer model is a correlative noise model whose decorrelation
time widens the period of response to changes in the model’s probability.

5. Since various maneuvering target tracking algorithms are different in performance, their own
adaptive algorithms cannot be compared in a unified way. The above simulations are behavioral
comparisons between the fixed and adaptive sampling systems using the same tracking algo-
rithm to demonstrate the superiority of the adaptive method applied by the phased array radar.

14.6 Summary

This chapter mainly introduces the major features, system structure, and working process of phased
array radar systems, and then puts emphasis on the discussion of several key typical data processing
techniques of the phased array radar. The phased array radar is able to provide Doppler information,
and then obtain a target’s radial velocity measurements, which can be used to improve the data
association and tracking performance for single/multi-targets in clutter. In addition, the tracking
performance in the case of high target maneuverability can be promoted and the radar’s working
load can be better balanced by making full use of the phased array radar’s capability to flexibly
control the sampling intervals of the target data as needed. Since the phased array radar is capable
of simultaneously conducting various tasks – such as scanning, tracking, and identification of mul-
tiple targets in an alternate way – the limited radar resources can be fully utilized to have better
performance by applying effective real-time task scheduling strategies.
Finally, it lays emphasis on the comparison and simulation of several adaptive sampling period

algorithms of the phased array radar, with the results indicating that the radar’s load can be effect-
ively reduced and the tracking performance of the target improved at the same time by changing
sampling periods adaptively based on the maneuvering behavior of the target.
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15
Radar Network Error
Registration Algorithm

15.1 Introduction

The radar networking information fusion technology has brought tremendous benefits, recognized
across the world, and is still in the process of fast development. However, because of the various
radar detection errors existing in practical systems, how to guarantee the results of real-time fusion
of a system has become a chronically knotty problem in this technology. As proven by practical
implementations, for instance, systematic errors of a multiple-radar network tracking system would
lead to bigger target tracking errors than their theoretical values; when the errors are too large, the
tracking results of multiple radars are even worse than those of single ones; many tracks of the same
target may result in the worst case, which then leads to ambiguities.
Although strict measures can be taken to decrease the systematic errors of networking radars in

the entire process regarding them, ranging from design, research, manufacturing, installation, and
adjustment to operation and use, there remain severe constraints on these radars due to the systems
and methods of measuring systems and equipment, the performance indexes of devices, the residual
errors of zero-value calibration, jamming, and noise. Under external influences, the systematic
errors, even if eliminated before use, can be regenerated as time goes by. Furthermore, this can
be a dynamic changing process.
The grid-lock technology, one of several key technologies advocated currently by the USmilitary

in network-centric operations, is an error registration technology by nature. In this chapter, we
mainly discuss the registration algorithms of fixed radars and mobile radars.

15.2 The Composition and Influence of Systematic Errors

15.2.1 The Composition of Systematic Errors

In radar observation systems, there are two major kinds of error: stochastic and systematic. The
former can be eliminated with various kinds of filtering method. The latter, however, is a kind
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of deterministic error, which cannot be eliminated with filtering methods. To eliminate systematic
errors, estimations should be made in advance, and then the corresponding compensation should be
made. This process is known as “radar registration.”
Systematic errors of networking radars can be divided, according to their origins, into four

categories:

1. radar positioning errors,
2. radar measurement systematic errors,
3. mobile platform attitude angle systematic errors,
4. coordinate transformation systematic errors.

Radar positioning errors are caused by the inaccuracy of position measuring equipment. As GPS
devices are widely used, and the Beidou Navigation Satellite System grows mature, the accuracy of
radar position measurements will be higher and higher, and the impact of radar positioning errors on
the radar networking system is becoming less and less.
Radar measurement systematic errors mainly include range, azimuth, and elevation errors (3D

radar). Range error is caused by internal circuit delay in the radar, the zero drift in the system,
and velocity incorrectness of the distance clock, and it manifests itself as slow variables of addition
errors and gain of errors in proportion to distance. Azimuth error is caused by the deviation which
appears when the radar antenna is aligned with due North, and it manifests as slow variables of
addition errors. Elevation error is caused by the fixed inclination of the radar antenna and manifests
as slow variables of addition errors.
The attitude angle systematic errors of the mobile platform consist chiefly of pitch, yaw, and roll

systematic errors. They are caused by factors such as the inaccuracy of attitude measurement equip-
ment (e.g., GPS and gyroscopes) and slow response time, and are related to the maneuverability of
platforms.When the platforms make big maneuvers, their attitude angle systematic errors are bigger
andhavenotable influences on the radar network systems,which shouldbe eliminatedby registration.
Coordinate transformation systematic errors are causedby errors inherent in transformation formulas

between different coordinate systems of the radar. Their impact on radar systems can be decreased by
choosing proper public coordinate systems according to the deployment of networking radars.
Because categories 2 (radar measurement systematic errors) and 3 (mobile platform attitude angle

systematic errors) have bigger impacts on radar network systems, we will explore, in this chapter,
their estimation and elimination methods. In addition, these two types are normally assumed con-
stant unless otherwise specified.

15.2.2 The Influence of Systematic Errors

In the case of a singular radar system, systematic errors are the same for every target except that a
fixed rotation and translation appears. This rotation and translation exerts no influence on the esti-
mation of speed and relative position of the target, nor on the tracking performance of singular
radars. However, things are quite different in the case of the radar network system: according to
Ref. [364], in a multi-radar tracking system, the existence of systematic errors will lead to a bigger
tracking mean square root error than its theoretical value. If the systematic errors are too large, it will
happen that the effect of multiple radars’ fusion tracking is even worse than that of singular radars.
In the worst situation, they will cause failure in association of multi-radar measurements from the
same trajectory. In this case, many tracks will be generated for the same target, and mistakenly
recognized, due to the big difference between them, as belonging to different targets. This wrong
recognition will bring difficulty and illegibility to track association and fusion, and a reduction in
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performance of the system tracks resulting from fusion. Under some complicated circumstances
(especially in cases of dense targets and formation flights), it is more likely to create confusion
in track association and a decrease in fusion accuracy, and thus render the overall systematic fusion
meaningless, which further deprives the radar networking system of the advantages due to it. An
example will be cited to explain the influences of systematic errors on target tracks below.
Suppose that 2D fixed radars A and B are deployed at different positions, and a public Cartesian

coordinate system is established around radar A, which serves as the system fusion center. In this
reference frame, these two radars’ coordinates are (0, 0) and (xBs, 0), respectively. These two radars
have some white Gaussian stochastic errors in measurements.
Also suppose that the mean square stochastic errors in range and azimuth measurements are

(δrA, δθA) and (δrB, δθB), respectively, and the range and azimuth systematic errors are
(ΔrA,ΔθA) and (ΔrB,ΔθB), respectively. The position state estimates corresponding to the same
target among the target tracks reported by the two radars at time k are x̂A kð Þ, ŷA kð Þð Þ and
x̂B kð Þ, ŷB kð Þð Þ, respectively, but the actual position of the target is (x(k), y(k)), with its actual polar
coordinates being (rA(k), θA(k)) and (rB(k), θB(k)), respectively.
Both radars obtain the track of the target by filtering its measurements, with the influence of

filtering error being ignored. This yields

x̂A kð Þ = rA kð Þ+ΔrAð Þsin θA kð Þ +ΔθAð Þ
ŷA kð Þ = rA kð Þ+ΔrAð Þcos θA kð Þ+ΔθAð Þ

(
ð15:1Þ

x̂B kð Þ= rB kð Þ+ΔrBð Þsin θB kð Þ+ΔθBð Þ + xBs
ŷB kð Þ= rB kð Þ+ΔrBð Þcos θB kð Þ +ΔθBð Þ

(
ð15:2Þ

x̂A kð Þ = rA kð Þ+ΔrAð Þsin θA kð Þ+ΔθAð Þ
= rA kð Þsin θA kð Þ+ΔθAð Þ +ΔrA sin θA kð Þ+ΔθAð Þ
= rA kð ÞsinθA kð ÞcosΔθA + rA kð ÞcosθA kð ÞsinΔθA +ΔrA sin θA kð Þ+ΔθAð Þ
= x kð ÞcosΔθA + y kð ÞsinΔθA +ΔrA sin θA kð Þ+ΔθAð Þ

ð15:3Þ

ŷA kð Þ = rA kð Þ+ΔrAð Þcos θA kð Þ+ΔθAð Þ
= rA kð Þcos θA kð Þ +ΔθAð Þ+ΔrA cos θA kð Þ+ΔθAð Þ
= rA kð ÞcosθA kð ÞcosΔθA−rA kð ÞsinθA kð ÞsinΔθA +ΔrA cos θA kð Þ +ΔθAð Þ
= −x kð ÞsinΔθA + y kð ÞcosΔθA +ΔrA cos θA kð Þ+ΔθAð Þ

ð15:4Þ

Thus, we have

x̂A kð Þ = x kð ÞcosΔθA + y kð ÞsinΔθA +ΔrA sin θA kð Þ+ΔθAð Þ
ŷA kð Þ = −x kð ÞsinΔθA + y kð ÞcosΔθA +ΔrA cos θA kð Þ+ΔθAð Þ

(
ð15:5Þ

Likewise, in view of the relative coordinates of radar B, we get

x̂B kð Þ = rB kð Þ +ΔrBð Þsin θB kð Þ +ΔθBð Þ+ xBs
= rB kð ÞsinθB kð ÞcosΔθB + rB kð ÞcosθB kð ÞsinΔθB +ΔrB sin θB kð Þ +ΔθBð Þ+ xBs
= x kð Þ−xBsð ÞcosΔθB + y kð ÞsinΔθB +ΔrB sin θB kð Þ +ΔθBð Þ+ xBs
= x kð ÞcosΔθB + y kð ÞsinΔθB +ΔrB sin θB kð Þ +ΔθBð Þ+ xBs 1−cosΔθBð Þ

ð15:6Þ
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Similarly,

ŷB kð Þ= −x kð ÞsinΔθB + y kð ÞcosΔθB +ΔrB cos θB kð Þ+ΔθBð Þ+ xBs sinΔθB ð15:7Þ
Hence, it follows that

x̂B kð Þ = x kð ÞcosΔθB + y kð ÞsinΔθB +ΔrB sin θB kð Þ+ΔθBð Þ + xBs 1−cosΔθBð Þ
ŷB kð Þ = −x kð ÞsinΔθB + y kð ÞcosΔθB +ΔrB cos θB kð Þ+ΔθBð Þ + xBs sinΔθB

(
ð15:8Þ

Combining (15.5) and (15.8) with the real coordinates (x(k), y(k)) cancelled, after derivation,
gives

x̂B kð Þ = x̂A kð Þcos ΔθB−ΔθAð Þ+ ŷA kð Þsin ΔθB−ΔθAð Þ
− − ΔrA sin θA kð Þ+ΔθBð Þ +ΔrB sin θB kð Þ+ΔθBð Þ + xBs 1−cosΔθBð Þð Þð Þ

ŷB kð Þ = − x̂A kð Þsin ΔθB−ΔθAð Þ + ŷA kð Þcos ΔθB−ΔθAð Þ
− − ΔrA cos θA kð Þ+ΔθBð Þ+ΔrB cos θB kð Þ +ΔθBð Þ+ xBS sinΔθBð Þð Þ

8>>>>><>>>>>:
ð15:9Þ

Here we define

θ0 =ΔθB−ΔθA
Cx = − ΔrA sin θA kð Þ+ΔθBð Þ +ΔrB sin θB kð Þ+ΔθBð Þ + xBs 1−cosΔθBð Þð Þ
Cy = − ΔrA cos θA kð Þ +ΔθBð Þ+ΔrB cos θB kð Þ+ΔθBð Þ + xBS sinΔθBð Þ

8><>: ð15:10Þ

where, because of the target’s relative movement to either radar, only θA(k) and θB(k) change with
time. Radar measurement systematic errors are usually relatively small constants or slow vari-
ables of addition errors, and the target’s position change is very small in a certain period of time.
Thus, Cx and Cy can be regarded approximately as constants, and θ0 is also a constant. Therefore,
we have

x̂B kð Þ
ŷB kð Þ

" #
=

cosθ0 sinθ0

−sinθ0 cosθ0

" #
x̂A kð Þ
ŷA kð Þ

" #
−

Cx

Cy

" #
ð15:11Þ

Thus, it follows from (15.10) and (15.11) that the range systematic errors of networking radars
generate relative translations between the target tracks reported by both radars, and azimuth system-
atic errors mainly produce relative rotations between the target tracks reported by both radars.
Moreover, in some special cases (e.g., when fierce bombardment of the radar position leads to

inclination of the antenna), systematic errors in range and azimuth measurements may well grow too
large, and the above conclusion should be modified. Then,

Cx = −ΔrA sin θA kð Þ +ΔθBð Þ−ΔrB sin θB kð Þ+ΔθBð Þ−xBs 1−cosΔθBð Þ
= −ΔrA sin θA kð Þ +ΔθA +ΔθB−ΔθAð Þ−ΔrB sin θB kð Þ +ΔθBð Þ−xBs 1−cosΔθBð Þ
= −ΔrA sin θA kð Þ +ΔθAð Þcos ΔθB−ΔθAð Þ−ΔrA cos θA kð Þ +ΔθAð Þsin ΔθB−ΔθAð Þ
−ΔrB sin θB kð Þ+ΔθBð Þ−xBs 1−cosΔθBð Þ

= −
ΔrA

ΔrA + rA
x̂A kð Þcos ΔθB−ΔθAð Þ− ΔrA

ΔrA + rA
ŷA kð Þsin ΔθB−ΔθAð Þ− ΔrB

ΔrB + rB
x̂B kð Þ−xBs 1−cosΔθBð Þ

ð15:12Þ
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Likewise, we have

Cy = −
ΔrA

ΔrA + rA
x̂A kð Þsin ΔθB−ΔθAð Þ− ΔrB

ΔrB + rB
ŷB kð Þ− ΔrA

ΔrA + rA
ŷA kð Þcos ΔθB−ΔθAð Þ−xBs sinΔθB

ð15:13Þ

Substituting (15.12) and (15.13) into (15.11), after some simplification, yields

x̂B kð Þ
ŷB kð Þ

" #
=
ΔrB + rB

rB

2ΔrA + rA
ΔrA + rA

cosθ0 sinθ0

−sinθ0 cosθ0

" #
x̂A kð Þ
ŷA kð Þ

" #
+
ΔrB + rB

rB

xBs 1−cosΔθBð Þ
xBs sinΔθB

" #
ð15:14Þ

As can be seen from the above equation, in the case of big systematic errors, range systematic
errors will cause a larger influence on tracks. Big range systematic errors will cause translation and
rotation, and affine transformation of the tracks, which in turn leads to their overall deformation,
namely, the difference in real positions for measurements caused in their scales and translation val-
ues. This shows that big range systematic errors will bring forth a departure of the target’s course
from the real course, and even changes in target speed and heading angle between targets. Azimuth
systematic errors, however, will probably only produce a slight increase in translation of the target
track and have little influence. Therefore, in order to ensure the overall performance of the radar
network system, radar registration has to be done so as to eliminate the systematic errors.

15.3 Fixed Radar Registration Algorithm

According to the difference in radar platforms, radar registration algorithms can be classified into
two types: fixed and mobile. The former needs to eliminate only systematic measurement errors
by registration, while the latter needs to remove systematic errors in attitude angles in addition
because of platform motion. This section primarily approaches registration problems with fixed
radars.
With respect to fixed radars, the simplest method is registration conditioned on the given target

positions. This condition, however, is hard to satisfy sometimes, hence many radar registration algo-
rithms have been developed with the condition that the target positions are unknown. According to
the difference in coordinate systems, fixed radar registration algorithms can be further divided into
two subgroups: those based on stereographic projections [365] and those based on earth-centered
earth-fixed (ECEF) coordinate systems. The former includes real-time quality control (RTQC)
[366], least-squares (LS) [367], generalized least-squares (GLS) [364], and exact maximum likeli-
hood (EML) [368] registration algorithms. These algorithms are discussed below.

15.3.1 Radar Registration Algorithm Based on Cooperative Targets

Under this condition, just align each radar with the targets, whose positions are already known.
Suppose that the systematic errors to be compensated do not change with time and space
(Figure 15.1).
The measurement error can be written as

δρ = ρM −ρ=Δρ + ερ
δθ = θM −θ =Δθ + εθ

(
ð15:15Þ
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where (ρM, θM) is the polar coordinate measurement of the target and (ρ, θ) is the target’s real
position in polar coordinates. Actually, the above errors are both composed of two terms. One term
is (Δρ,Δθ) and, being deterministic error, is unknown. The other term is (ερ, εθ) and, being stochas-
tic observation errors, they are not mutually correlated, usually having zero mean and known
variance σ2ρ and σ2θ. Then, we get the average value of proper measurements and this can decrease
the influence of stochastic errors.
A certain radar in the radar network, in a certain period of time, can get nmeasurement variables
ρM ið Þ, θM ið Þð Þji= 1,…,nf g of a target whose position is already known, the differences between

which and the actual positions are n error variables δρ ið Þ, δθ ið Þ� �
i= 1,…,nj� �

. Therefore, the
estimates of (Δρ, Δθ) can be obtained from

Δρ̂ =
1
n

Xn
i = 1

δρ ið Þ

Δθ̂ =
1
n

Xn
i= 1

δθ ið Þ

8>>>><>>>>: ð15:16Þ

with variances σ2ρ=n and σ2θ=n, respectively.
If the range error caused by the distance clock speed deviation is further considered, then its math-

ematical model can be supposed to be

Δρ = a+ bρ ð15:17Þ

where a and b are parameters to be estimated. To estimate two unknown variables, we need to know
the positions of two different targets P1 and P2 whose coordinates are assumed to be (ρ1, θ1) and
(ρ2, θ2). When there is no observation noise ερ = 0

� �
, the range measurement errors can be

expressed as

δρ1 = a + bρ1

δρ2 = a + bρ2

(
ð15:18Þ

θM

ρM

Δθ

Δρ

ερ

θ

y

O x

ρ

εθ

Figure 15.1 Systematic errors and stochastic errors in radar measurement
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So, the estimates of a and b can be derived as

â =
−ρ2δρ1 + ρ1δρ2

ρ1−ρ2

b̂ =
δρ1 −δρ2
ρ1−ρ2

8>>><>>>: ð15:19Þ

When there is observation noise, â and b̂ are stochastic variables with their means being a and b,
respectively, and their variances

σ2a =
ρ21 + ρ

2
2

ρ1−ρ2ð Þ2 σ
2
ρ

σ2b =
2

ρ1−ρ2ð Þ2 σ
2
ρ

8>>><>>>: ð15:20Þ

where ρ1 and ρ2 are assumed uncorrelated, with the same variance σ2ρ. From (15.20), it can be seen
that the longer the radial distance between two observation targets, the more accurate the estimates.

15.3.2 RTQC Algorithm

For the radar registration algorithm with target positions unknown, the systematic errors are usually
estimated using many measurements of the same target from two radars (see Figure 15.2) and the
radars’ measurements are then corrected according to the estimated values.

X

X′

Y

Y′

θB

Radar A

Radar B
RA

Central line

Region II

RB

Radar B measurements 

Radar A
measurements

True target position

ΔθA+ θr

ΔθB+ θ′r

θA Region I

Figure 15.2 Radar registration based on stereographic projection
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The RTQC is an algorithm based on stereographic (polar) projection. Before registration, this
algorithm projects different radars’ measurements of the same target to the public 2D coordinate
system and therefore it can estimate the radars’ azimuth and range systematic errors only.
Figure 15.2 shows the geometric relationship of two radars located at different places. The sys-

tematic errors have two components: range and azimuth errors, namely, β = ΔRA,ΔRB,ΔθA,ΔθB½ �0.
For two radar stations SA and SB, which are projected on the plane, their coordinates are xSA ,ySAð Þ
and xSB ,ySBð Þ, respectively. x0A,y

0
A

� �
and x0B,y

0
B

� �
denote the coordinates of target Tk in the local

coordinate systems of the radars, respectively, and (RA, θA) and (RB, θB) are the radars’ measure-
ments (including systematic and stochastic errors) about target Tk. If the effects of stochastic meas-
urement errors Rr, θr, Rr

0, and θr
0 are neglected, from the geometric relationship in Figure 15.2 it

follows that

xA
0 = RA−ΔRAð Þsin θA−ΔθAð Þ ð15:21Þ

yA
0 = RA−ΔRAð Þcos θA−ΔθAð Þ ð15:22Þ

Because ΔRA and ΔθA are minute, and if second-order and above Taylor expansions are neg-
lected, (15.21) and (15.22) can be simplified as

x0A =RA sinθA−ΔRA sinθA−RAΔθA cosθA ð15:23Þ
y0A =RA cosθA−ΔRA cosθA +RAΔθA sinθA ð15:24Þ

Likewise, we have

xB
0 =RB sinθB−ΔRB sinθB−RBΔθB cosθB ð15:25Þ

yB
0 =RB cosθB−ΔRB cosθB +RBΔθB sinθB ð15:26Þ

For the same target,

xSA + x
0
A = xSB + x

0
B ð15:27Þ

ySA + y
0
A = ySB + y

0
B ð15:28Þ

Let

xA = xSA +RA sinθA ð15:29Þ
yA = ySA +RA cosθA ð15:30Þ
xB = xSB +RB sinθB ð15:31Þ
yB = ySB +RB cosθB ð15:32Þ

A= xA−xB = sinθAΔRA−sinθBΔRB +RA cosθAΔθA−RB cosθBΔθB ð15:33Þ

B= yA−yB = cosθAΔRA−cosθBΔRB−RA sinθAΔθA +RB sinθBΔθB ð15:34Þ

PP =AsinθA +BcosθA ð15:35Þ
QQ= −AsinθB−BcosθB ð15:36Þ
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Substituting (15.33) and (15.34) into (15.35) and (15.36) gives

PP =ΔRA−cos θA−θBð ÞΔRB−RB sin θA−θBð ÞΔθB ð15:37Þ

QQ = −cos θA−θBð ÞΔRA +ΔRB +RA sin θA−θBð ÞΔθA ð15:38Þ

Averaging all the measurements, it follows from (15.37) and (15.38) that

PP1 QQ1 PP2 QQ2
� �0

= S ΔRA ΔRB ΔθA ΔθB½ �0 ð15:39Þ

where

S=

1 −cos θA1−θB1ð Þ 0 −RB1sin θA1−θB1ð Þ
−cos θA1−θB1ð Þ 1 RA1sin θA1−θB1ð Þ 0

1 −cos θA2−θB2ð Þ 0 −RB2sin θA2−θB2ð Þ
−cos θA2−θB2ð Þ 1 RA2sin θA2−θB2ð Þ 0

266664
377775 ð15:40Þ

The bars in the equation denote averaging, and subscript 1 indicates the measurements in
area I while subscript 2 indicates the measurements in area II (area I is the area above the
line SASB in Figure 15.2 and area II is the area below the line SASB). The error vector
β = ΔRA,ΔRB,ΔθA,ΔθB½ �0 can be obtained from (15.40).
In order to keep full rank of matrix S, the RTQC algorithm requires that the chosen targets be

distributed on both sides of the line SASB and not too close to the line SASB or too far from the
central line.

15.3.3 LS Algorithm

The performance of the RTQC algorithm is influenced greatly by the distribution of targets and it
requires that the targets be distributed on both sides of the line SASB. Therefore, the radar registration
algorithm based on LS has been put forward according to the improvements in RTQC [367].
For N different measurements, from (15.33) and (15.34) we get

A ið Þ= xA ið Þ−xB ið Þ= sinθA ið ÞΔRA−sinθB ið ÞΔRB +RA ið ÞcosθA ið ÞΔθA−RB ið ÞcosθB ið ÞΔθB
ð15:41Þ

B ið Þ= yA ið Þ−yB ið Þ= cosθA ið ÞΔRA−cosθB ið ÞΔRB−RA ið ÞsinθA ið ÞΔθA +RB ið ÞsinθB ið ÞΔθB
ð15:42Þ

where i = 1,…,N. This can be expressed in matrix form as

Z=Hβ ð15:43Þ

where

Z= P 1ð Þ,Q 1ð Þ,P 2ð Þ,Q 2ð Þ,…,P Nð Þ,Q Nð Þ½ �0 ð15:44Þ
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H =

sinθA 1ð Þ −sinθB 1ð Þ RA 1ð ÞcosθA 1ð Þ −RB 1ð ÞcosθB 1ð Þ
cosθA 1ð Þ −cosθB 1ð Þ −RA 1ð ÞsinθA 1ð Þ RB 1ð ÞsinθB 1ð Þ
sinθA 2ð Þ −sinθB 2ð Þ RA 2ð ÞcosθA 2ð Þ −RB 2ð ÞcosθB 2ð Þ
cosθA 2ð Þ −cosθB 2ð Þ −RA 2ð ÞsinθA 2ð Þ RB 2ð ÞsinθB 2ð Þ

..

. ..
. ..

. ..
.

sinθA Nð Þ −sinθB Nð Þ RA Nð ÞcosθA Nð Þ −RB Nð ÞcosθB Nð Þ
cosθA Nð Þ −cosθB Nð Þ −RA Nð ÞsinθA Nð Þ RB Nð ÞsinθB Nð Þ

266666666666664

377777777777775
ð15:45Þ

Z=Hβ is over-determined. Equation (15.46) can be solved by the LS estimation method,
as follows:

β = H0Hð Þ−1H0Z ð15:46Þ

15.3.4 GLS Algorithm

One of the two radars is set as the primary radar, located at the origin of the coordinates, and the
other as the secondary radar, located at (u, v). Then, assume that in the absence of stochastic meas-
urement errors and conditioned only on systematic deviations, the measurement vector of the kth
target is Ψ kð Þ = rA kð Þ,ωA kð Þ,rB kð Þ,ωB kð Þ½ �0. Let

Δx kð Þ = rA kð Þ +ΔrA½ �sin ωA kð Þ +ΔθA½ �−u− rB kð Þ +ΔrB½ �sin ωB kð Þ +ΔθB½ � ð15:47Þ
Δy kð Þ= rA kð Þ+ΔrA½ �cos ωA kð Þ+ΔθA½ �−v− rB kð Þ+ΔrB½ �cos ωB kð Þ+ΔθB½ � ð15:48Þ

Let f Ψ kð Þ,β½ � = Δx kð Þ,Δy kð Þ½ �0 and make a first-order Taylor expansion of it. Then, we have

f Ψ kð Þ,β½ �≈ f Ψ0 kð Þ,β0½ � +∇β f Ψ0 kð Þ,β0ð Þ½ � β−β0ð Þ+∇Ψ f Ψ0 kð Þ,β0ð Þ½ � Ψ kð Þ−Ψ0 kð Þ½ � ð15:49Þ

where Ψ0(k) is the actual target measurements (including systematic and stochastic errors, uncor-
rected) obtained by radars SA and SB at sampling time k, and β0 is the initial estimate of systematic
deviations. Conditioned on the absence of prior information, assume that β0 = 0,0,0,0ð Þ0.
∇Ψ f Ψ0 kð Þ,β0ð Þ½ � and ∇β f Ψ0 kð Þ,β0ð Þ½ � are as follows:

∇Ψ f Ψ0 kð Þ,β0ð Þ½ �=
∂ Δx kð Þð Þ
∂rA kð Þ

∂ Δx kð Þð Þ
∂ωA kð Þ

∂ Δx kð Þð Þ
∂rB kð Þ

∂ Δx kð Þð Þ
∂ωB kð Þ

∂ Δy kð Þð Þ
∂rA kð Þ

∂ Δy kð Þð Þ
∂ωA kð Þ

∂ Δy kð Þð Þ
∂rB kð Þ

∂ Δy kð Þð Þ
∂ωB kð Þ

26664
37775 = κ kð Þ ð15:50Þ

ξ = κ 1ð Þ∂Ψ 1ð Þ,κ 2ð Þ∂Ψ 2ð Þ,…,κ Nð Þ∂Ψ Nð Þ½ �0 ð15:51Þ

∇β f Ψ0 kð Þ,β0ð Þ½ �=
∂ Δx kð Þð Þ
∂ ΔrAð Þ

∂ Δx kð Þð Þ
∂ ΔθAð Þ

∂ Δx kð Þð Þ
∂ ΔrBð Þ

∂ Δx kð Þð Þ
∂ ΔθBð Þ

∂ Δy kð Þð Þ
∂ ΔrAð Þ

∂ Δy kð Þð Þ
∂ ΔθAð Þ

∂ Δy kð Þð Þ
∂ ΔrBð Þ

∂ Δy kð Þð Þ
∂ ΔθBð Þ

26664
37775 = ζ kð Þ ð15:52Þ
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For the same target, f Ψ kð Þ,β½ �= 0,0½ �0. Suppose that Ψ kð Þ−Ψ0 kð Þ½ � and β−β0ð Þ are small enough,
with negligible high-order components. Then,

ζ kð Þβ + κ kð Þ∂Ψ kð Þ= ζ kð Þβ0− f Ψ0 kð Þ,β0½ � ð15:53Þ

where ∂Ψ kð Þ = Ψ kð Þ−Ψ0 kð Þ½ �. ForΨ(k), we only consider systematic deviations instead of stochas-
tic errors. Therefore,

∂Ψ kð Þ = Rr,θr,R
0
r ,θ

0
r

� � ð15:54Þ

In the above, κ kð Þ∂Ψ kð Þ is the error caused by measurement noise and ζ(k) is the matrix of the
given parameter. Hence, the right-hand side of (15.53) represents observations and can be
expressed as

Xβ + ξ =Y ð15:55Þ

where

X = ζ 1ð Þ,ζ 2ð Þ,…,ζ Nð Þ½ �0 ð15:56Þ
ξ = k 1ð Þ∂Ψ 1ð Þ,k 2ð Þ∂Ψ 2ð Þ,…,k Nð Þ∂Ψ Nð Þ½ �0 ð15:57Þ

Y = ζ 1ð Þβ0− f Ψ0 1ð Þ,β0ð Þ,ζ 2ð Þβ0− f Ψ0 2ð Þ,β0ð Þ,…,ζ Nð Þβ0− f Ψ0 Nð Þ,β0ð Þ½ �0 ð15:58Þ

Let

Σξ =E ξξ0½ �= k ið ÞE ∂Ψ ið Þð Þ ∂Ψ jð Þð Þ0� �
k jð Þ0 i, j= 1,2,…,Nj� � ð15:59Þ

If i 6¼ j,

E ∂Ψ ið Þð Þ ∂Ψ jð Þð Þ0� �
= 0 ð15:60Þ

If i= j,

E ∂Ψ ið Þð Þ ∂Ψ jð Þð Þ0� �
=

σ2r Að Þ 0 0 0

0 σ2θ Að Þ 0 0

0 0 σ2r Bð Þ 0

0 0 0 σ2θ Bð Þ

266664
377775 ð15:61Þ

Since κ kð Þ is a 2 × 4 matrix, and ΣΨ is a 4 × 4 matrix, then Σξ is a block-diagonal matrix
{Σ1,Σ2,Σ3,…,ΣN}, where

Σk = κ kð ÞΣΨκ kð Þ0 ð15:62Þ
Hence, the resolution of (15.55) can be obtained as follows:

β∗ = X0Σ−1
ξ X

� 	−1
X0Σ−1

ξ Y ð15:63Þ

cov β∗ð Þ = X0Σ−1
ξ X

� 	−1
ð15:64Þ
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From (15.64), we know that the accuracy of the GLS registration is only correlated with the
radar’s measurement accuracy and the targets’ spatial distribution. And, since Σξ is a 2N × 2N
matrix, (15.63) and (15.64) can be broken down into N small matrixes and then calculated:

X0Σ−1
ξ X =

XN
k = 1

ζ kð Þ0Σ−1
k ζ kð Þ ð15:65Þ

X0Σ−1
ξ Y =

XN
k = 1

ζ kð Þ0Σ−1
k ζ kð Þβ0− f Ψ0 kð Þ,β0ð Þ½ � ð15:66Þ

When N is very big, the calculation speed can be improved significantly.

15.3.5 GLS Algorithm in ECEF Coordinate System

The radar registration algorithms introduced in Sections 15.3.2–15.3.4 are all based on stereo-
graphic projection. They are widely used in engineering implementations thanks to their
advantages, such as simplicity and easy realization. These methods, however, also have disadvan-
tages, as listed below.

1. Although stereographic projection uses high-order approximation to improve accuracy, the earth
is an elliptical not a round sphere. Hence, errors are introduced into measurements in projection.

2. Data distortion will arise from stereographic projection. Stereographic conformal projection, for
example, can only ensure that the azimuth remains undistorted, but cannot warrant the same for
the range. As a result, the systematic errors will not be constants anymore but be correlated to the
measurements.

3. In the 2D public coordinate system, they can estimate only azimuth and range errors but not
elevation ones.

Therefore, radar registration technologies based on stereographic projection are usually used in
the case of short-range radars, while in the case of long-range radars we mainly adopt radar regis-
tration technologies based on ECEF coordinates (ECEF-GLS). The ECEF-GLS registration algo-
rithm introduced in this section is derived from the ECEF coordinate system.

15.3.5.1 Coordinate Transformation Relationship

Any point on earth can be denoted by geographical coordinates (L, λ,H), where L stands for
altitude, λ longitude, and H the height based on the reference elliptical sphere, namely elevation.
Suppose that the radar’s geographical coordinates are (L, λ,H) and the ECEF Descartes coordinates
are (xs, ys, zs). Then,

xs = C +Hsð ÞcosLs cosλs
ys = C +Hsð ÞcosLs sinλs
zs = C 1−e2ð Þ +Hs½ �sinLs

8>>><>>>: ð15:67Þ
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where e is the eccentricity of the earth, and C is defined as

C =
Eq

1−e2sin2Ls
� �1=2 ð15:68Þ

where Eq is the equator radius.
Suppose that the radar measurements are (rt, θt, ηt), with rt being the range, θt the azimuth, and

ηt the elevation. The radar measurements can be transformed into the local Descartes coordinate
system

xl = rt sinθt cosηt

yl = rt cosθt cosηt

zl = rt sinηt

8><>: ð15:69Þ

Equation (15.69) can be used to transform the target’s local Descartes coordinates to the ECEF,
namely,

xt

yt

zt

264
375=

xs

ys

zs

264
375+T ×

xl

yl

zl

264
375 ð15:70Þ

where (xt, yt, zt) is the ECEF coordinates, (xl, yl, zl) denotes local coordinates, and T the rotation
matrix, namely,

T =

−sinλs −sinLs cosλs cosLs cosλs

cosλs −sinLs sinλs cosLs sinλs

0 cosLs sinLs

264
375 ð15:71Þ

15.3.5.2 ECEF-GLS Registration Algorithm

Let (LA, λA,HA) and (LB, λB,HB) be the geographical coordinates of radars A and B, respectively,
and (xAs, yAs, zAs) and xBs,yBsð , zBsÞ the ECEF coordinates of the radars. Tk denotes the target at
time k. [rA(k), θA(k), ηA(k)] and [rB(k), θB(k), ηB(k)] are their measurements of target Tk, and
β = ΔrA,ΔθA,ΔηA,ΔrB,ΔθB,ΔηB½ �0 are their systematic errors, [Rr(k), θr(k), ηr(k)] and
R0
r kð Þ,θ0r kð Þ,�

η0r kð Þ� are their stochastic errors. r00A kð Þ,θ00A kð Þ,η00A kð Þ� �
and r00B kð Þ,θ00B kð Þ,η00B kð Þ� �

are
their measurements of target Tk when only considering systematic deviations but not stochastic

errors, and let Ψ kð Þ= r00A kð Þ,θ00A kð Þ,η00A kð Þ,r00B kð Þ,θ00B kð Þ,η00B kð Þ� �0
. Then, the coordinates of target Tk

in radars A and B’s local coordinate systems are

x0Al kð Þ= r00A kð Þ−ΔrA
� �

sin θ00A kð Þ−ΔθA
� �

cos η00A kð Þ−ΔηA
� �

y0Al kð Þ= r00A kð Þ−ΔrA
� �

cos θ00A kð Þ−ΔθA
� �

cos η00A kð Þ−ΔηA
� �

z0Al kð Þ= r00A kð Þ−ΔrA
� �

sin η00A kð Þ−ΔηA
� �

8>><>>: ð15:72Þ
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x0Bl kð Þ= r00B kð Þ−ΔrB
� �

sin θ00B kð Þ−ΔθB
� �

cos η00B kð Þ−ΔηB
� �

y0Bl kð Þ= r00B kð Þ−ΔrB
� �

cos θ00B kð Þ−ΔθB
� �

cos η00B kð Þ−ΔηB
� �

z0Bl kð Þ= r00B kð Þ−ΔrB
� �

sin η00B kð Þ−ΔηB
� �

8><>: ð15:73Þ

The targets’ local coordinates can be transformed, using (15.70), into ECEF coordinates:

xt kð Þ
yt kð Þ
zt kð Þ

264
375=

xAs

yAs

zAs

264
375 +TA ×

x0Al kð Þ
y0Al kð Þ
z0Al kð Þ

264
375 ð15:74Þ

xt kð Þ
yt kð Þ
zt kð Þ

264
375=

xBs

yBs

zBs

264
375 +TB ×

x0Bl kð Þ
y0Bl kð Þ
z0Bl kð Þ

264
375 ð15:75Þ

Let

f Ψ kð Þ,βð Þ = Δxk,Δyk,Δzk½ �T =
xAs

yAs

zAs

264
375+TA ×

x0Al kð Þ
y0Al kð Þ
z0Al kð Þ

264
375− xBs

yBs

zBs

264
375−TB ×

x0Bl kð Þ
y0Bl kð Þ
z0Bl kð Þ

264
375 ð15:76Þ

Conducting first-order Taylor expansion yields

f Ψ kð Þ,βð Þ≈ f Ψ0 kð Þ,β0ð Þ+∇β f Ψ0 kð Þ,β0ð Þ½ � β−β0ð Þ+∇Ψ f Ψ0 kð Þ,β0ð Þ½ � Ψ kð Þ−Ψ0 kð Þ½ � ð15:77Þ

where Ψ0(k) is radar SA and SB’s measurements (including systematic and stochastic errors,
uncorrected) of target t at the kth sampling time, and β0 is the initial estimate of systematic errors.
In the absence of any prior information, it can be assumed that β0 = 0,0,0,0,0,0½ �0.
Let XA kð Þ= x0Al kð Þ,y0Al kð Þ,z0Al kð Þ� �0

, XB kð Þ= x0Bl kð Þ,y0Bl kð Þ,z0Bl kð Þ� �0
. Then, ∇Ψ f Ψ0 kð Þ,β0ð Þ½ � and

∇β f Ψ0 kð Þ,β0ð Þ½ � are

∇Ψ f Ψ0 kð Þ,β0ð Þ½ �= TA × JA kð Þ, −TB × JB kð Þ½ �= k kð Þ ð15:78Þ

∇β f Ψ0 kð Þ,β0ð Þ½ � = TA ×LA kð Þ, −TB ×LB kð Þ½ � = ζ kð Þ ð15:79Þ

where

JA kð Þ =

∂ x0Al kð Þ� �
∂r00A kð Þ

∂ x0Al kð Þ� �
∂θ00A kð Þ

∂ x0Al kð Þ� �
∂η00A kð Þ

∂ y0Al kð Þ� �
∂r00A kð Þ

∂ y0Al kð Þ� �
∂θ00A kð Þ

∂ y0Al kð Þ� �
∂η00A kð Þ

∂ z0Al kð Þ� �
∂r00A kð Þ

∂ z0Al kð Þ� �
∂θ00A kð Þ

∂ z0Al kð Þ� �
∂η00A kð Þ

26666666664

37777777775
ð15:80Þ
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JB kð Þ =

∂ x0Bl kð Þ� �
∂r00B kð Þ

∂ x0Bl kð Þ� �
∂θ00B kð Þ

∂ x0Bl kð Þ� �
∂η00B kð Þ

∂ y0Bl kð Þ� �
∂r00B kð Þ

∂ y0Bl kð Þ� �
∂θ00B kð Þ

∂ y0Bl kð Þ� �
∂η00B kð Þ

∂ z0Bl kð Þ� �
∂r00B kð Þ

∂ z0Bl kð Þ� �
∂θ00B kð Þ

∂ z0Bl kð Þ� �
∂η00B kð Þ

26666666664

37777777775
ð15:81Þ

LA kð Þ=

∂ x0Al kð Þ� �
∂ΔrA

∂ x0Al kð Þ� �
∂ΔθA

∂ x0Al kð Þ� �
∂ΔηA

∂ y0Al kð Þ� �
∂ΔrA

∂ y0Al kð Þ� �
∂ΔθA

∂ y0Al kð Þ� �
∂ΔηA

∂ z0Al kð Þ� �
∂ΔrA

∂ z0Al kð Þ� �
∂ΔθA

∂ z0Al kð Þ� �
∂ΔηA

2666666664

3777777775
ð15:82Þ

LB kð Þ=

∂ x0Bl kð Þ� �
∂ΔrB

∂ x0Bl kð Þ� �
∂ΔθB

∂ x0Bl kð Þ� �
∂ΔηB

∂ y0Bl kð Þ� �
∂ΔrB

∂ y0Bl kð Þ� �
∂ΔθB

∂ y0Bl kð Þ� �
∂ΔηB

∂ z0Bl kð Þ� �
∂ΔrB

∂ z0Bl kð Þ� �
∂ΔθB

∂ z0Bl kð Þ� �
∂ΔηB

2666666664

3777777775
ð15:83Þ

Because for the same target f Ψ kð Þ,βð Þ= 0, 0, 0½ �0, suppose that Ψ kð Þ−Ψ0 kð Þ½ � and β−β0ð Þ are
small enough with negligible high-order components. Then,

ζ kð Þβ+ κ kð Þ∂Ψ kð Þ= ζ kð Þβ0− f Ψ0 kð Þ,β0ð Þ ð15:84Þ
where ∂Ψ kð Þ = Ψ kð Þ−Ψ0 kð Þð Þ. Ψ(k) considers only systematic errors but not stochastic ones, so

∂Ψ kð Þ= Rr kð Þ,θr kð Þ,ηr kð Þ,R0
r kð Þ,θ0r kð Þ,η0r kð Þ� � ð15:85Þ

The right half of (15.84) represents observations. For N times, we can construct a linear relation-
ship similar to that of Section 15.3.4:

Xβ + ξ =Y ð15:86Þ
It follows from the GLS that

β̂ = X0Σ−1
ξ X

� 	−1
X0Σ−1

ξ Y ð15:87Þ

cov β̂
� 	

= X0Σ−1
ξ X

� 	−1
ð15:88Þ

Similar to Section 15.3.4, in order to improve the calculation speed, (15.87) and (15.88) can be
decomposed into N small matrixes for calculation:

X0Σ−1
ξ X =

XN
k = 1

ζ 0 kð ÞΣ−1
ξ ζ kð Þ ð15:89Þ
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X0Σ−1
ξ Y =

XN
k = 1

ζ 0 kð ÞΣ−1
ξ ζ kð Þβ0− f Ψ kð Þ,β0ð Þ½ ð15:90Þ

15.3.6 Simulation Analysis

This section makes a simulation analysis of ECEF-LS and ECEF-GLS registration algorithms,
under the following conditions: radars A and B’s measurement accuracy is σρA = σρB =
50m, σθA = σθB = 0:5

�, σηA = σηB = 0:5
�; systematic errors are ΔRA =ΔRB = 1842 m in range,
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Figure 15.3 Radar A’s systematic error estimation curve of ECEF-LS algorithm
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ΔθA kð Þ=ΔθB kð Þ = 0:0087 rad in azimuth, and ΔηA kð Þ =ΔηB kð Þ= 0:0175 rad in elevation.
Radar A and B’s geographical coordinates are 68:923�, −137:2589�, 0:0275nmið Þ and
70:1714�, −124:7250�,ð 0:1182 nmiÞ, respectively. The earth model is the reference ellipse in
the World Geodetic System 1984, whose earth equator radius is Eq = 3443:9 nm and eccentricity
e2 = 0:006694. The two radar sampling intervals are both 1 s. We use radar A’s local coordinate
system as the reference coordinate system to generate a registration target track:

x0A kð Þ= 2000 + 200k
y0A kð Þ= −6000

z0A kð Þ= 3500

8><>: ð15:91Þ

Radar A and B’s systematic error estimate curve when adopting the ECEF-LS is shown in
Figures 15.3 and 15.4. Figures 15.5 and 15.6 are the corresponding curves of the ECEF-GLS
for radars A and B, of which the solid line represents the estimation result of systematic errors while
the dotted one shows the actual systematic errors.
Figures 15.3 and 15.4 show the following results.

1. When theECEF-LSalgorithm isused, the estimates of range, azimuth, andelevation errors are close
to the actual values of systematic errors after certain steps, and hence this algorithm can estimate
systematic errorseffectively.However, becauseECEF-LScalculation is rathercomplicated, theesti-
mated curves did not converge until 2000 steps, that is, the actual registration speed is very slow.

2. Figures 15.3(a) and 15.4(a) illustrate that the range error estimation results of the ECEF-LS are
not ideal.

Two results are suggested in Figures 15.5 and 15.6:

1. When the ECEF-GLS algorithm is employed, the estimates of range, azimuth, and elevation
errors are close to the actual values of systematic errors after certain steps, and thus this
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algorithm can estimate systematic errors effectively. Moreover, the estimated curves of
range, azimuth, and elevation errors converge at around 500 steps. In Figure 15.6, the
estimated curve converges after fewer steps, which shows that the registration speed of the
ECEF-GLS is much faster.

2. In Figures 15.5(a) and 15.6(a), the range error estimation effects of the ECEF-GLS are
better.
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Figure 15.4 Radar B’s systematic error estimation curve of ECEF-LS algorithm
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15.4 Mobile Radar Registration Algorithm

Usually, the fixed radar registration algorithms only consider range, azimuth, and elevation errors,
while the mobile ones also consider systematic errors in attitude angle of the mobile platforms and
hence registration is more difficult. At present, thorough research has been carried out on fixed radar
registration technology, but not yet on mobile radar registration technology. In this section we dis-
cuss mobile radar registration technology from four aspects: systematic error modeling, registration
based on cooperative targets, off-line batch processing estimation of systematic errors based on
non-cooperative targets, and dimension expansion filtering estimation of systematic errors based
on non-cooperative targets.

15.4.1 Modeling Method of Mobile Radar Systems

Mobile radar registration often involves measurement transformation between many different
coordinate systems with complicated formulas. Therefore, in this section, we discuss the modeling
methods of mobile radar systems in the presence of systematic errors.
Suppose that the system is composed of two 3D mobile radars. Suppose also that mobile radar

i i= 1,2ð Þ measures the same target simultaneously in the polar coordinate system, with range error

bri , azimuth error bθi , elevation error b
η
i , yaw angle error bϑi , pitch angle error b

ϕ
i , and roll angle error

bαi . Then again, assume that they are constant additive errors and can be expressed as

bi = bli
� �0

, bzi
� �0h i0

i= 1,2 ð15:92Þ

where bli = bri ,b
θ
i ,b

η
i

� �0
are measurement systematic errors and bzi = bϑi ,b

ϕ
i ,b

α
i

h i0
attitude angle

systematic errors.
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Based on the discrete, continuous, white noise acceleration model, the state of targets in uniform
motion is modeled as

X k + 1ð Þ=F kð ÞX kð Þ+V kð Þ ð15:93Þ

where the state vector X(k) and state transformation matrix F(k) at time k are defined as
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X kð Þ = x kð Þ _x kð Þ y kð Þ _y kð Þ z kð Þ _z kð Þ½ �0 ð15:94Þ

F kð Þ =

1 T 0 0 0 0

0 1 0 0 0 0

0 0 1 T 0 0

0 0 0 1 0 0

0 0 0 0 1 T

0 0 0 0 0 1

26666666664

37777777775
ð15:95Þ

with T the discrete time interval and V(k) zero-mean, white process noise with variance V(k),

Q= diag Qx,Qy,Qz

� � ð15:96Þ

Qx =
1
3T

3 1
2T

2

1
2T

2 T

" #eqx, Qy =
1
3T

3 1
2T

2

1
2T

2 T

" #eqy, Qz =
1
3T

3 1
2T

2

1
2T

2 T

" #eqz ð15:97Þ

where eqx, eqy, eqz is the power spectral density of the noise.
At time k, mobile radar i has measured the target range ri(k), azimuth θi(k), and elevation ηi(k),

which include measurement systematic errors bi and measurement noise Wi(k). Suppose that the
actual measurements without systematic errors are r0i kð Þ, θ0i kð Þ, η0i kð Þ, where Wi(k) is zero-mean,

white measurement noise with variance R W ið Þ= diag σ2ri,σ
2
θi,σ

2
ηi

� 	
, with measurement systematic

errors and measurement noise being independent of each other. Hence, the measurement equation
of mobile radar i is
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Zidp kð Þ =
ri kð Þ
θi kð Þ
ηi kð Þ

264
375 =Z0

idp kð Þ+ bli +W i kð Þ =
r0i kð Þ + bri +wr

i

θ0i kð Þ+ bθi +wθ
i

η0i kð Þ+ bηi +wη
i

264
375 ð15:98Þ
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Transforming polar coordinate measurements into the rectangular coordinate system yields

Zid kð Þ =
xid kð Þ
yid kð Þ
zid kð Þ

264
375= h−1 r0i kð Þ+ bri +wr

i ,θ
0
i kð Þ + bθi +wθ

i ,η
0
i kð Þ + bηi +wη

i

� � ð15:99Þ

where

h x,y,zð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + z2

p
, arctan

y

x

� 	
, arctan

zffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p !" #0
ð15:100Þ

h−1 r,θ,ηð Þ= r cosθcosη, r sinθcosη, r sinη½ �0 ð15:101Þ

Suppose that the platform of mobile radar i at time k has attitude angle with systematic errors

vi kð Þ= ϑi kð Þ,ϕi kð Þ,αi kð Þ½ �0 and that without systematic errors, v0i kð Þ= ϑ0i kð Þ,ϕ0
i kð Þ,α0i kð Þ� �0

. As
shown in Figure 15.7, according to the converting relationship between ship/airborne and END
coordinate systems, the measurements obtained by mobile radar i in its carrier’s coordinate system
can be converted to END as follows:

Zil kð Þ =
xil kð Þ
yil kð Þ
zil kð Þ

264
375=A vi kð Þð Þ

xid kð Þ
yid kð Þ
zid kð Þ

264
375 =A v0i kð Þ+ bzi

� � xid kð Þ
yid kð Þ
zid kð Þ

264
375 ð15:102Þ
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where

A ϑ,ϕ,αð Þ=AheadApitchAroll

=

cosϑcosα+ sinϑsinϕsinα sinϑcosϕ −cosϑsinα+ sinϑsinϕcosα

−sinϑcosα+ cosϑsinϕsinα cosϑcosϕ sinϑsinα+ cosϑsinϕcosα

cosϕsinα −sinϕ cosϕcosα

2664
3775 ð15:103Þ

Ahead =

cosϑ sinϑ 0

−sinϑ cosϑ 0

0 0 1

264
375, Apitch =

1 0 0

0 cosϕ sinϕ

0 −sinϕ cosϕ

264
375, Aroll =

cosα 0 −sinα

0 1 0

sinα 0 cosα

264
375

ð15:104Þ

Suppose that the geographical coordinates of mobile radar i at time k are Xisp kð Þ=
Li kð Þ,Bi kð Þ,Hi kð Þ½ �0 and its coordinates in the earth coordinate system are Xis kð Þ=
xis kð Þ,yis kð Þ,zis kð Þ½ �0. According to the converting relationship between the END and ECEF coord-
inate systems, the measurement of mobile radar i in the END coordinate system can be converted to
ECEF, which yields
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Figure 15.7 The rotation relationship between the END and carrier coordinate systems
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Zig kð Þ =
xig kð Þ
yig kð Þ
zig kð Þ

264
375 =

xis kð Þ
yis kð Þ
zis kð Þ

264
375 +T Xisp kð Þ� �

×

xil kð Þ
yil kð Þ
zil kð Þ

264
375 ð15:105Þ

where Xis(k) can be obtained from (15.67) and T from (15.71).
Combining (15.99), (15.102), and (15.105) yields the measurements of mobile radar i in the

ECEF coordinate system:

Zig kð Þ = xis kð Þ, yis kð Þ, zis kð Þ½ �0 +T Xisp kð Þ� �
A v0i kð Þ+ bzi
� �

h−1 ri kð Þ,θi kð Þ,ηi kð Þð Þ ð15:106Þ

Hereafter, according to (15.106), we derive the expression of Zidp(k) about X(k). If mobile radar
i has no systematic error and no measurement noise, then Zig kð Þ=X kð Þ, namely,

X kð Þ= xis kð Þ, yis kð Þ, zis kð Þ½ �0 +T Xisp kð Þ� �
A v0i kð Þ� �

h−1 r0i kð Þ,θ0i kð Þ,η0i kð Þ� � ð15:107Þ

From (15.107) it follows that

Zidp kð Þ =h A vi kð Þ−bzi
� �−1

T Xisp kð Þ� �−1
X kð Þ−Xis kð Þð Þ

� 	
+ bli +W i kð Þ ð15:108Þ

From the above, we know that the whole system is composed of the target state transformation
equation (15.93) and the radar measurement equation (15.108), and that it involves conversion
between three coordinate systems. The target state transformation is modeled in the earth coordinate
system and the radar measurement is modeled in its carrier coordinate system.

15.4.2 Mobile Radar Registration Algorithm Based on Cooperative Targets

Given the target’s position (e.g., the position of our ships given by the AIS, or the position of our
civil planes given by the ADS), a single radar can estimate the systematic errors based on the dif-
ference in target position information between its own measurements and the information reported
by the data linkage.
Suppose that the real target state is X kð Þ= x kð Þ y kð Þ z kð Þ½ �0, and the target position gained

through data linkages is �X kð Þ= �x kð Þ �y kð Þ �z kð Þ½ �0. Then, their relationship can be expressed as

X kð Þ= �X kð Þ+Wx kð Þ ð15:109Þ

whereWx(k) is the deviation between the actual movement position of the target and that measured
by navigation equipment. Here, we assume zero-mean, Gaussian white noise with covari-

ance Rx Wxð Þ = diag σ2x ,σ
2
y ,σ

2
z

� 	
.

Suppose that at time k, the mobile radar has geographical coordinatesXsp kð Þ = L kð Þ,B kð Þ,H kð Þ½ �0,
coordinates in the earth coordinate system Xs kð Þ= xs kð Þ,ys kð Þ,zs kð Þ½ �0, attitude angle with errors
v kð Þ= ϑ kð Þ,ϕ kð Þ,α kð Þ½ �0, and attitude angle without errors v0 kð Þ = ϑ0 kð Þ,ϕ0 kð Þ,α0 kð Þ½ �0. Then, from
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(15.108) the mobile radar measurement equation in its carrier coordinate system is obtained as
follows:

Z kð Þ= r kð Þ θ kð Þ η kð Þ½ �0 = h A−1 v kð Þ−bzð ÞT −1 Xsp kð Þ� �
X kð Þ−Xs kð Þð Þ� �

+ bl +Wz kð Þ ð15:110Þ

where h �ð Þ is given by (15.100), A by (15.103), and T by (15.71). Wz(k) is the mobile radar

zero-mean, Gaussian white noise with covariance Rz Wzð Þ = diag σ2r ,σ
2
θ,σ

2
η

� 	
.

From the definition of the ML estimate, we know that theML estimate of mobile radar systematic
errors is

b̂ML = argmax
b

p Z 1 :Nð Þjbð Þ ð15:111Þ

where

p Z 1 :Nð Þjbð Þ =
ðY

k

p Z kð ÞjX kð Þ,bð Þp X 1 :Nð Þð ÞdX 1 :Nð Þ ð15:112Þ

Because the airway information of the target is known, by combining (15.109), the target state
vectors (X(k)) at different times can, given the target’s airway position �X kð Þ, be considered inde-
pendent of each other. Then,

p X 1 :Nð Þð Þ =
YN
k=1

p X kð Þð Þ ð15:113Þ

where p(X(k)) is the Gaussian PDF, with mean �X kð Þ and variance R(Wx).
Using (15.113) in (15.111) yields

b̂ML = argmax
b

Y
k

p Z kð Þjbð Þ ð15:114Þ

where

p Z kð Þjbð Þ=
ð
p Z kð ÞjX kð Þ,bð Þp X kð Þð ÞdX kð Þ ð15:115Þ

From (15.110) it follows that Z(k) is the nonlinear function of X(k) while (15.115) also requires
Z(k) integration on X(k). Hence, we need to linearize Z(k).
Let g X kð Þ,bzð Þ= u kð Þ v kð Þ m kð Þ½ �0 =A−1 v kð Þ−bzð ÞT −1 Xsp kð Þ� �

X kð Þ−Xs kð Þð Þ andwriteh A−1
�

v kð Þ−bzð ÞT −1 Xsp kð Þ� �
X kð Þ−Xs kð Þð ÞÞ in the compound function form. Thus,

h g X kð Þ,bzð Þð Þ = h A−1 v kð Þ−bzð ÞT −1 Xsp kð Þ� �
X kð Þ−Xs kð Þð Þ� � ð15:116Þ

For the multi-variable compound function (15.116), solving for the partial derivatives ofX(k) and
bz at X kð Þ=X0 kð Þ,bz = bz0, respectively, with the time mark k cancelled for convenience, yields
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F X0,b
z
0

� �
=
∂h g X,bzð Þð Þ

∂X

����
X =X0,b

z = bz0

=
∂h gð Þ
∂g

� ∂g X,bzð Þ
∂X

����
X =X0,b

z = bz0

=
∂h gð Þ
∂u

∂h gð Þ
∂v

∂h gð Þ
∂m

� 
� ∂g X,bzð Þ

∂x

∂g X,bzð Þ
∂y

∂g X,bzð Þ
∂z

� ����
X =X0,b

z = bz0

ð15:117Þ

G X0,b
z
0

� �
=
∂h g X,bzð Þð Þ

∂bz

����
X =X0,b

z = bz0

=
∂h gð Þ
∂g

� ∂g X,bzð Þ
∂bz

����
X =X0,b

z = bz0

=
∂h gð Þ
∂u

∂h gð Þ
∂v

∂h gð Þ
∂m

� 
� ∂g X,bzð Þ

∂bϑ
∂g X,bzð Þ

∂bϕ
∂g X,bzð Þ

∂bα

� ����
X =X0,b

z = bz0

ð15:118Þ

where

∂h gð Þ
∂u

∂h gð Þ
∂v

∂h gð Þ
∂m

� 
=

uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 + v2 +m2

p vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 + v2 +m2

p mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 + v2 +m2

p
−vffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 + v2

p uffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 + v2

p 0

−umffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 + v2

p
u2 + v2 +m2ð Þ

−vmffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 + v2

p
u2 + v2 +m2ð Þ

u2 + v2ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 + v2

p
u2 + v2 +m2ð Þ

266666664

377777775
ð15:119Þ

∂g X,bzð Þ
∂x

∂g X,bzð Þ
∂y

∂g X,bzð Þ
∂z

� 
=A−1 v kð Þ−bzð ÞT −1 Xsp kð Þ� �

∂g X,bzð Þ
∂bϑ

∂g X,bzð Þ
∂bϕ

∂g X,bzð Þ
∂bα

� 
=
∂Aroll bα−αð ÞApitch bϕ−ϕ

� �
Ahead bϑ−ϑ

� �
∂bz

T Xsp

� �−1
X−Xsð Þ

ð15:120Þ

=

Aroll bα−αð ÞApitch bϕ−ϕ
� �∂Ahead bϑ−ϑ

� �
δbϑ

T Xsp

� �−1
X−Xsð Þ

� �0

Aroll bα−αð Þ∂Apitch bϕ−ϕ
� �
δbϕ

Ahead bϑ−ϑ
� �

T Xsp

� �−1
X−Xsð Þ

� �0

∂Aroll bα−αð Þ
δbα

Apitch bϕ−ϕ
� �

Ahead bϑ−ϑ
� �

T Xsp

� �−1
X−Xsð Þ

� �0

26666666664

37777777775

0

ð15:121Þ

and

∂Ahead bϑ−ϑ
� �
∂bϑ

=

−sin bϑ−ϑ
� �

cos bϑ−ϑ
� �

0

−cos bϑ−ϑ
� �

sin bϑ−ϑ
� �

0

0 0 0

264
375 ð15:122Þ

∂Apitch bϕ−ϕ
� �
∂bϕ

=

0 0 0

0−sin bϕ−ϕ
� �

cos bϕ−ϕ
� �

0−cos bϕ−ϕ
� �

−sin bϕ−ϕ
� �

264
375 ð15:123Þ
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∂Aroll bα−αð Þ
∂bα

=

−sin bα−αð Þ 0 −cos bα−αð Þ
0 0 0

cos bα−αð Þ 0 −sin bα−αð Þ

264
375 ð15:124Þ

Combining (15.117) and (15.118), and carrying out first-order Taylor expansion of (15.110) at

the target fairway position �X kð Þ and the initial system error estimate b̂0, gives

Z kð Þ≈h g �X kð Þ, b̂z0
� 	� 	

+ b̂
l

0

+F �X kð Þ, b̂z0
� 	

X kð Þ− �X kð Þð Þ+G �X kð Þ, b̂z0
� 	

bz− b̂
z

0

� 	
+ I3 × 3 bl− b̂

l

0

� 	
+Wz kð Þ

ð15:125Þ

where I3 × 3 is the 3-rank unit matrix.
Writing (15.125) in compact form yields

Z kð Þ≈h g �X kð Þ, b̂z0
� 	� 	

+ b̂
l

0 +F �X kð Þ, b̂z0
� 	

X kð Þ− �X kð Þð Þ+Gb �X kð Þ, b̂z0
� 	

b− b̂0
� 	

+Wz kð Þ
ð15:126Þ

where Gb �X kð Þ, b̂z0
� 	

= I3 × 3 G �X kð Þ, b̂z0
� 	h i

.

From (15.125), we know that p Z kð Þjbð Þ can be approximated as a Gaussian PDF with mean �Z kð Þ
and variance S(k):

�Z kð Þ= h g �X kð Þ, b̂z0
� 	� 	

+ b̂
l

0 +Gb �X kð Þ, b̂z0
� 	

b− b̂0
� 	

ð15:127Þ

S kð Þ=F �X kð Þ, b̂z0
� 	

Rx Wxð ÞF �X kð Þ, b̂z0
� 	0

+Rz Wzð Þ ð15:128Þ

Hence, JDF p Z 1 :Nð Þjbð Þ is also Gaussian, with mean and variance

�Z 1ð Þ
..
.

�Z Nð Þ

2664
3775=

h g �X 1ð Þ, b̂z0
� 	� 	

+ b̂
l

0

..

.

h g �X Nð Þ, b̂z0
� 	� 	

+ b̂
l

0

266664
377775+

Gb �X 1ð Þ, b̂z0
� 	

..

.

Gb �X Nð Þ, b̂z0
� 	

266664
377775 b− b̂0
� 	

ð15:129Þ

S= block-diag S1,…,SNð Þ ð15:130Þ

where block-diag �ð Þ is the block-diagonal matrix, and the same below.
According to the standard formula of the Gaussian-distributedML estimate, we know that theML

estimate of systematic errors is

b̂ML =

Gb �X 1ð Þ, b̂z0
� 	

..

.

Gb �X Nð Þ, b̂z0
� 	

2666664

3777775
0

S−1

Gb �X 1ð Þ, b̂z0
� 	

..

.

Gb �X Nð Þ, b̂z0
� 	

2666664

3777775

0BBBBB@

1CCCCCA

−1

Gb �X 1ð Þ, b̂z0
� 	

..

.

Gb �X Nð Þ, b̂z0
� 	

2666664

3777775
0

S−1

Z 1ð Þ−h g �X 1ð Þ, b̂z0
� 	� 	

− b̂
l

0 +Gb �X 1ð Þ, b̂z0
� 	

b̂0

..

.

Z Nð Þ−h g �X Nð Þ, b̂z0
� 	� 	

− b̂
l

0 +Gb �X Nð Þ, b̂z0
� 	

b̂0

2666664

3777775

= b̂0 +
XN
j = 1

Gb �X jð Þ, b̂z0
� 	0

S−1
j Gb �X jð Þ, b̂z0

� 	" #−1XN
k = 1

Gb �X kð Þ, b̂z0
� 	0

S−1
k Z kð Þ−h g �X kð Þ, b̂z0

� 	� 	
− b̂

l

0

h i ð15:131Þ
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From the above process it follows that (15.127), (15.128), and (15.131) constitute the ML esti-

mate of mobile radar systematic errors, and that a replacement of b̂0 with b̂ML will have the recursive
estimation of systematic errors realized.

15.4.3 Mobile Radar Maximum Likelihood Registration Algorithm

In this section we first introduce the typical batch processing maximum likelihood registration
(MLR) algorithm [369]. Then, according to the mobile radar measurement equation, we use the
MLR algorithm to solve the mobile radar registration problem and hence get the maximum likeli-
hood registration of mobile radar (MLRM) algorithm.

15.4.3.1 MLR Algorithm

The MLR is a batch processing algorithm. It makes combined estimation of target states and sys-
tematic errors, but is only suitable for fixed radar netting systems. Hereafter, we present a detailed
introduction to the MLR algorithm.
Consider a system consisting of n fixed radars, each of which can make measurement on all tar-

gets in the public area, therefore obtaining subsets of three kinds of measurement: range, azimuth,
and elevation. Specifically, the radar can be any type (e.g., 3D, 2D, or passive radar) with accurately
known position. For the whole radar system, its measurement equation with systematic errors can be
expressed as

z kð Þ= h x kð Þð Þ+ β+w kð Þ ð15:132Þ

where k = 1,…,N indicates measurements of different targets at the same time, and measurements of

the same target at different discrete times. z kð Þ= z1 kð Þ0,z2 kð Þ0,…,zn kð Þ0� �0
represents the vector

composed of measurements by n radars at label k. h x kð Þð Þ = h1 x kð Þð Þ0,h2 x kð Þð Þ0,…,hn x kð Þð Þ0� �0
denotes the vector composed of the given nonlinear measurement equation of n radars. x(k) is
the real position vector of the target. β= β1

0,β2
0,…,βn

0½ �0 is the radar systematic errors vector.

w kð Þ = w1 kð Þ0,w2 kð Þ0,…,wn kð Þ0� �0
is the radar randommeasurement noise vector. Systematic errors

βi are fixed and time-invariant, and independent of target state x(k). Measurement noise wi(k) is
zero-mean, Gaussian white noise with covariance

P
zi , and the measurement noise between radars

is independent.
Given measurement Z= z kð Þ; k = 1,…,Nf g, the problem to be solved is to get an estimate of the

systematic errors β, and use the estimate β̂ to modify subsequent measurements with systematic
errors. Since the target state x(k) in (15.132) is also unknown, the MLR algorithm needs to make
combined estimation of the systematic errors β and the target track X = x kð Þ; k = 1,…,Nf g. It does
this through maximizing the likelihood function p ZjX,βð Þ, namely,

X̂, β̂
n o

= argmax
X,β

p z 1ð Þ,z 2ð Þ,…,z Nð ÞjX,βð Þ = argmax
β

YN
k = 1

max
x kð Þ

p z kð Þjx kð Þ,βð Þ
( )

ð15:133Þ

Because the measurement noise sequence wi(k) is white noise and the noises at different times are
independent of each other, (15.133) can be obtained. Therefore, solving for X which maximizes

390 Radar Data Processing with Applications



p ZjX,βð Þ is equivalent to solving for x kð Þ, k = 1,…,N which maximizes p z kð Þjx kð Þ,βð Þ and hence

its product
YN
k = 1

p z kð Þjx kð Þ,βð Þ. We first estimate x̂ kð Þ to maximize p z kð Þjx kð Þ,βð Þ, then substitute the

estimated value β̂ in the preceding step for β.
Under the assumption that the measurement noise between radars is independent, mark k is omit-

ted for simplicity:

p z1,z2,…,znjx,βð Þ=
Yn
i= 1

p zijx,βið Þ=K1 exp −
1
2

Xn
i= 1

zi−�zið Þ0Σ−1
zi zi−�zið Þ

( )
ð15:134Þ

where �zi = hi xð Þ+ βi. Now, we use the following equation to project the measurement zi to the target
state space, namely to solve for the target state by zi:

xi =h
−1
i zi−βið Þ, i= 1,2,…,N ð15:135Þ

Suppose that radar i is passive and then we know that xi cannot be solved for by zi. At this time, xi
can be solved for by radar i combined with another passive or active radar. From (15.135) it follows
that xi is a random variable, and we need to solve for the PDF of xi. By first-order Taylor expansion
of hi, xi can also be denoted approximately as a Gaussian random variable and the inverse of its
covariance is

Σ−1
xi =Hi

0Σ−1
zi Hi ð15:136Þ

where

Hi = ∇xhi xð Þ0� �0
=

∂hi1
∂x1

∂hi1
∂x2

� � � ∂hi1
∂xp

∂hi2
∂x1

∂hi2
∂x2

� � � ∂hi2
∂xp

..

. ..
. . .

. ..
.

∂hiqi
∂x1

∂hiqi
∂x2

� � � ∂hiqi
∂xp

2666666666664

3777777777775
ð15:137Þ

Hi is the Jacobian matrix of hi �ð Þ about x, p is the dimension of the target state, and qi is the
dimension of the measurement function hi.
Hence, (15.134) can be expressed approximately in the target state space as

p z1,z2,…,znjx,βð Þ≈K2 exp −
1
2

Xn
i= 1

x−xið Þ0Σ−1
xi x−xið Þ

( )

=K2 exp −
1
2

x0
Xn
i= 1

Σ−1
xi

" #
x−2x0

Xn
i= 1

Σ−1
xi xi

" #
+
Xn
i= 1

x0Σ−1
xi xi

" # !( )
ð15:138Þ
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Using the matrix equation

x0Ax−2x0B+B0A−1B= x−A−1B
� �0

A x−A−1B
� � ð15:139Þ

to break down (15.138) yields

p z1,z2,…,znjx,βð Þ≈K2 exp −
1
2
x− x̂ð Þ0

Xn
i= 1

Σ−1
xi

" #
x− x̂ð Þ

(

−
1
2

Xn
i= 1

x0Σ−1
xi xi

" #
−
Xn
i= 1

Σ−1
xi xi

" #0 Xn
i= 1

Σ−1
xi

" #−1 Xn
i= 1

Σ−1
xi xi

" #0@ 1A9=;
ð15:140Þ

where

x̂ =
Xn
i= 1

Σ−1
xi

" #−1 Xn
i= 1

Σ−1
xi xi

" #
ð15:141Þ

From (15.140) it follows that the likelihood function p z1,z2,…,znjx,βð Þ reaches its maximum
when x= x̂ and hence that x̂ is the ML estimate of the target state at time k. It also follows from
(15.141) that x̂ is the fusion result of measurements from different radars at time k. Hereafter,
we estimate the systematic errors β.
Substitute x = x̂ into (15.140) to give

p z1,…,znjx̂,βð Þ=K exp −
1
2

Xn
i= 1

x0Σ−1
xi xi

" #
−
Xn
i= 1

Σ−1
xi xi

" #0 Xn
i= 1

Σ−1
xi

" #−1 Xn
i= 1

Σ−1
xi xi

" #0@ 1A8<:
9=;

=K exp −
1
2
X0 kð ÞΣ−1 kð ÞX kð Þ

� �
ð15:142Þ

where X kð Þ= x01 kð Þ,…,x0n kð Þ� �0
and K = 1= 2πΣ kð Þj j1=2 is a normalization constant:

Σ−1 kð Þ = block-diag Σ−1
x1 ,Σ

−1
x2 ,…,Σ−1

xn

� 	
− Σ−1

xi

Xn
i= 1

Σ−1
xi

" #−1

Σ−1
xj

8<:
9=;

ij

264
375 ð15:143Þ

Disturb xi, βi in (15.135) and make linear approximations at x0i, β0i. Then, this becomes

xi−x0i≈H−L
i βi−β0ið Þ ð15:144Þ

where Hi is defined as shown in (15.137) and the superscript −L denotes the left inverse of the
matrix.
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Using (15.144), X(k) can be expressed as

X kð Þ≈

x01 kð Þ
x02 kð Þ

..

.

x0n kð Þ

2666664

3777775+

H−L
1 kð Þβ01

H−L
2 kð Þβ02
..
.

H−L
n kð Þβ0n

2666664

3777775−
H−L

1 kð Þβ1
H−L

2 kð Þβ2
..
.

H−L
n kð Þβn

2666664

3777775 ð15:145Þ

Write (15.145) in compact form as

X kð Þ≈ �X0 kð Þ−Q kð Þβ ð15:146Þ

where

Q kð Þ = block-diag H−L
1 kð Þ,H−L

2 kð Þ,…,H−L
n kð Þ� � ð15:147Þ

�X0 kð Þ =X0 kð Þ+Q kð Þβ0 ð15:148Þ

and X0 kð Þ = x001 kð Þ,x002 kð Þ,…,x00n kð Þ� �0
is the initial state estimate of the target, β0 = β01

0,½
β002,…,β0n

0�0 is the initial estimate of systematic errors.
Estimate that β’s maximizing likelihood function equation (15.140) is equivalent to its maximiz-

ing the product of N likelihood functions equation (15.142), namely,

β̂ = argmax
β

p z1,z2,…,znjX̂,β
� �

= argmax
β

YN
k = 1

Kk exp −
1
2
X0 kð ÞΣ−1 kð ÞX kð Þ

� �
ð15:149Þ

Using (15.139) and (15.146), p z1,z2,…,znjX̂,β
� �

can be written as

p z1,…,znjX̂,β
� �

= �K exp −
1
2

β− β̂
� 	0 XN

k = 1

Q0 kð ÞΣ−1 kð ÞQ kð Þ
" #

β− β̂
� 	

+C

 !( )
ð15:150Þ

where C is a constant which is irrelevant to β and �K is a normalization constant:

β̂ =
XN
k = 1

Q0 kð ÞΣ−1 kð ÞQ kð Þ
" #−1 XN

k = 1

Q0 kð ÞΣ−1 kð Þ�X0 kð Þ
" #

ð15:151Þ

From (15.150) it follows that when β= β̂, the likelihood function p z1,z2,…,znjX̂,β
� �

reaches its

maximum value. Hence, β̂ is the maximum likelihood estimate of β.

15.4.3.2 MLRM Algorithm

From the measurement equation (15.132) of the MLR algorithm assumption we know that h is only
the function of target state x(k) and that it is not related to systematic errors. Systematic errors are
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only constant additive variables. From the mobile radar measurement equation (15.108), we know
that h is the function of target state and attitude angle systematic errors, and that systematic errors
can be divided into attitude angle systematic errors and measurement systematic errors. Therefore,
the measurement model assumed by the MLR algorithm is not suitable for the case of mobile radars.
Hence, we first generalize the MLR measurement model. Suppose that

g X kð Þ,bzi
� �

=A vi kð Þ−bzi
� �−1

T Xisp kð Þ� �−1
X kð Þ−Xis kð Þð Þ ð15:152Þ

Then (15.108) can be rewritten as

Zidp kð Þ =hi g X kð Þ,bzi
� �� �

+ bli +W i kð Þ ð15:153Þ

Therefore, the generalized measurement model of the MLR becomes

z kð Þ =h g x kð Þ,β2� �� �
+ β1 +w kð Þ ð15:154Þ

After drilling down into the MLR, we have found that using (15.154) as its measurement model
has no influence on the derivations from (15.133)–(15.143). That is to say, given the estimates of
systematic errors, the estimation of the target state will not be affected but the estimation of the
systematic errors will be affected deeply, and deductions need to be done again with (15.144).
Suppose that x0i kð Þ, β10i, β20i satisfy (15.154). Now, make a small disturbance of (15.154) around

x0i kð Þ, β10i, β20i to obtain xi kð Þ, β1i , β2i and xi kð Þ, β1i , β2i , which also satisfy (15.154). Then,

hi g xi kð Þ,β2i
� �� �

+ β1i = hi g x0i kð Þ,β10i
� �� �

+ β20i ð15:155Þ

First-order Taylor expansion of (15.155) at x0i kð Þ, β20i yields

hi g xi kð Þ,β2i
� �� �

+ β1i ≈hi g x0i kð Þ,β10i
� �� �

+Hix xi kð Þ−x0i kð Þð Þ +Hiβ β2i −β
2
0i

� �
+ β1i ð15:156Þ

Combining (15.155) and (15.156) yields

xi kð Þ−x0i kð Þ≈H−L
ix Hiβ β20i−β

2
i

� �
+H−L

ix β10i−β
1
i

� � ð15:157Þ

Write (15.157) in compact form as

xi−x0i≈H−L
i βi−β0ið Þ ð15:158Þ

where β = β1
0
,β2

0h i0
, H−L

i = H−L
ix ,H−L

ix Hiβ

� �
.

We can see that (15.158) and (15.144) have identical forms, and that (15.154) has no influence on
the derivations of (15.145)–(15.151). Therefore, successive calculations can be done according to
the original formula of the MLR algorithm.
Hereafter, we solve for the inverse of (15.152) with A, T, and the derivative of the compound

function.
By the matrix inversion formula, the inverse of A, T can be obtained as follows:

A−1 ϑ,ϕ,αð Þ=A−1
roll αð ÞA−1

pitch ϕð ÞA−1
head ϑð Þ =Aroll −αð ÞApitch −ϕð ÞAhead −ϑð Þ =A0 ϑ,ϕ,αð Þ ð15:159Þ

T −1 Ls,Bsð Þ=T0 Ls,Bsð Þ ð15:160Þ
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Hereafter, we solve for the Jacobian matrix of hi about x and the Jacobian matrix about the
attitude angle systematic errors. Suppose that

g X kð Þ,bzi
� �

=

ui

si

mi

264
375=A vi−b

z
i

� �−1
T Xisp

� �−1
X−Xisð Þ ð15:161Þ

From the compound function derivation formula, we have

Hix = ∇xhi xð Þ0� �0
=

∂hi1
∂ui

∂hi1
∂si

∂hi1
∂mi

∂hi2
∂ui

∂hi2
∂si

∂hi2
∂mi

∂hi3
∂ui

∂hi3
∂si

∂hi3
∂mi

266666664

377777775

∂ui
∂x

∂ui
∂y

∂ui
∂z

∂si
∂x

∂si
∂y

∂si
∂z

∂mi

∂x

∂mi

∂y

∂mi

∂z

266666664

377777775
ð15:162Þ

Hib = ∇bzi hi xð Þ0
h i0

=

∂hi1
∂ui

∂hi1
∂si

∂hi1
∂mi

∂hi2
∂ui

∂hi2
∂si

∂hi2
∂mi

∂hi3
∂ui

∂hi3
∂si

∂hi3
∂mi

266666664

377777775

∂ui
∂bϑi

∂ui

∂bϕi

∂ui
∂bαi

∂si
∂bϑi

∂si

∂bϕi

∂si
∂bαi

∂mi

∂bϑi

∂mi

∂bϕi

∂mi

∂bαi

2666666664

3777777775
ð15:163Þ

where

∂hi1
∂ui

∂hi1
∂si

∂hi1
∂mi

∂hi2
∂ui

∂hi2
∂si

∂hi2
∂mi

∂hi3
∂ui

∂hi3
∂si

∂hi3
∂mi

266666664

377777775
=

uiffiffiffi
R

p siffiffiffi
R

p miffiffiffi
R

p
−siffiffiffiffiffiffiffiffiffiffiffiffiffi
u2i + s

2
i

p uiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2i + s

2
i

p 0

−uimi

R
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2i + s

2
i

p −simiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2i + s

2
i

p
R

u2i + s
2
iffiffiffiffiffiffiffiffiffiffiffiffiffi

u2i + s
2
i

p
R

266666664

377777775
,R= u2i + s

2
i +m

2
i

� � ð15:164Þ

∂ui
∂x

∂ui
∂y

∂ui
∂z

∂si
∂x

∂si
∂y

∂si
∂z

∂mi

∂x

∂mi

∂y

∂mi

∂z

266666664

377777775
= A vi−b

z
i

� �−1
T Xisp

� �−1 ð15:165Þ

∂ui
∂bϑi

∂ui

∂bϕi

∂ui
∂bαi

∂si
∂bϑi

∂si

∂bϕi

∂si
∂bαi

∂mi

∂bϑi

∂mi

∂bϕi

∂mi

∂bαi

2666666664

3777777775
=
∂A vi−b

z
i

� �−1
T Xisp

� �−1
∂bzi

X−Xisð Þ

=
∂Aroll bαi −α

� �
Apitch bϕi −ϕ

� 	
Ahead bϑi −ϑ

� �
T Xisp

� �−1
∂bzi

X−Xisð Þ

ð15:166Þ
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∂Aroll bαi −α
� �

Apitch bϕi −ϕ
� 	

Ahead bϑi −ϑ
� �

∂bzi
T Xisp

� �−1
X−Xisð Þ

=

Aroll bαi −α
� �

Apitch bϕi −ϕ
� 	∂Ahead bϑi −ϑ

� �
∂bϑi

T Xisp

� �−1
X−Xisð Þ

� �0

Aroll bαi −α
� �∂Apitch bϕi −ϕ

� 	
∂bϕi

Ahead bϑi −ϑ
� �

T Xisp

� �−1
X−Xisð Þ

0@ 1A0

∂Aroll bαi −α
� �
∂bαi

Apitch bϕi −ϕ
� 	

Ahead bϑi −ϑ
� �

T Xisp

� �−1
X−Xisð Þ

� �0

26666666666664

37777777777775

0

ð15:167Þ

where
∂Ahead bϑi −ϑ

� �
∂bϑi

is defined by (15.122),
∂Apitch bϕi −ϕ

� 	
∂bϕi

by (15.123), and
∂Aroll bαi −α

� �
∂bαi

by (15.124).
Adopting the formula above and combining the system given in the former section, the detailed

process of the MLRM algorithm to solve the mobile radar registration is listed as follows.

1. Set the initial estimate of the systematic errors as b̂ = b̂01, b̂02
h i0

= 0I.

2. For radar i i= 1,2ð Þ, use the current estimate b̂0 = b̂001, b̂002
h i0

of the systematic errors and accord-

ing to (15.108), project all measurements to the state space. Here, we omit the time tag
k = 1,2,…,N for convenience and obtain

xi =T Xisp

� �
A vi− b̂

z

0i

� 	
h−1 Zidp− b̂

l

0i

� 	
+Xis ð15:168Þ

where Xis, Xisp denote the positions of radar i in the earth coordinate system and geographical
coordinate system, respectively, at time k, and they are accurate and known. vi denotes radar i’s

attitude angle measurement value with systematic errors at time k and is already known. b̂
l

0i, b̂
z

0i
are radar i’s systematic error estimates already obtained and are already known. Zidp denotes
radar i’s measurement of the target at time k and is already known.

3. Substitute xi, b̂0i into (15.162) and solve for Hix; and into (15.163) for Hib.
4. Substituting Hix and Hib into (15.158) yields H−L

i .
5. Substituting H−L

i into (15.147) gives Q(k).

6. Inserting xi, b̂0i, Q kð Þ into (15.148) gives �X0 kð Þ.
7. Using Hix, R(Wi) in (15.136) yields Σ−1

xi .

8. Inserting Σ−1
xi into (15.143) yields Σ−1 kð Þ.

9. Substituting �X0 kð Þ, Q kð Þ, Σ−1 kð Þ into (15.151), we obtain b̂.

10. Judge whether the estimate b̂ is convergent or not according to b̂− b̂0
��� ��� ≤ ε, where �k k denotes

the number of normal forms of the vector and can be chosen discretionarily. ε denotes the
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acceptance threshold. If the estimate b̂ is already convergent, continue to go through the

process, otherwise, let b̂0 = b̂ and start again from step 2.

11. Substituting �X0 kð Þ, Q kð Þ, b̂ into (15.146), X(k) is obtained.
12. Substitute X kð Þ, Σ−1

xi into (15.141) to get the target state estimate x̂ after eliminating the error.

The 12 steps covered above form the detailed process of the MLRM algorithm. As can be seen,
the MLRM is a batch processing algorithm for measurements, and convergent estimates of system-
atic errors and target state estimates after registration can finally be obtained through recursive
optimization of systematic errors along the maximum gradient of disturbance.

15.4.4 ASR Algorithm

The augmented state registration (ASR) algorithm expands the system state to include systematic
errors. It regards systematic errors as the unknown and to-be-estimated state, and conducts joint
estimations for target states and systematic errors through conventional state estimation methods.
Hereafter, a detailed explanation will be presented.
Unite the target state X(k) and the systematic errors b1, b2 of two radars, and construct the new

system state as

XA = X0 b1
0 b2

0½ �0 = x _x y _y z _z bl1 bz1 bl2 bz2
� �0 ð15:169Þ

Since the systematic errors are assumed unchanged constants, we get

bi k + 1ð Þ = I6 × 6bi kð Þ ð15:170Þ

From (15.93) and (15.170), the state transformation equation of the new system state XA is
obtained as follows:

XA k + 1ð Þ =FA kð ÞXA kð Þ +VA kð Þ ð15:171Þ

where

FA kð Þ = diag F kð Þ,I12 × 12ð Þ ð15:172Þ
VA kð Þ = diag V kð Þ,0I12 × 12ð Þ ð15:173Þ

From (15.173), we know that VA(k) is still white Gaussian noise, with covariance
QA = diag Q,0I12 × 12ð Þ.
Combining the measurement equations of mobile radars 1 and 2, and using (15.108), yields

Zp kð Þ= hA XA kð Þð Þ+W kð Þ ð15:174Þ

where

Zp kð Þ= Z1p
0 kð Þ Z2p

0 kð Þ� �0 ð15:175Þ
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hA XA kð Þð Þ =
h A v1 kð Þ−bz1

� �−1
T X1sp kð Þ� �−1

X kð Þ−X1s kð Þð Þ
� 	

+ bl1

h A v2 kð Þ−bz2
� �−1

T X2sp kð Þ� �−1
X kð Þ−X2s kð Þð Þ

� 	
+ bl2

264
375 ð15:176Þ

W kð Þ= W1
0 kð Þ W2

0 kð Þ½ �0 ð15:177Þ

From (15.177) it follows that W(k) is still Gaussian, zero-mean white noise with covari-
ance R kð Þ = diag R1 kð Þ,R2 kð Þð Þ.
With the state equation (15.171) and the measurement equation (15.174) after augmentation,

adopt the EKF filtering equation set hereafter and make a filtering estimation of the system to
constitute the ASR algorithm:

P̂
−

A k + 1ð Þ =FA kð ÞP̂A kð ÞFA
0 kð Þ+QA ð15:178Þ

S k + 1ð Þ =hXA k + 1ð ÞP̂−

A k + 1ð ÞhXA

0 k + 1ð Þ +R k + 1ð Þ ð15:179Þ
K k + 1ð Þ = P̂−

A k + 1ð ÞhXA

0 k + 1ð ÞS−1 k + 1ð Þ ð15:180Þ
X̂A k + 1ð Þ =FA kð ÞX̂A kð Þ +K k + 1ð Þ Zp k + 1ð Þ−h FA kð ÞX̂A kð Þ� �� � ð15:181Þ

P̂A k + 1ð Þ = P̂−

A k + 1ð Þ−K k + 1ð ÞS k + 1ð ÞKT k + 1ð Þ ð15:182Þ

where the Jacobian matrix of h is

hXA k + 1ð Þ= H1x : ,1ð Þ,0I3 × 1,H1x : ,2ð Þ,0I3 × 1,H1x : ,3ð Þ,0I3 × 1,I3 × 3,0I3 × 3,H1b,0I3 × 3,

H2x : ,1ð Þ,0I3 × 1,H1x : ,2ð Þ,0I3 × 1,H1x : ,3ð Þ,0I3 × 1,0I3 × 3,I3 × 3,0I3 × 3,H2b,

" #
ð15:183Þ

with H1x obtained from (15.162) and H1b from (15.163).

15.4.5 Simulation Analysis

This subsection presents the simulative experiments conducted to test the estimation performance of
the MLRM and ASR algorithms on mobile radar systematic errors, and a comparison of their esti-
mation performance in the simulations. To guarantee the realness and validity of the target and plat-
form movements, the tracks of the target and platform were all generated through software STK.
The system under consideration in the experiments is composed of two airborne radars (1 and 2)

and an aerial target, as shown in Figure 15.8. The measurement noise Wi(k) of both radars is zero-

mean, Gaussian white noise, with covariance R W ið Þ = diagð 50mð Þ2, 0:002 radð Þ2, 0:001 radð Þ2Þ.
The change rule of the attitude angle of radar 1’s airborne platform can be expressed as v01 kð Þ=
0:002k,0:01 + 0:002k,0:01 + 0:002k½ �0, and that of radar 2’s airborne platform as v02 kð Þ = 0:002k,½
0:001k,0:001k�0. The systematic errors of both radars are bi = 1000m,½ 0:0087 rad, 0:0047 rad,
0:0087 rad, 0:0047 rad, 0:0037 rad�0.
The radar platform was set as a helicopter platform flying slowly at an elevation of 1 km, and the

target as a fighter flying quickly along the meridian at an elevation of 2 km, with a sampling interval
of 1 s. The radar measurements with systematic errors are shown in Figure 15.9.

398 Radar Data Processing with Applications



1. Since the MLRM is a batch processing algorithm, and the estimate of the target state after regis-
tration can be given, the MLRM’s estimation performance on systematic errors is explained in
Table 15.1.

2. In Table 15.1, K denotes the recursive times of the MLRM. As can be seen, this algorithm has an
estimation accuracy of above 95% on every systematic error and converges after three or four
recurrence steps. Therefore, it has a good estimation effect on both radars’ systematic errors but
involves excessive calculations.

3. The results of 50Monte Carlo simulation experiments on the estimation performance of the ASR
algorithm are shown in Figures 15.10–15.17: as the ASR algorithm converges, its estimates of
the target state eliminate the influence of systematic errors on the whole.

The comparison of target state estimation results of the ASR and MLRM algorithms is shown in
Figure 15.18, and that regarding systematic errors in Table 15.2.
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Table 15.1 The systematic error estimation accuracy of the MLRM algorithm

Estimation accuracy of radar 1 b̂
r
1 b̂

θ

1 b̂
η

1 b̂
ϑ

1 b̂
ϕ

1 b̂
α

1

K = 1 99.8364% 97.8977% 97.9904% 98.1724% 95.9528% 99.6310%
K = 2 97.5313% 98.9071% 99.1336% 99.2411% 98.0490% 99.3905%
K = 3 97.5306% 98.9068% 99.1332% 99.2408% 98.0491% 99.3899%
K = 4 97.5306% 98.9068% 99.1332% 99.2408% 98.0491% 99.3899%
K = 5 97.5306% 98.9068% 99.1332% 99.2408% 98.0491% 99.3899%

Estimation accuracy of radar 2 b̂
r
2 b̂

θ

2
b̂
η

2 b̂
ϑ

2 b̂
ϕ

2
b̂
α

2

K = 1 97.0162% 97.8429% 99.1446% 96.4591% 99.5831% 89.9158%
K = 2 97.5676% 96.8691% 98.5375% 96.9096% 98.0935% 96.3075%
K = 3 97.5671% 96.8692% 98.5355% 96.9103% 98.0958% 96.3121%
K = 4 97.5671% 96.8692% 98.5355% 96.9103% 98.0958% 96.3121%
K = 5 97.5671% 96.8692% 98.5355% 96.9103% 98.0958% 96.3121%
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Figure 15.10 Target state estimation effects of ASR algorithm on x axis
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Figure 15.11 Target state estimation effects of ASR algorithm on y axis
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Figure 15.12 Estimation effects of ASR algorithm on radar 1 range systematic error
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Figure 15.13 Estimation effects of ASR algorithm on radar 1 azimuth systematic error
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As illustrated in Figure 15.18 and Table 15.2, bothMLRM and ASR yield good estimation results
for systematic errors, and can desirably attack problems with mobile radar registration. However,
compared solely in terms of estimations of target states and systematic errors, the MLRM performs
better than the ASR algorithm, but obviously consumes more time.

15.5 Summary

The radar registration technology for radar network systems is key to the stability of system per-
formance. This chapter has discussed this technology for fixed and mobile radar network systems
under assumptions that the target position is known and that it is unknown.
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Figure 15.15 Estimation effects of ASR algorithm on radar 2 yaw angle systematic error
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Figure 15.16 Estimation effects of ASR algorithm on radar 1 roll angle systematic error
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Figure 15.17 Estimation effects of ASR algorithm on radar 2 pitch angle systematic error
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Table 15.2 Collation map of MLRM and ASR systematic error estimation

Radar 1 b̂
r
1 b̂

θ

1 b̂
η

1 b̂
ϑ

1 b̂
ϕ

1 b̂
α

1

ASR 98.1023% 98.8151% 97.9607% 98.6024% 97.5057% 98.9963%

MLRM 98.9969% 99.2715% 98.0792% 99.0052% 97.8646% 98.9880%

Radar 2 b̂
r
2 b̂

θ

2
b̂
η

2 b̂
ϑ

2 b̂
ϕ

2
b̂
α

2

ASR 98.8901% 98.3645% 97.9927% 97.8537% 95.7978% 93.4095%

MLRM 98.9374% 98.5757% 97.9208% 97.9809% 97.1846% 93.5412%
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In addition to the registration technology of fixed and mobile radar systems in cases where target
positions are given, this chapter has also introduced a real-time radar calibration unit widely adopted
for military purposes, which was developed based on this technology.
With respect to the problem of fixed radar registration in the absence of target positions, this chap-

ter has provided a detailed discussion of the RTQC, LS, GLS, and ECEF-GLS algorithms, and a
comparative analysis of the performance of the ECEF-LS and ECEF-GLS in a simulative experi-
ment in particular. The results show that the ECEF-GLS has obvious advantages in terms of esti-
mation accuracy and convergence speed.
Regarding the problem of mobile radar registration, we have delved into the MLRM and ASR

algorithms, and drawn a simulative comparison of their performance. The results show that the for-
mer has obvious advantages in estimation accuracy of target states and systematic errors, but is more
time-consuming and thus not suitable for engineering applications.
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16
Radar Network Data Processing

16.1 Introduction

The radar network in modern wars is an effective means against major threats. A radar network is a
system consisting chiefly of radars with different systems, frequencies, and polarization modes
properly distributed such that observations from these radars are trapped and delivered as if through
a piece of netting and then synthesized, controlled, and administered in the central station forming
an organic whole.
The significance of the radar network lies in the following facts:

1. It has greatly increased the coverage area of the detection zone, providing a clear, full picture of
the battlefield; meanwhile, it offers a considerable anti-stealth advantage as a result of the great
improvement in probability of target detection in the overlap regions.

2. It integrates data from different radars, improving the precision of target tracking.
3. It detects targets from different angles, which is of great importance for countermeasures against

stealth, and low- and ultra-low-altitude targets.
4. It improves the overall ECM performance with its member radars with different systems, fre-

quencies, and polarization modes.

Radar networks can be classified, according to type, into:

1. Bistatic/multistatic. This type has desirable ECCM, counter-ARM, and anti-stealth perform-
ance and is able to greatly enhance the anti-low-penetration ability with the help of aerial
platforms.

2. Monostatic. This type is composed of independent radars which form an organic whole by net-
working with each other. Its constituent radars work independently and flexibly and each of them
can finish part of the work even when they lose contact with the central station.

3. Hybrid. This type is a combination of monostatic and bistatic/multistatic radar networks and has
the merits of both.

Radar Data Processing with Applications, First Edition. He You, Xiu Jianjuan, and Guan Xin.
© 2016 Publishing House of Electronics Industry. All rights reserved. Published 2016 by John Wiley & Sons
Singapore Pte. Ltd.



In terms of spatial deployment, the monostatic type can be divided into common station and dis-
tributed radar networks.
Military radar networks may be divided, according to their missions, into regional surveillance

(including air surveillance and coastal surveillance) and guidance radar networks.
Section 16.2 introduces the concepts of radar networks including performance, indexes, and

optimization of station distribution on the basis of the design and analysis of radar networks.
Sections 16.3, 16.4, and 16.5, respectively, address the basic contents of monostatic, bistatic,
and multistatic radar network data processing. Section 16.6 deals with the track correlation
technique in distributed processing. Section 16.7 is a summary of the chapter.

16.2 Performance Evaluation Indexes of Radar Networks

The principal functions of a radar network are target detection, tracking, and track reporting in its
responsible regions. Therefore, its leading evaluation indicator turns out to be its capability to cover
the responsible regions, followed by the target track capacity (i.e., the maximum number of targets
uploaded, fused, and tracked). In addition, its comprehensive evaluation indicators also include
detection probability, anti-stealth technology, anti-jamming ability, counter low-altitude penetra-
tion capability, and counter anti-radiation missile capability.

16.2.1 Coverage Performance Indexes

The coverage performance of a radar network consists of coverage continuity and strictness
[370, 371]. Generally, the blind zone coefficient, overlap coefficient, average spatial overlap coef-
ficient, and overlap coefficient are used to indicate these.
The blind zone coefficient is defined as

CBL =

X
ABL

A0
ð16:1Þ

where
X

ABL is the sum of blind zones in a responsible region and A0 is the total area of the respon-

sible region. In the light of coverage continuity, CBL must approach zero.
The overlap coefficient is defined as

COV =
A1 +A2 + � � �+Ai

A0
ð16:2Þ

where A1, A2, …, Ai are covering areas of stations in a radar network in its responsible region.
The average spatial overlap coefficient is defined as

�COV =
�A1 + �A2 + � � � + �Ai

A0
ð16:3Þ

where Ā1, Ā2, …, Āi are the average values of covering areas of radar stations at M flight levels.
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The overlap coefficient is the number of radars which simultaneously observe a target in space,
represented by

K =

X
sk

A0
=
n πR2

h

� �
A0

ð16:4Þ

where Sk is the detection area of the kth radar, n the number of radars in the network, and Rh the
distance of the target which the network finds at the lower limit of elevation.

16.2.2 Target Capacity

There are three decisive factors in evaluating the target capacity of a radar network: the extraction
capacity of the stations, the transmission capacity of the communication network (i.e., the maximum
channel transfer rate), and the processing and monitoring capacity of the information center. If the
transmission capacity of the communication channels and the monitoring capacity of the informa-
tion center are not taken into account, then the target capacityN0 of the network should be the sum of
the target capacity of every station in a responsible region, which is written asN0 =N1 +N2 + � � � +Ni

(where N1, N2, …, Ni are the target capacities of each of the radar stations, respectively).

16.2.3 Anti-jamming Ability

The anti-jamming ability of a radar network is largely associated with those of the networking
monostatic radars, and its bandwidth, spatial signal energy density, and signal types. It is evaluated
with three main parameters [371].

1. Improvement factor of the detection overlap coefficient. The detection overlap coefficient of a
radar network, an index of comprehensive performance evaluation, is closely related to the detec-
tion abilities of the member stations, and the anti-jamming abilities of the single stations. The
greater the anti-jamming abilities of the member stations, or the better their anti-jamming meas-
ures are, the less the detection ability of the network suffers in the presence of jamming, and the
higher the overlap coefficient is (and vice versa).
The improvement factor of the detection overlap coefficient of a radar network refers to the

ratio of the overlap coefficient of taking anti-jamming measures to that of taking none of these
measures in the presence of jamming. It is used to evaluate the anti-jamming performance of a
radar network, that is,

COVIF =
C0
OV

COV
ð16:5Þ

where C0
OV and COV are the detection overlap coefficients of a radar network, respectively, in the

case of taking anti-jamming measures and not taking these measures.
2. Frequency overlap coefficient. The frequency domain is the most effective and important

anti-jamming method for a radar network: the more bands it occupies and the wider the fre-
quency domain is, the greater its anti-jamming ability. Thus, the frequency domain coverage
of a radar network can be considered an important index for evaluating its anti-jamming ability.
It consists of band cover and bandwidth coefficients.
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If a radar network with N radars occupies M bands with a standard bandwidth for each fre-
quency band F1, F2, …, FM, and the bandwidth of each monostatic radar within each band is
Δfi i= 1,…,Mð Þ, then the band overlap coefficient is defined by

Ffd =
M

N
ð16:6Þ

the bandwidth coefficient is defined by

Ffk =

XM
i= 1

Δfi

XM
i= 1

Fi

ð16:7Þ

and the frequency overlap coefficient of the radar network is defined as

FOV =Ffd ×Ffk ð16:8Þ

3. Signal overlap coefficient. Multi-radar networks with more signal types and more complicated
ones would be more difficult to detect and jam. The ratio of the number and complexity of signal
types to the number of radars is therefore used as an important indicator to measure the anti-
jamming ability of a radar network, defined as the signal coverage coefficient of a radar network,
that is,

SOV =
MS

N
ð16:9Þ

where N stands for the number of radars and Ms the number of radar signal types.

16.3 Data Processing of Monostatic Radar Networks

According to the type of network, radar networks can be divided into monostatic, bistatic/multi-
static, and hybrid. The monostatic radar network can be further divided into co-station and distrib-
uted, according to the positions where several radars are deployed in space. In this section wemainly
discuss the general procedure of data processing of the monostatic radar network.

16.3.1 The Process of Data Processing of the Monostatic Radar Network

The process of data processing of the monostatic radar network is shown in Figure 16.1. Generally,
it can be broken down into the following steps [17]:

1. To correct errors in various radar systems through error registration, as discussed in Chapter 15.
2. To convert observations from different radar stations into the same coordinate system (that of the

data processing center) through coordinate transformation, as discussed in Chapter 5.
3. To correlate measurements and tracks from different radars, including correlations between

measurements and tracks (see Chapters 7 and 8) and those between tracks (to be discussed in
Section 16.6).
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4. Track initiation.
5. To make use of the observed value of radial velocity.
6. To fuse (or integrate) the tracks and measurements from different radar stations (the data derived

after system error registration and coordinate transformation), and obtain an estimate of the
system’s state.

16.3.2 State Estimation of Monostatic Radar Networks

The simplest method of network building is to simplify the data processing work of the local radar
which turns with the antenna to that of a common single-radar tracking system. For example, for a
primary or secondary surveillance radar that turns with the antenna, the combination of its azimuth
data needs attention. The azimuth of the equivalent measurement is

θ = θpσ
2
θp
+ θsσ

2
θs

� �
= σ2

θp
+ σ2

θs

� �
ð16:10Þ

with the variance of the corresponding error

σ2
θ
= σ2

θp
σ2

θs
= σ2

θp
+ σ2

θs

� �
ð16:11Þ

where θp and θs are the azimuths observed by the primary and secondary radars, with variances σ2
θp

and σ2
θs
, respectively. The next step is to use the algorithms of the single-radar tracking system to

process the measurements, which are to be combined into sequences, and then establish tracks.
The structure of the data processing system has great influence on the performance of the radar

network. According to the way in which information flows and is processed, it can be divided into
centralized (measurement fusion), distributed (track fusion), and hybrid.
The feature of the centralized structure is that the detection reports recorded by all radars are trans-

mitted to the fusion center where data registration and association, state prediction and updating are
completed. The data in the center of the network, after being preprocessed, can be used directly by
all single-radar multi-target association algorithms. This structure is characterized chiefly by its
small amount of information loss, but it requires large communication capacity and has poor
viability.
The feature of the distributed structure is as follows. Before the detection report of a radar enters

the fusion stage, its own data processor produces local multi-target tracking tracks, and then this
processed information is sent to the fusion center, where track-to-track correlation and track fusion
are completed based on the track data from each node, so that an overall estimation is made. This
structure has the capability for local independent tracking, and the feature of overall surveillance and
evaluation as well. It can be further divided into hierarchy and committee structures, according to
the way in which radar information flows. In committee structures, information is also transferred
from radar to radar. This structure requires a small system communication capacity and is relatively
reliable, but sometimes may incur certain information loss.
The hybrid type is a combination of centralized and distributed structures. It simultaneously

transmits detecting reports and track information obtained from local node processing. It has the
merits of both types, but incurs high communication and computation expenses.
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16.3.2.1 State Estimation of Centralized Structures

Consider a monostatic radar network composed of N radars, where all the measured data are trans-
mitted directly to the fusion center to form a uniform system track. The structure of the centralized
radar network decides its specific merit: all the data are processed in the same place, and the result-
ing target track should be more accurate than that established based on measurements from single
radars, which are incomplete.
On the basis of the discrete state equation, the target’s motion law can be expressed as

X k + 1ð Þ=F kð ÞX kð Þ+V kð Þ ð16:12Þ

where X kð Þ 2Rn denotes the target’s state vector at time k, V kð Þ 2Rn denotes the noise vector
of a zero-mean, white Gaussian process, and F kð Þ 2Rn;n indicates the state transition matrix.
The initial state X(0) is a Gaussian random vector with mean μ and covariance matrix P0,

and Cov X 0ð Þ,V kð Þf g= 0.
The measurement equation of a single radar can be expressed as

Zi k + 1ð Þ=Hi k + 1ð ÞX k + 1ð Þ+W i k + 1ð Þ ð16:13Þ

where Zi k + 1ð Þ 2Rm,Hi k + 1ð Þ is the measurement matrix,W i k + 1ð Þ is the Gaussian sequence with
zero mean, and

E
V kð Þ
W i kð Þ

" #
V kð Þ, W i kð Þ½ �

( )
=

Q kð Þ 0

0 Ri kð Þ

" #
ð16:14Þ

Suppose that the three position components of radar i in the Descartes coordinate system of the
fusion center are τi = aibi ci½ �0. In view of the fact that the fusion center and radar measurement are in
different Descartes coordinate systems, the position components of the target (the components on
axes x, y, z) are assumed to be subsumed in the measurement vector. Then, let

Ψi =
τi
0

" #
n × 1

ð16:15Þ

be the augmenting vector of radar i in the Descartes coordinate system of the fusion center. The
observation (transformed into the Descartes coordinate system of the fusion center) of radar i at time
k + 1 is

Y i k + 1ð Þ=Zi k + 1ð Þ +Hi k + 1ð ÞΨi ð16:16Þ

So the measurement vectors of N radars are

Y k + 1ð Þ = Y1 k + 1ð Þ,Y2 k + 1ð Þ,…,YN k + 1ð Þ½ �0 ð16:17Þ

Therefore, the measurement equation can be expressed as

Y k + 1ð Þ =H k + 1ð ÞM k + 1ð Þ +W k + 1ð Þ ð16:18Þ
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where

H k + 1ð Þ = H1 k + 1ð Þ,H2 k + 1ð Þ,…,HN k + 1ð Þ½ �0

W k + 1ð Þ= W1 k + 1ð Þ,W2 k + 1ð Þ,…,WN k + 1ð Þ½ �0

M k + 1ð Þ = X k + 1ð Þ +Ψ1,X k + 1ð Þ +Ψ2,…,X k + 1ð Þ+ΨN½ �0

8>><>>: ð16:19Þ

and

E

W kð Þ
V kð Þ
X kð Þ

264
375 W kð Þ V kð Þ X kð Þ½ �

8><>:
9>=>;=

R kð Þ 0 0

0 Q kð Þ 0

0 0 P0

264
375 ð16:20Þ

According to the discrete Kalman filtering theory, the state estimation equation of the fusion
center of the centralized radar network can be written as [60]

X̂ k + 1 kjð Þ =F kð ÞX̂ kjkð Þ ð16:21Þ
P k + 1 kjð Þ =F kð ÞP k kjð ÞF0 kð Þ+Q kð Þ ð16:22Þ

P k + 1jk + 1ð Þ−1 =P k + 1jkð Þ−1 +H0 k + 1ð ÞR k + 1ð Þ−1H k + 1ð Þ

=P k + 1jkð Þ−1 +
XN
i= 1

H0
i k + 1ð ÞRi k + 1ð Þ−1Hi k + 1ð Þ

=P k + 1jkð Þ−1 +
XN
i= 1

Pi k + 1jk + 1ð Þ−1−Pi k + 1jkð Þ−1
h i ð16:23Þ

where Pi k + 1 kjð Þ and Pi k + 1 k + 1jð Þ are the one-step prediction and update of single radars’ covari-
ance, which can be obtained using the method discussed in Chapter 3. Since

K k + 1ð Þ=P k + 1 k + 1jð ÞH0 k + 1ð ÞR−1 k + 1ð Þ ð16:24Þ

and

R−1 k + 1ð Þ= diag R−1
1 k + 1ð Þ,R−1

2 k + 1ð Þ,…,R−1
N k + 1ð Þ� � ð16:25Þ

then

K k + 1ð Þ=P k + 1 k + 1jð Þ H1 k + 1ð ÞR−1
1 k + 1ð Þ,H2 k + 1ð ÞR−1

2 k + 1ð Þ,…,HN k + 1ð ÞR−1
N k + 1ð Þ� �

= K1 k + 1ð Þ,K2 k + 1ð Þ,…,KN k + 1ð Þ½ � ð16:26Þ

X̂ k + 1jk + 1ð Þ= X̂ k + 1jkð Þ +K k + 1ð Þ Y k + 1ð Þ−H k + 1ð ÞX̂ k + 1jkð Þ� �
= X̂ k + 1 kjð Þ +

XN
i= 1

Ki k + 1ð Þ Zi k + 1ð Þ+Hi k + 1ð Þ Ψi−X̂ k + 1 kjð Þ� �� �� ð16:27Þ
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16.3.2.2 State Estimation of Distributed Structures

The essence of state estimation of distributed structures is track fusion or correlation. At present
there are three main optimal track correlation solution forms [60], whose expressions, similar to
those of centralized structures, are all optimal fusion solutions and are equivalent. An optimal track
correlation solution of the fusion center is given by

X̂ k + 1 k + 1jð Þ =P k + 1jk + 1ð Þ P k + 1jkð Þ−1X̂ k + 1jkð Þ
n

+
XN
i= 1

Pi k + 1jk + 1ð Þ−1 X̂i k + 1jk + 1ð Þ+Ψi

� 	
−Pi k + 1jkð Þ−1 X̂i k + 1jkð Þ+Ψi

� 	h io
ð16:28Þ

where P k + 1jk + 1ð Þ, P k + 1jkð Þ, and X̂ k + 1jkð Þ are given, respectively, by (16.23), (16.22), and
(16.21), and other measurements by the state estimate equation of single radars. However, the opti-
mized performance is usually achieved at the expense of the increase in computation and network
communication loads, so a suboptimal fusion algorithm is often adopted in engineering.
When the influence of process noise and initial conditions is ignored, the suboptimal track fusion

solution can be expressed as [60]

X̂s k kjð Þ =
XN
i= 1

P−1
i k kjð Þ

" #−1 XN
i= 1

P−1
i k kjð Þ X̂i k kjð Þ+Ψi

� �( )
ð16:29Þ

16.4 Data Processing of Bistatic Radar Networks

16.4.1 Basic Location Relation

There are two types of bistatic system: T–R and T/R–R. Here, T/R is the transmitting station and R is
the receiving station.
The distribution of bistatic radar stations is shown in Figure 16.2. Let the line connecting T/R and

R be axis x, the coordinates of R be (a,0), and the coordinates of the target point be (x,y).

2a

Target

(x, y)

rR

θRθT

yT

y

xT/R (–a, 0) R (a, 0)

Figure 16.2 Geometric relation of bistatic radar location
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The distance between T/R and R is the baseline with length 2a, and the target is assumed to be not
on the baseline.

θT and θR are, respectively, the direction angles of the transmitted and received beams.
rT and rR are, respectively, the distances from the target to stations T/R and R.
ρ = rT + rR is defined as the sum of distances.

The four measurements rT, θT, ρ, and θR are influenced by the zero-mean, Gaussian noises whose
mean square errors are, respectively, σrT , σθT , σρ, and σθR , and these measurement noises are
independent.
Let η be the correlation coefficient between measurement errors dρ and drT.
In the T–R bistatic system, only station T irradiates, and the target can only be located by the data ρ

and θR obtained from station R, so there is no information redundancy in the system. In contrast, in the
T/R–R bistatic system, station T/R can provide observations rT and θT, while station R can provide
observations ρ and θR, and therefore information redundancy may arise. To take full advantage of the
observations available, combinational estimation of the redundant information needs to be made.
The bistatic radar system under consideration is assumed to be of T/R–R type. The working envir-

onment of the bistatic system sometimes makes it impossible to obtain observations from the T/R
stations simultaneously. What’s worse, it is impossible, in the presence of strong jamming, to
observe any information on the target at all, and thus only T/R irradiates. Therefore, according
to the possible observations, there are three cases as follows.

1. When the four observations rT, θT, ρ, and θR can be obtained simultaneously, they can be com-
bined into six groups of measurement subsets (rT, θT), (ρ, θR), (ρ, rT), (rT, θR), (ρ, θT), and
(θT, θR).

2. When the bistatic system can only obtain three observations, three groups of possible measure-
ment subsets (ρ, θR), (ρ, θT), and (θT, θR) can be obtained in cases where the three observations
are θT, ρ, and θR; three groups of possible measurement subsets (ρ, θR), (ρ, rT), and (rT, θR) can be
obtained in cases where the three observations are rT, ρ, and θR.

3. When only T/R irradiates, only measurements ρ and θR can be obtained, in which case the loca-
tion of the target is decided totally by station R.

If the bistatic system can obtain all the measurements rT, θT, ρ, and θR, they can be combined into
six groups of measurement subsets, expressed as set Ω= ρ,θRð Þ, rT ,θTð Þ, ρ,θTð Þ, θT ,θRð Þ,f
ρ,rTð Þ, rT ,θRð Þg= S1,S2,…,S6f g. If the bistatic system can only obtain part of the measurements,
its measurement subset is accordingly part of the six groups of measurement subsets.
Since cases 1 and 2 are special circumstances of case 3, only case 1 is discussed here. The trans-

formation of any measurement subset (aj, bj) in setΩ from polar coordinates into rectangular coord-
inates can result in its transformed measurements in the rectangular coordinate system, illustrated as
follows.
When aj,bj

� 	
= ρ,θRð Þ, the coordinate transformation equation is

X1 =
x1

y1

" #
=

ρ2cosθR + 2ρa
2ρ+ 4acosθR

ρ2−4a2
� 	

sinθR
2ρ + 4acosθR

26664
37775 ð16:30Þ
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When aj,bj
� 	

= rT ,θTð Þ, it is

X2 =
x2

y2

" #
=

rT cosθT −a

rT sinθT

" #
ð16:31Þ

When aj,bj
� 	

= ρ,θTð Þ, it is

X3 =
x3

y3

" #
=

ρ2cosθT −2ρa
2ρ−4acosθT

ρ2−4a2
� 	

sinθT
2ρ−4acosθT

26664
37775 ð16:32Þ

When aj,bj
� 	

= ρ,θRð Þ, it is

X4 =
x4

y4

" #
=

asin θR + θTð Þ
sin θR−θTð Þ
2asinθR sinθT
sin θR−θTð Þ

26664
37775 ð16:33Þ

When aj,bj
� 	

= ρ,rTð Þ, it is

X5 =
x5

y5

" #
=

ρ 2rT −ρð Þ
4a

±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16a2 r2T −a

2ð Þ−ρ 2rT −ρð Þ 8a2 + 2rTρ−ρ2ð Þ
p

4a

2664
3775 ð16:34Þ

When aj,bj
� 	

= rT ,θRð Þ, it is

X6 =
x6

y6

" #
=

a + −2acosθR ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2T −4a

2sin2θR
q� �

cosθR

−2acosθR ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2T −4a

2sin2θR
q� �

sinθR

26664
37775 ð16:35Þ

The derivation processes of the above equations can be found in Ref. [47]. The above process can
be concluded as

Xj =
xj

yj

" #
=

f aj,bj
� 	
g aj,bj
� 	" #

ð16:36Þ

where (aj, bj) represents the jth measurement subset in set Ω, and f(aj, bj) and g(aj, bj) are nonlinear
functions related to subset (aj, bj).
Therefore, the transformed measurement error in the rectangular coordinate system can be

expressed as
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dXj =
dxj

dyj

" #
=

∂f

∂aj

∂f

∂bj

∂g

∂aj

∂g

∂bj

26664
37775 daj

dbj

" #
≜Aj

daj

dbj

" #
ð16:37Þ

16.4.2 Combined Estimation

To improve the location accuracy of bistatic radars, a combinational estimation has to be made on its
redundant information. Assume that Xj and dXj, respectively, represent the estimated location and
estimated error of the target in the rectangular coordinate system determined by the jth measurement
subset Sj, and satisfy Xj = IX0 + dXj, where X0 = x0,y0½ �0 is the unknown true location of the target,
and I is the identity matrix in the same dimension as vector X0. It follows from any two estimated
locations Xk and Xl in the rectangular coordinate system that

X =HX0 +V ð16:38Þ

where X = X0
k,X

0
l

� �0
, V = dX0

k,dX
0
l

� �0
, and H = I,I½ �0. The covariance matrix of the measurement

noise vector V is

R=E
dXk

dXl

" #
dX0

k,dX
0
l

� �( )
≜

Rkk Rkl

Rlk Rll

" #
ð16:39Þ

The element in the covariance matrix of measurement noise vector V obtained from a simple
mathematical operation of (16.37) is

Rkl =E dXkdX
0
l

� �
=AkBklA

0
l ð16:40Þ

where

Bkl =
Δ
E

dak

dbk

" #
dal,dbl½ �

( )
ð16:41Þ

If covariance matrix R is reversible and the inverse ofH0R−1H exists, then the LS estimate of the
bistatic radar is

X̂ = H0R−1H
� 	−1

H0R−1X = W ll +Wkl +W lk +Wkkð Þ−1H0WX ð16:42Þ

with the corresponding covariance matrix

P= H0R−1H
� 	−1

= W ll +Wkl +W lk +Wkkð Þ−1 ð16:43Þ
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whereWll,Wkl,Wlk, andWkk are elements [372] in the inverse matrix of covariance matrix R, that is,

R−1≜W =
Wkk Wkl

W lk W ll

" #
ð16:44Þ

where

W ll = Rll−RlkRkk
−1Rkl

� 	−1
= Al Bll−BlkB

−1
kk Bkl

� 	
A0
l

� �−1 ð16:45Þ
Wkl =W 0

lk = −Rkk
−1RklW ll ð16:46Þ

Wkk =Rkk
−1−WklRlkRkk

−1 ð16:47Þ

Obviously, if R is irreversible, then the LS estimate does not exist. Then, can a combinational
estimation be made on the redundant information in the bistatic radar system with use of the LS
estimate? Or, is R reversible, and in what condition if so? Theorem 16.1 answers this question [372].

16.4.3 An Analysis of the Feasibility of Combinational Estimation

Theorem 16.1 Suppose that S1, S2 are two measurement subsets arbitrarily taken from setΩ, then
the necessary and sufficient condition for the LS combinational estimation of S1, S2 is that there are
no repetitive measurements in S1, S2.

Proof: Sufficiency. Let Sk and Sj be any two subsets in setΩ (i.e., 8Sk,Sj 2Ω, k 6¼ j). When there are
no repetitive measurements in the two subsets, that is, when Sk \Sj =ϕ (ϕ is the empty set), there are
three cases:

1. S1 = ρ,θRð Þ and S2 = rT ,θTð Þ;
2. S3 = ρ,θTð Þ and S6 = rT ,θRð Þ;
3. S4 = θT ,θRð Þ and S5 = ρ,rTð Þ.

In the first case (i.e., S1 and S2), it can be derived from (16.41) that

B11 = E
dρ

dθR

" #
dρ,dθR½ �

( )
=

σ2ρ 0

0 σ2θR

" #
ð16:48Þ

B12 = E
dρ

dθR

" #
drT ,dθT½ �

( )
=

ησρσrT 0

0 0

" #
=B0

21 ð16:49Þ

B22 = E
drT

dθT

" #
drT , dθT½ �

( )
=

σ2rT 0

0 σ2θT

" #
ð16:50Þ

A simple mathematical operation of (16.30), (16.31), and (16.37) yields

A1 =K1
K2 cosθR 2ρK3 sinθR

K2 sinθR −K3 2ρcosθR + 4að Þ

" #
ð16:51Þ
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where

K1 =
1

2ρ+ 4acosθRð Þ2 ð16:52Þ

K2 = 2ρ
2 + 8ρacosθR + 8a

2 ð16:53Þ
K3 = 4a

2−ρ2 ð16:54Þ

A2 =
cosθT −rT sinθT

sinθT rT cosθT

" #
ð16:55Þ

It follows from (16.40) that

R11j j = A1B11A0
1

 =K3
1K2

2K3
2σ2ρσ

2
θR

ð16:56Þ

When the target is not on the baseline, R11 is reversible, and then it can be derived from
(16.45) that

R22−R21R11
−1R12

 = A2 B22−B21B
−1
11 B12

� 	
A0
2

 = 1−η2
� 	

r2Tσ
2
θT
σ2rT ð16:57Þ

Since ηj j 6¼ 1, we have R22−R21R11
−1R12

  6¼ 0, which means that matrix R22−R21R11
−1R12 is

reversible. W11, W13, W21, and W22 follow from (16.45)–(16.47) (i.e., the covariance matrix R is
reversible), so the LS estimate of the target can be obtained from (16.42).
Similarly, it can be proved that in cases 2 and 3, covariance matrixR is also reversible, and the LS

estimate of the target can also be obtained. That is to say, combinational estimation can be made of
the two measurement subsets in all three cases above by means of the LS estimate.
Necessity: It is to be proved that when Sk \Sj 6¼ϕ k 6¼ jð Þ, matrix R is irreversible, so combin-

ational estimation cannot be conducted on the two measurement subsets by using the LS estimate.
When Sk \Sj 6¼ϕ, there are two cases.

1. Measurement subsets Sk and Sj k 6¼ jð Þ have only one element in common, including:

S1 = ρ,θRð Þ and S3 = ρ,θTð Þ;
S1 = ρ,θRð Þ and S4 = θT ,θRð Þ;
S2 = rT ,θTð Þ and S4 = θT ,θRð Þ;
S2 = rT ,θTð Þ and S6 = rT ,θRð Þ;
S3 = ρ,θTð Þ and S4 = θT ,θRð Þ;
S4 = θT ,θRð Þ and S6 = rT ,θRð Þ.
In the first case (S1 and S3), using (16.41) yields

B13 = E
dρ

dθR

" #
dρ,dθT½ �

( )
=

σ2ρ 0

0 0

" #
=B0

31 ð16:58Þ

B33 = E
dρ

dθT

" #
dρ,dθT½ �

( )
=

σ2ρ 0

0 σ2θT

" #
ð16:59Þ
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Equation (16.48) can be applied to the mathematical operation of matrix B11.
Using (16.32) and (16.37) yields

A3 =K4
K5 cosθT 2ρK3 sinθT

K5 sinθT 2K3K6

" #
ð16:60Þ

where

K4 =
1

2ρ−4acosθTð Þ2 ð16:61Þ

K5 = 2ρ
2−8ρacosθT + 8a

2 ð16:62Þ
K6 = 2a−ρcosθT ð16:63Þ

Equation (16.51) can be applied to the mathematical operation of matrix A1.
A simple mathematical operation of (16.45) gives

R33−R31R11
−1R13 =A3 B33−B31B

−1
11 B13

� 	
A0
3 = 4K

2
3K

2
4σ

2
θT

ρ2sin2θT ρsinθTK6

ρsinθTK6 K2
6

" #
ð16:64Þ

Since R33−R31R11
−1R13

 = 0 (i.e., matrix R33−R31R11
−1R13 is irreversible), it is impossible

to derive W11 from (16.45). In this case, it is impossible to obtain W13 and W31 from
(16.46), orW33 from (16.47), which means thatW11,W13,W31, andW33 do not exist, and matrix
R is irreversible.

Likewise, it can be proved that matrix R is irreversible in the other cases, so the LS estimate
does not exist in the above cases.

2. Measurement subsets Sk and Sj (k 6¼ j) share not only an element in common, but also a relevant
element, including:

S1 = ρ,θRð Þ and S5 = ρ,rTð Þ;
S1 = ρ,θRð Þ and S6 = rT ,θRð Þ;
S2 = rT ,θTð Þ and S3 = ρ,θTð Þ;
S2 = rT ,θTð Þ and S5 = ρ,rTð Þ;
S3 = ρ,θTð Þ and S5 = ρ,rTð Þ;
S5 = ρ,rTð Þ and S6 = rT ,θRð Þ.

In the first case (S1 and S5), it follows from (16.41) that

B15 = E
dρ

dθR

" #
dρ,drT½ �

( )
=

σ2ρ ησρσrT

0 0

" #
=B0

51 ð16:65Þ

B55 = E
dρ

drT

" #
dρ,drT½ �

( )
=

σ2ρ ησρσrT

ησρσrT σ2rT

" #
ð16:66Þ
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Equation (16.48) can be applied to the mathematical operation of matrix B11.
It follows from (16.34) and (16.37) that

A5 =
1

2aK7

rT −ρð ÞK7 ρK7

± rT −ρð ÞK8 ±K9K3

" #
ð16:67Þ

where

K7 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16a2 r2T −a

2ð Þ−ρK9 8a2−2rTρ−ρ2ð Þ
q

ð16:68Þ

K8 = ρ2−2rTρ−4a
2

� 	 ð16:69Þ
K9 = 2rT −ρð Þ ð16:70Þ

Equation (16.51) can be applied to the mathematical operation of matrix A1.
A simple mathematical operation of (16.45) yields

R55−R51R11
−1R15 =A5 B55−B51B−1

11 B15
� 	

A0
5 =

1−η2ð Þσ2rT
4a2K2

7

ρ2K2
7 ρK9K3K7

ρK9K3K7 K2
9K

2
3

" #
ð16:71Þ

and

R55−R51R11
−1R15

 = 0 ð16:72Þ

Matrix R55−R51R11
−1R15 is irreversible, so it is impossible to deriveW11 from (16.45). In this

case, it is impossible to obtainW15 andW51 from (16.46), orW55 from (16.47), which means that
W11, W15, W51, and W55 do not exist, and that matrix R is irreversible.

Similarly, it can be proved that matrix R is irreversible in the other cases, so the LS estimate does
not exist in the cases above. Therefore, the theorem is proved.
Under the condition that the measurement data of the bistatic radar satisfies the above theorem,

data compression can greatly improve its location accuracy. After the location of the target, the KF
method introduced in Chapter 3 can be applied to the tracking filtering of the target. When there is
more than one target, it is necessary to make data correlation and multi-target tracking, which are
studied in previous chapters and will not be discussed here.

16.5 Data Processing of Multistatic Radar Networks

The multistatic radar network system discussed in this section refers to a system consisting of a
transmitting station and many receiving stations located in different places. This
section introduces the multistatic radar network system, followed by its general process of data
processing.
Since the concept of MIMO (multiple-input, multiple-output) was put forward by Fletcher and

Robey in 2003, MIMO radars have attracted worldwide attention in recent years [373,374], and
much research has been conducted on target detection. However, the related data processing issues
also deserve close attention and extensive research. MIMO is a radar system where multiple
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antennas are used to transmit waveforms and receive echoes, and the collected echoes undergo
coherent or non-coherent combined treatment (as illustrated in Figure 16.3, in which relative posi-
tions of the element antennas are not clearly defined).
MIMO radars fall into two broad categories. The first category is the statistical MIMO radar,

where intervals both between the transmitting antenna array elements and between the receiving
ones are long (namely, these elements are of the so-called distributed layout, and the MIMO radar
can be regarded as a type of multistatic radar in this sense), and each “transmitting–receiving array
element pair” corresponds to an independent target scattering response and makes non-coherent
combined treatment on target echoes from all the transmitting–receiving array element pairs.
The second category is known as the MIMO array radar or coherent MIMO radar, in which both

intervals between the transmitting antenna array elements and those between their receiving equiva-
lents are short, with the same order of magnitude as the wavelength (namely, these elements are of
the so-called compact layout), and each “transmitting–receiving array element pair” corresponds to
the same target scattering response and conducts coherent combined treatment on target echoes
from all the transmitting–receiving array element pairs.

16.5.1 Tracking Principle of Multistatic Radar Systems

Here, we consider only the tracking methods in the 2D case; the principles can be generalized to the
3D case. The mathematical model of target motion adopted by multistatic radars is the same as that
of monostatic ones. Figure 16.4 shows the polar observations obtained from the ith receiving station
in the multistatic radar system:

1. the total path length ρi = ρT + ρRi, proportional to the scattering signal transmission time;
2. the arrival angle of scattering signals (θi);
3. the transmission beam angle (θT).
4. Along the transmitter–target and target–receiver paths, the target’s sum of radial velocity com-

ponents is _ρi = _ρT + _ρRi, and this value is proportional to the Doppler frequency shift of scattering
signals relative to synchronous chain reference signals.

Because the observation vector composed of the measurements above is nonlinear, so is its opti-
mum filter. In view of the practicality, the quasi-optimal method is generally adopted in combining
polar observations, whose rectangular components and covariance matrix are obtained by calcula-
tion before going through linear Kalman filtering.

Transmitting array

1 1M N

Target

Receiving array

Figure 16.3 Schematic diagram of the MIMO radar
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16.5.2 Observation Equation of Multistatic Radar Network Systems

The generic method to define the structure of tracking filters is to establish mathematical models and
radar observation equations of target motion. Because the mathematical model of target motion is
the same as that of the monostatic network system, its observation equation will be discussed
hereafter.
Consider the multistatic system (consisting of a transmitter and two receivers located at different

places) shown in Figure 16.4. In order to acquire the rectangular coordinate components of target
motion, several different methods can be adopted to combine polar observations. For example, any
of the (ρ1, θT), (ρ2, θ1), (ρ2, θ2), (θ1, θ2), and (ρ1, ρ2) pairs can be used to solve for the corresponding
rectangular coordinate components. Here, the error means of perturbed Cartesian coordinate obser-
vations are still zero but interrelated, with covariance matrix

B=

σ2x 0 σxy 0

0 σ2_x 0 σ _x _y

σyx 0 σ2y 0

0 σ _x_y 0 σ2_y

266664
377775 ð16:73Þ

Take (ρ1, θT) as an example. The corresponding rectangular coordinate components and obser-
vation error covariance are given in Table 16.1.

16.5.3 The Generic Data Processing Process of Multistatic Tracking Systems

The generic data processing process of multistatic radar networks is described as follows.

1. Combine the observation values from all the stations. These observations, after being transmitted
to the data processing center, are combined differently according to the method introduced in
Section 16.5.2. These different combinations are then estimated with the LS method (as in
Section 16.4.2), which converts every group of combined variables to rectangular coordinate

Sensor coordinates
Transmitter T : (–a, 0)

Receiver

Receiver 

Receiver 

TransmitterT R1

R2

R1 : (a, 0), R2:(b, c)

ρT

V

θT

θ1

ρR1

ρ· T

ρ· R1

θ2

Target

Figure 16.4 The multistatic radar observation under the main reference system
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parameters, working out the rectangular coordinate components of target motion and their cor-
responding covariances. Since many groups of these components are available for target state
updating in the multistatic radar network, they may be combined in various ways before track
filtering.

2. If each group of rectangular coordinate components is viewed as the measurements from a single
radar, then the data processing of the multistatic radar network can also be divided according to
the structure into centralized, distributed, and hybrid. The centralized structure involves data
registration, track initiation, data association, prediction and comprehensive tracking, in the
fusion center, of the data from the combined positioning by the multistatic radar network. In
the distributed structure, data registration, track initiation, data association, prediction and track-
ing are performed separately for each group of data obtained from the combined positioning by
the multistatic radar network; then, the generated local multi-target tracks are sent to the fusion
center, which completes track association and fusion according to the track data of each node
before obtaining a global estimate. The hybrid structure simultaneously transmits detection
reports and track information, which is processed at local nodes.

16.6 Track Association

In a distributed multiple-radar environment, each radar has its own information processing system,
which contains a large amount of information about target tracks. Then, a very important problem is
how to judge if two tracks from different systems represent the same target. This involves track-to-
track association (or correlation), “track association” for short. Actually, it is to solve the repeated
tracking problem in the coverage region in the radar space. Hence, track association is also called
“de-duplication,” and it also includes the task to distinguish between different targets. The track
association problem is very easy when the track interval reported by radars is large and there is
no interference or clutter. But it turns out to be rather complex in the presence of multiple targets,
interference, clutter, noise, and many crossing and split tracks, in which case, compounded by other
factors including combination mismatches in range or azimuth between radars, and sensor position,
target height and coordinate conversion errors, association becomes even more difficult.

Table 16.1 Cartesian coordinates and observation error covariance corresponding to polar coordinates

x= a−0:5ρ1 cosθTð Þ= 2a
ρ1

cosθT −1

� �
y= 2a2
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� �
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Currently, the track association algorithms mainly include approaches based on statistical
mathematics, fuzzy mathematics, gray theory, and neural networks. The statistics-based
approaches mainly include the weighted [375], independent sequence [376, 377], correction
[70, 378], correlation sequential [376, 377], classical assignment [379, 380], generalized
classical assignment [376], independent double threshold [376, 381], correlated double
threshold [376, 381], nearest neighborhood (NN) [382], K-NN and modified K-NN
[51, 383] methods.
When the system contains large errors in navigation, calibration, conversion, and delay,

statistical approaches sometimes fail and alternative algorithms are in demand. There is a con-
siderable ambiguity in track association judgment, and this kind of ambiguity can be repre-
sented by the membership function of fuzzy mathematics; in other words, the concept of
subordinate degree can be used to describe the similarity degree between two tracks. Therefore,
a series of fuzzy track correlation algorithms has been put forward [52, 54, 181, 187, 384–391],
covering:

• choice of fuzzy factor sets and membership degree functions in sensor track association;
• determination of fuzzy factors and dynamic assignment of fuzzy weight sets;
• fuzzy binary threshold track correlation algorithm;
• track association algorithms based on fuzzy synthetic functions;
• fuzzy comprehensive evaluation track association algorithms;
• fuzzy track correlation algorithms in the case of multiple local nodes; and
• track correlation based on the fuzzy comprehensive analysis in the presence of unequal
sample sizes.

In order to solve track association problems, grey theory was introduced [392], where track asso-
ciation is carried out as follows:

• The grey incidence order is obtained by working out the grey association degree between tracks.
• Correlations between tracks are determined according to this sequence.
• Several algorithms are provided, including gray track association, gray track association in the
case of multiple local nodes, gray track association in the presence of unequal sample sizes.

• Performance analyses are made of fuzzy track association algorithms and gray track association
algorithms.

This section deals only with the sequential track correlation algorithm in the case of multiple local
nodes based on statistical mathematics. For other algorithms, see Ref. [8].

For the sake of discussion, suppose that all state estimates X̂
i
j i= 1,2,…,M;j= 1,2,…,nið Þ sent

to the fusion center are in the same coordinate system and that all radars take samples synchron-
ously. Here, M is the number of radars (let M ≥ 2), and ni is the number of tracks of radar i. Also
suppose that the track number set of local nodes 1, 2, …, M (i.e., the corresponding target number
set) is

U1 = 1,2,…,n1f g, U2 = 1,2,…,n2f g,…, UM = 1,2,…,nMf g ð16:74Þ

Denote

tSaSbij lð Þ = X̂
Sa
i ðllÞ− X̂Sb

j l lj Þð ð16:75Þ
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as the estimate of

t�SaSbij lð Þ = X̂
Sa
i lð Þ− X̂Sb

j lð Þ i2USa , j2USbð Þ ð16:76Þ

where Xsa
i and Xsb

j represent the real states of the ith and jth target, respectively, and X̂
sa
i and X̂

sb
j the

state estimates of node sa for target i and node sb for target j, respectively.
Suppose that H0 and H1 represent the following events i2U1, j2U2ð Þ:

H0: X̂
sa
i ljlð Þ and X̂

sb
j ljlð Þ are the track estimates of the same target;

H1: X̂
sa
i ljlð Þ and X̂

sb
j ljlð Þ are not the track estimates of the same target.

Thus, the track association problem is converted to the hypothesis testing problem.
For the public surveillance region of M local nodes, the sufficient statistic can be constructed as

ρis−1is kð Þ = ρis−1is k−1ð Þ+ X̂is−1 kjkð Þ− X̂is kjkð Þ� �0
A−1
is−1is

kð Þ X̂is−1 kjkð Þ− X̂is kjkð Þ� � ð16:77Þ

where s = 1,2,…,M is the serial number of local nodes, is = 1,2,…,ns is the serial number of tracks
of local node s, and

Ais−1is kð Þ =Pis−1 k=kð Þ +Pis k=kð Þ−Pis−1is k=kð Þ−Pis−1is k=kð Þ0 ð16:78Þ
Now, construct the global statistic

ai1i2���iM kð Þ =
XM
s= 2

ρis−1is kð Þ ð16:79Þ

Define a binary variable

ηi1i2���iM kð Þ= 1 H0 hypothesis

0 H1 hypothesis

(
ð16:80Þ

Then, the sequential track correlation problem in the case of multiple local nodes has been converted
to that of multi-dimensional assignment,

min
ηi1 i2 ���iM

Xn1
i1 = 1

Xn2
i2 = 1

� � �
XnM
iM = 1

ηi1i2���iM ai1i2���iM kð Þ ð16:81Þ

with constraint condition

Xn2
i2 = 1

Xn3
i3 = 1

� � �
XnM
iM = 1

ηi1i2���iM = 1, 8i1 = 1,2,…,n1

Xn1
i1 = 1

Xn3
i3 = 1

� � �
XnM
iM = 1

ηi1i2���iM = 1, 8i2 = 1,2,…,n2

..

.

Xn1
i1 = 1

Xn2
i2 = 1

� � �
XnM−1

iM−1 = 1

ηi1i2���iM = 1, 8iM = 1,2,…,nM

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

ð16:82Þ
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When M = 2, (16.81) is degenerated to a 2D assignment problem, namely the sequential track
correlation algorithm in Ref. [8]. Then, if ρis−1is k−1ð Þ≡ 0, it is the modified track association
method in Ref. [8].
When the estimation errors of all local nodes are assumed independent, the sufficient statistic of

(16.78) becomes

λis−1is kð Þ = λis−1is k−1ð Þ+ X̂is−1 kjkð Þ−X̂is kjkð Þ� �0
C−1
is−1is

kð Þ X̂is−1 kjkð Þ− X̂is kjkð Þ� � ð16:83Þ

where s= 1,2,…,M is the serial number of local nodes, is = 1,2,…,ns is the track serial number of
local node s, and

Cis−1is kð Þ=Pis−1 k=kð Þ+Pis k=kð Þ ð16:84Þ

WhenM = 2, (16.84) is degenerated to the independent sequential track association algorithm in
Ref. [8]. Then, if λis−1is k−1ð Þ≡ 0, it is the weighted track association method in Refs [387,388].
The track quality design and ambiguity processing are stated in detail in Ref. [8] and will not be

discussed further in this book.

16.7 Summary

In the face of increasingly complex and dense electromagnetic spatial environments, radar network-
ing and information fusion have turned out to be an absolute necessity in order to obtain compre-
hensive, accurate, and timely information maximally. Radar network data processing is a practical
implementation of the multi-sensor data fusion theory in engineering, namely an application of this
theory in fusing observations from two or more radars to the battlefield situation of the radar net-
work coverage region.
This chapter started with a discussion of performance evaluation indexes and optimal station dis-

tribution of radar networks from the perspective of their design and analysis. Then it summarized the
basic data processing process of monostatic, bistatic, and multistatic radar networks. Finally, it pro-
vided findings on the track association technology in radar network data processing, focusing on the
analysis of the sequential track correlation algorithms based on statistical mathematics in the pres-
ence of multiple local nodes.
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17
Evaluation of Radar Data
Processing Performance

17.1 Introduction

Radar data processing technology is applied widely both in military and civilian fields, and is an
area of research capturing international attention. The data processing performance of radars
depends on many factors: density, quantity and dynamic characteristics of targets, detection per-
formance of sensors, background noise source, and filter performance [40, 60, 393]. Consequently,
the evaluation index system for radar data processing involves many diverse contents. As far as the
radar data processing technology is concerned, suitable performance evaluation techniques should
be used to judge the merits and demerits of its performance, its usability in the applied environment,
and various function algorithms (track initiation, data association, and track filtering) [394–399].
For example, Refs [41, 400] propose some indexes of this type including the probabilities of being
correct or incorrect for correlations between measurements and tracks, of false tracks and of track
loss, but these simple measurement indexes are already inappropriate for the modern multi-target
environment with high maneuverability and density.
Therefore, on the basis of analyzing and organizing the related materials [18, 23, 51, 53, 401], this

chapter first defines the related terms and then discusses the performance evaluation indexes for
radar data processing in several aspects, including average track initiation time, accumulative num-
ber of track interruptions, track ambiguity, accumulative number of track switches, track accuracy,
maneuvering target tracking capability, false track ratio, divergence, track capacity, radar network
detection probability, and response time. Finally, it explores several evaluation methods for radar
data processing performance, includingMonte Carlo, analytic, semi-physical simulative evaluation,
and testing methods.
In addition, it is worth mentioning that the evaluation indexes of different definitions have their

own relative rationality and limitations, and that it is very difficult, even unrealistic, to define a radar
data processing evaluation system acceptable to all researchers. Instead, there can be different evalu-
ation indexes for users at different levels.

Radar Data Processing with Applications, First Edition. He You, Xiu Jianjuan, and Guan Xin.
© 2016 Publishing House of Electronics Industry. All rights reserved. Published 2016 by John Wiley & Sons
Singapore Pte. Ltd.



17.2 Basic Terms

Before evaluating the data processing performance of radars, we need to design performance test
scenarios. This may be done as follows [53, 401].

Scenario 1 A single target in uniform rectilinear motion, used mainly for testing the target track-
ing accuracy of a radar system.

Scenario 2 A single target in uniform, circular, planar motion, mainly for testing the radar’s man-
euvering target tracking capability. The main consideration for choosing uniform circular motion
is that the maneuvers of a target in track are mostly turning actions in a plane. The acceleration
magnitude of the target can be determined according to its speed and radius values.

Scenario 3 Two cross-moving targets, as shown in Figure 17.1, chiefly for testing the radar’s false
association rate.

Scenario 4 Two targets in “close and off” movement, as shown in Figure 17.2, normally for test-
ing the radar’s false association rate.

Scenario 5 Many targets in parallel motion, as shown in Figure 17.3, principally for testing the
radar’s multi-target tracking capability.

Target 1

Target 2

O

y

x

Figure 17.1 Two cross-moving targets

Target 1

Target 2

y

O x

Figure 17.2 Two targets in “close and off” movement
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The tracking capability of a radar is related to target density. The typical definition of target dens-
ity was given by Farina and Studer [17], who divided target density into three levels: dense,
medium, and sparse. The distinction criterion is the ratio of target spacing to radar measurement
standard deviation. The target density is “medium” if the ratio is 1; “sparse” if it is bigger than
1.5; and “dense” if it is below 0.5.
The spacing of targets can be considered in terms of bearing, distance, or interval between targets.

In the multistatic radar network system, the geographic positions of its member radars are different,
as are the target’s distances from them. Therefore, even for two radars with the same measurement
accuracy, when the target’s distances from them are different, so are the target densities calculated
according to Farina’s definition. In this case, the Euripidean distance between targets can be used
directly as the interval between targets.
In the process of evaluating radar data processing performance, time should be specified: chosen

randomly or with fixed intervals or designated by the user [53, 401].

17.3 Data Association Performance Evaluation

Radar data processing is equivalent to target state estimation, namely target tracking and data asso-
ciation. As discussed in Chapter 1, data association problems may be divided into three categories
according to what is being correlated with what. The first category is the measurement-to-
measurement association used in track initiation. Whether the radar can spot targets and initiate
tracks for them in the shortest possible time has a significant influence on its survival and the overall
outcome of combat, so a smaller mean of the time needed by the data processor to establish target
tracks is preferred. Average track initiation time, therefore, is the first topic in the data association
performance evaluation indexes below.

17.3.1 Average Track Initiation Time

Suppose that the radar data system discussed here has performed Monte Carlo simulation
experiments with M runs and recorded in the mth simulation the time of the confirmed track

y

O x

Target 1

Target 2

Target n

Figure 17.3 Many targets in parallel motion
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assigned to target l, tml, first. If no track is assigned to target l during the time period of this simulation
test (T), then let tml, first =T. Hence, the average time of track initiation tl, first of target l can be
defined as

tl, first =
1
M

XM
m= 1

tml, first ð17:1Þ

If we take a statistical average of all targets’ average time of track initiation measured by radar i,
then we can obtain the total average time of track initiation tifirst of radar i, namely

tifirst =
1
L

XL
l= 1

tl, first ð17:2Þ

where L is the total number of real targets.
For a distributed radar data processing system, if there are N radar stations, then its average time

of track initiation is

tfirst =
1
N

XN
i= 1

tifirst ð17:3Þ

17.3.2 Accumulative Number of Track Interruptions

The second category of data association discussed in Chapter 1 is that between measurements and
tracks used in track maintenance. If there is no latest measurement assigned to a track, it will get
interrupted. Therefore, the data association performance evaluation index to be discussed next is the
accumulative number of track interruptions.
The total number of times that the real target is assigned with no track before evaluation time teval

is called the accumulative number of track interruptions at teval and written

NB tevalð Þ = 1
L

XL
l= 1

NBl tevalð Þ ð17:4Þ

where L is the total number of real targets and NBl(teval) is the total number of track interruptions
of real target l at teval, which can be obtained through the Monte Carlo simulation method,
represented by

NBl tevalð Þ = 1
M

XM
m= 1

NBm
l tevalð Þ ð17:5Þ

Here, M is the number of runs of the Monte Carlo simulation and NBm
l tevalð Þ is the total

number of track interruptions of real target l at teval in the mth Monte Carlo simulation, which can
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be obtained through the following method: in the mth Monte Carlo simulation, if a track is
assigned to target l at time (teval−1) but no track is assigned to it at teval, then NBl,m(teval) should
be increased by 1.

17.3.3 Track Ambiguity

In the process of data association, when two or more tracks are assigned to the same target, data
association ambiguity [52, 187, 376] will occur. Therefore, the performance evaluation index to
be discussed below is track ambiguity. In order to describe and measure this phenomenon more
clearly, we introduce the following concepts [53, 54, 372, 401].

1. Possible tracks: those in the set of validated tracks established by the radar data processor which
can be assigned to the real target.

2. Redundant tracks: the phenomenon of two or more tracks being assigned to a real target is called
track redundancy, and the surplus track is called the redundant track [401].

3. False tracks: those which are unrelated to real targets in the set of validated tracks established by
the radar data processor.

4. Number of redundant tracks: the difference in number between feasible tracks and targets.
5. Number of false tracks: the difference in number between the validated tracks established by the

radar data processor and feasible targets.
6. Track capacity: the maximum batches of radar tracks which the radar data processing center can

handle at the same time.
7. Track interruptions: if a track is assigned to a target at time t, but no track is assigned to it at time

t +m, then a track interruption is declared to have occurred at t, wherem is a parameter set by the
tester (usually m = 1).

8. Track switches: if a track is assigned to a target at time t, but another track is assigned to it at time
t +m, then a track switch is considered to have occurred at time t, where m is a parameter set by
the tester (usually m = 1).

Based on the concepts given above, define track ambiguity as the ratio of the number of redundant
tracks to that of feasible targets [53, 401] teval, denoted by

A tevalð Þ = Nrt tevalð Þ
Nft tevalð Þ ð17:6Þ

where Nrt(teval) and Nft(teval) denote the numbers of redundant tracks and feasible targets, respect-
ively, at evaluation time teval. A(teval) indicates the number of surplus tracks per feasible target,
whose value may be bigger than 1 but at least 0. When the validated tracks correspond to the real
targets one by one, the value A(teval) reaches its minimum zero, that is, there is no ambiguity at
this time.
Notice that track ambiguity is also related to evaluation time. Its overall evaluation can be made

by plotting a curve of it varying with evaluation time, or by calculating the average track ambiguity
Ā, expressed as
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A =
1
Nt

X
teval2S

A tevalð Þ ð17:7Þ

where S is the set of teval and Nt the number of teval in set S.
In applications, track ambiguity defined by (17.6) can be obtained normally through the Monte

Carlo simulation, as represented by

A tevalð Þ = 1
M

XM
m= 1

Am tevalð Þ ð17:8Þ

where M is the total number of Monte Carlo simulation runs and Am(teval) is the ambiguity at teval
in the mth Monte Carlo simulation, calculated by

Am tevalð Þ= Nm
rt tevalð Þ

Nm
ft tevalð Þ ð17:9Þ

where Nm
r t tevalð Þ and Nm

ft tevalð Þ denote the numbers of redundant tracks and feasible targets, respect-
ively, at teval in the Monte Carlo simulation.

17.3.4 Accumulative Number of Track Switches

In the process of data association, changes may occur in the tracks assigned to a target. Therefore,
the data association performance evaluation index to be discussed hereafter is the accumulative
number of track switches. The total number of track switches in those assigned to a real target before
time teval is called the accumulative number of track switches at teval and denoted by NS(teval),
expressed as

NS tevalð Þ = 1
L

XL
l= 1

NSl tevalð Þ ð17:10Þ

where L is the total number of real targets and NSl(teval) is the total number of track switches of real
target l at teval. In practical applications,NSl(teval) is usually obtained through the Monte Carlo simu-
lation, expressed as

NSl tevalð Þ = 1
M

XM
m= 1

NSml tevalð Þ ð17:11Þ

whereM is the number of runs of the Monte Carlo simulation, and NSml tevalð Þ is the total number of
track switches of real target l at teval in the mth Monte Carlo simulation, which can be obtained as
follows. In themth Monte Carlo simulation, if track j is assigned to target l at time (teval−1) and track
k 6¼ jð Þ is assigned to target l at teval, then NSl,m(teval) should be increased by 1.

17.4 Performance Evaluation of Tracking

Data association and tracking are fundamental issues during the process of radar data processing
[402]. In Section 17.3, we have analyzed the performance evaluation of data association and given
four kinds of evaluation index: average time of track initiation, accumulative number of track
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interruptions, track ambiguity, and accumulative number of track switches. Hereafter, we discuss
the evaluation of track filtering performance and then put forward four kinds of evaluation index:
track accuracy, maneuvering target tracking capability, false track ratio, and divergence.

17.4.1 Track Accuracy

Track accuracy is a very important index, used to evaluate the performance of track filtering
algorithms, and it embodies the smoothing degrees of different radar data processing algo-
rithms for sensor measurement errors. Broadly, track accuracy includes track position and
speed accuracy. The former is defined as the mean square root error of track position estimate
error and the latter as the mean square root error of track speed estimate error. During the pro-
cess of target tracking, the smaller the mean square root of the radar’s estimate is, the closer
the filtering value of the filter gets to the real value of the target, and the higher the track accur-
acy. In practice, the Monte Carlo simulation method is usually used to evaluate track accuracy.
Suppose that the difference between the filtering and real values of the lth real target at evalu-
ation time teval is

Em
l tevalð Þ= X̂m

l tevalð Þ−Xl tevalð Þ ð17:12Þ

where X̂
m
l tevalð Þ is the estimated state vector of the lth target at time teval in the mth Monte Carlo

simulation, and Xl(teval) the real state of the lth target at teval.
The statistical mean of the squared estimation error, obtained afterM runs of Monte Carlo simu-

lation experiments, is defined as

Cl tevalð Þ= 1
M

XM
m=1

Em
l tevalð ÞEm0

l tevalð Þ ð17:13Þ

If the target state vector is given as X kð Þ= x _x y _y z _z½ �0, then Cl(teval) is a 6 × 6 matrix, where
elements Cl,x(teval), Cl,y(teval), and Cl,z(teval) corresponding, respectively, to (column 1, row 1), (col-
umn 3, row 3), and (column 5, row 5) denote the target’s variance of position error along axes x, y,
and z, respectively. Using Cl,x(teval), Cl,y(teval), and Cl,z(teval) yields the position mean square root
error of the tracking to the lth real target at teval:

RMSEl, position tevalð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cl,x tevalð Þ+Cl,y tevalð Þ+Cl,z tevalð Þ

q
ð17:14Þ

Likewise, we have the speed mean square root error of the tracking to the lth real target:

RMSEl, velocity tevalð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cl, _x tevalð Þ+Cl, _y tevalð Þ +Cl, _z tevalð Þ

q
ð17:15Þ

where elements Cl, _x tevalð Þ, Cl, _y tevalð Þ, and Cl, _z tevalð Þ corresponding, respectively, to (column 2,
row 2), (column 4, row 4), and (column 6, row 6) of matrix Cl(teval) denote the variance of speed
error of the target along axes x, y, and z.
At teval, the total position mean square root error and the total speed mean square root error of all

L targets can be defined, respectively, as follows:
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RMSEposition tevalð Þ= 1
L

XL
l= 1

RMSEl, position tevalð Þ ð17:16Þ

RMSEvelocity tevalð Þ= 1
L

XL
l= 1

RMSEl, velocity tevalð Þ ð17:17Þ

17.4.2 Maneuvering Target Tracking Capability

Maneuver detection delay time can be used as an index to measure the radar network’s capability of
tracking maneuvering targets. The time interval between a target starting a maneuver and the man-
euver being detected by the radar is called the maneuver detection delay time. Note that the value of
evaluation time must be taken during the target maneuvering period. The maneuver detection delay
time of maneuvering targets can be obtained with the Monte Carlo method. The procedure is
described below.
In the centralized data processing system, the target maneuver initiating time is recorded as 0. In

the mth Monte Carlo simulation, target l’s maneuver initiating time is detected and denoted as
tml, manouver. If its maneuver has not been detected during this period of simulation T, then let
tml, manouver =T. Therefore, target l’s average maneuver detection time is denoted as

tl, manouver =
1
M

XM
m= 1

tml, manouver ð17:18Þ

where M is the number of runs of the Monte Carlo simulation.
Hence, the total average maneuver detection delay time of L targets is denoted by

tmanouver =
1
L

XL
l= 1

tl, manouver ð17:19Þ

For the distributed data processing system, the average maneuver detection delay time of the ith
radar is denoted as timanouver. Similarly, it can be obtained from (17.18) and (17.19). Assume that
there are N radar stations. Then the total average maneuver detection delay time of this system
can be denoted as

tmanouver =
1
N

XN
i= 1

timanouver ð17:20Þ

17.4.3 False Track Ratio

In the multi-target case, the target tracks given by the radar may have false ones. Therefore, in the
process of evaluating track filtering performance, the ratio of false tracks to total tracks must be
given [32]. In the same environment, it is preferable that this ratio is minimized. Hence, define
the false track ratio at evaluation time teval as the ratio of the number of false tracks to that of tracks
in total, and denote it by
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STR tevalð Þ = Nfalse track tevalð Þ
Ntotal track tevalð Þ ð17:21Þ

where Nfalse track(teval) andNtotal track(teval) denote, respectively, the number of false tracks and that of
tracks in total at time teval.
Note that the ratio of false tracks is related to the evaluation time. Its overall evaluation may be

conducted by plotting a curve which shows it varying with the evaluation time, or by calculating the
average false track ratio STR, expressed as

STR =
1
Nt

X
teval2S

STR tevalð Þ ð17:22Þ

where S is the set of evaluation times teval and Nt is the number of evaluation times in set S.
In practical applications, the average false track ratio STR given by (17.22) can be obtained

through the Monte Carlo simulation method, hence, so can the false track ratio at time teval,
calculated by

STR tevalð Þ = 1
M

XM
m= 1

STRm tevalð Þ ð17:23Þ

where M is the number of runs of Monte Carlo simulations and STRm(teval) the false track ratio at
time teval in the mth Monte Carlo simulation,

STRm tevalð Þ = Nm
false track tevalð Þ

Nm
total track tevalð Þ ð17:24Þ

Here, Nm
false track tevalð Þ is the number of false tracks at time teval in the mth Monte Carlo simulation

and Nm
total track tevalð Þ the number of feasible targets at teval in the mth Monte Carlo simulation.

17.4.4 Divergence

As can be concluded from the discussions in previous chapters, two problems arise in the process of
radar data processing:

• uncertainty about the measurements used for filtering (i.e., many plots will arise due to multiple
targets and false alarms in the radar environment);

• uncertainty about the parameters of the target model.

Therefore, during the filtering process, if the hypothetical model is compatible with the real
model and correct data association has been accomplished in the presence of many targets, the dif-
ference between the tracking result and the real value of the targets narrows as the filtering time
increases. However, if the hypothetical case does not tally with the real case, or correct data asso-
ciation has failed in the multi-target case, filtering divergence will occur. Once divergence appears
in the process of radar data processing, filtering would be rendered meaningless. Thus, the index of
divergence will be given here. The decision method of filtering divergence will be given first [403].
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Denote by RMSEl, position(teval) the mean square root error of the position tracked by the radar for
the lth real target at evaluation time teval. The calculation of this error is different with two-
coordinate radar and three-coordinate radar. Its calculation in the case of three-coordinate radar
is shown in (17.14), while in the case of two-coordinate radar it is calculated as

RMSEl, position tevalð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cl,x tevalð Þ+Cl,y tevalð Þ

q
ð17:25Þ

where Cl,x(teval) and Cl,y(teval) are defined as in (17.13).
If starting from the stable filtering time k0, sampling points have been emerging in succession

whose position mean square root error RMSEl, position is bigger than the divergence test threshold
ΔP0 [403]; this filtering is regarded as divergent.
Divergence is often evaluated in practice with the Monte Carlo simulation method, that is, it is

defined as the ratio of the number of filtering divergences to that of simulation runs in Monte Carlo
simulation experiments, denoted by

ηd =
Nf d

Nsimulation
ð17:26Þ

where Nfd and Nsimulation denote, respectively, the number of filtering divergences and the total
number of simulation runs (0 ≤ ηd ≤ 1). The bigger the value of divergence, the more likely the filter
will lose track of its target during the tracking process.

17.5 Evaluation of the Data Fusion Performance of Radar Networks

In the multi-radar, multi-target case, the evaluation of the system tracking performance is signifi-
cantly more complicated than in the presence of single radars and targets. Based on the discussion
and analysis of performance evaluation methods of single-radar data association and track filtering,
in this section we discuss the method of evaluating the data fusion performance of the radar network
and lay emphasis on analyzing such indexes as the track capacity, detection probability of radar
networks, and response time.

17.5.1 Track Capacity

Radar network track capacity is a basic index in radar networking. It is defined as the maximum
number of batches of radar tracks that the radar network information fusion center is capable of
processing at the same time.

17.5.2 Detection Probability of Radar Networks

At evaluation time teval, the ratio of the number of feasible targets to that of real targets is called the
detection probability of the radar network at this time. It is denoted by

PD tevalð Þ = number of feasible targets tevalð Þ
number of real targets tevalð Þ ð17:27Þ
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Note that PD(teval) is related to teval. An overall evaluation can be made by plotting a curve of it
varying with the evaluation time. At the same time, the average detection probability �PD can also be
calculated, using

PD =
1
Nt

X
teval2S

PD tevalð Þ ð17:28Þ

where S is the set of evaluation times and Nt =̂ Card Sf g is the number of evaluation times in S.
In practical applications, the radar network average detection probability of (17.28) can be

obtained through the Monte Carlo simulation method, using

PD tevalð Þ= 1
M

XM
m = 1

PDm tevalð Þ ð17:29Þ

PDm tevalð Þ = NVm tevalð Þ
NTm tevalð Þ ð17:30Þ

where M is the total number of Monte Carlo simulation runs, NVm(teval) the number of feasible tar-
gets at teval in the mth Monte Carlo simulation, and NTm(teval) the number of real targets in the
responsible region of the radar network at teval in the mth Monte Carlo simulation.

17.5.3 Response Time

Whether a radar has the ability to detect a target as early as possible has significant influence on the
survival of a radar network and the outcome of combat. The response time of a radar network is an
important index used to measure its target tracking instantaneity.
The response time of the radar network is defined as the statistical mean of the time needed by the

system fusion center to establish target tracks.
For the centralized data processing system, denote by tml, first the time assigned to the validated

track of target l recorded in the mth Monte Carlo simulation. If no track is assigned to target l in
the period of this simulation (T), then let tml, first = T . Hence, denote the average track initiation time
for target l (namely, the response time) by

tl, first =
1
M

XM
m = 1

tml, first ð17:31Þ

Hence, the total average track initiation time (namely, the response time) is indicated as

tfirst =
1
L

XL
l= 1

tl, first ð17:32Þ

For the distributed data processing system, denote the average track initiation time of the ith radar
by tifirst, and suppose that there are N radar stations, then the total average track initiation time is

tfirst =
1
N

XN
i= 1

tifirst ð17:33Þ
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17.6 Methods of Evaluating Radar Data Processing Algorithms

The evaluations of data association and track filtering performances discussed above were con-
ducted with theMonte Carlo method. In addition toMonte Carlo, other methods can also be adopted
to evaluate the data processing performance of radars [53, 401]: the analytic, semi-physical simu-
lation, and test methods, which will be introduced briefly in this section.

17.6.1 Monte Carlo Method

The Monte Carlo method, also known as the statistical test method, uses statistical sampling theory
to approximately solve practical problems. It is a stochastic analysis method using a large quantity
of computer simulations to test the system performance and aggregate statistical results. Its theor-
etical basis is the law of large numbers in probability theory. This method includes the generation of
pseudo-random numbers, Monte Carlo simulation design, and result interpretation. Its approach to
problems is: first establish a probability model that has similarity to the evaluation of radar data
processing performance, then make random simulation or statistical sampling of the model, and
finally use the findings to evaluate the data processing performance of radars.
The Monte Carlo method has the following advantages:

1. It is economical, since a large amount of outlay can be saved as a result of large amounts of
repeated sampling done on computers.

2. It is feasible for some problems with complex models and hard to solve with numerical solution
methods.

3. It is adaptable and hardly subject to the constraints of problems. It is a desirable option especially
for some hazardous, hard-to-solve, or high-cost problems.

Its disadvantages include:

1. It tends to converge slowly for some practical problems that require high accuracy, and some-
times cannot satisfy real-time requirements.

2. It only approximates practical problems, but is still different from them. Therefore, its result can
be used only for reference or guidance.

The random number generating method, if any, provided by the computer programming language
this method adopts can be used directly to generate pseudo-random numbers. For example, when
Matlab is used in programming, sentence rand can be used directly to generate uniformly distrib-
uted random numbers in the interval [0,1], and randn to generate standard normally distributed
random numbers. If the adopted computer programming language fails to provide the random num-
bers needed directly, then uniformly distributed random numbers are usually generated first in the
interval [0,1], and then the inverse transformation method is used to generate the random numbers
distributed as required. For details, see Chapter 18.

17.6.2 Analytic Method

The analytic performance evaluation method involves the establishment of mathematical models for
one or more performance evaluation indexes by various methods, and the derivation, through ana-
lytic calculation or numerical solution, of the numerical values of performance evaluation indexes of

438 Radar Data Processing with Applications



a radar data processing system for its evaluation. In order to adopt the analytic method, we can use
one or more theories as the basis for the abstraction of the system, and denote model parameters,
initial conditions, and input–output relationships with mathematical expressions to obtain the cor-
responding mathematical models. In terms of the adopted mathematical theory, the analytic
methods for evaluating the data processing performance of radar systems mainly include perform-
ance evaluations based on statistical and fuzzy set theory.
When the analytic method is used in performance evaluation, the establishment of mathematical

models of the system is a very important step. In the process of establishing mathematical models,
the first thing is to decide, based on the analytic result of the problem, the coordinate system and
system state variables to be adopted, which are then described in mathematical forms according to
the mutual relationship between them and the constraints. Meanwhile, the parameters should be
determined, namely: construct a mathematical model for analysis and evaluation. The variables
and interactions described by this model must be close to the real system and meanwhile be able
to balance the facticity and operating efficiency of the system, such that the models have moderate
complexity, neither too simple nor too complex.

17.6.3 Semi-physical Simulation Method

Semi-physical simulation is an indoor simulation test method, which uses hardware and software to
simulate the electromagnetic features of signal sources and electronic systems. The typical test pro-
cedure is as follows. The computer-controlled test system (simulator) generates real signals in a
typical test environment, then the real system is put into in-field semi-physical simulation tools,
and computers are employed to simulate the operation or motion of the system, so as to analyze
and evaluate its efficiency.
In semi-physical simulation tests, the in-field semi-physical simulation tools need a large amount

of data as initial conditions, including the trajectory and RCS characteristics of the target, the radi-
ation characteristics of signal sources, models of radar data processing algorithms, definitions of
performance indexes, and data of tactical and position conditions.
This method can provide a flexible and convenient simulation test platform for the test appraisal

and evaluation of radar data processing systems. Its advantages mainly include:

1. The test environment is controllable. Various dynamic electromagnetic environments can be
simulated as demanded, providing vivid test conditions for the performance evaluation of radar
data processing systems.

2. The test process is controllable. The test and evaluation process can be repeated as needed. Alter-
natively, tests and evaluations can be performed on the pilot processes of interest, providing
favorable conditions for evaluating system performance and thus enabling quantitative perform-
ance analysis.

3. The test data are easy to record and retrieve, insensitive to environment, high in measurement
accuracy, and thus able to facilitate theperformance evaluationof the radar data processing system.

4. It has a high cost-to-benefit ratio.
5. It has strict security, generating no electromagnetic radiation and secure from enemy detections.

The major disadvantages of this test are:

1. The credibility of the test result is related to mathematical simulation models and usually differ-
ent from the real environment.
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2. When the test is done in a microwave anechoic chamber, because of restrictions due to the size of
the chamber, the operators have to consider how to eliminate the transmission effect of the near-
field electromagnetic waves.

17.6.4 Test Validation Method

The test validation method involves putting radar data processing models and/or systems into prac-
tical applications, and evaluating their performance through practical tests. The merit of this method
is that it can reflect their efficacy and properties objectively, truly, and comprehensively. Its
demerits are its high cost and implementation difficulties. This method is typically adopted to
analyze the findings of the others discussed in this section, and thus what it produces usually serves
as the final evaluation report on the performance of the systems of interest.

17.7 Summary

Rapid advances in radar data processing techniques have led to the emergence of new algorithms in
this field over the past few decades. Therefore, how to make desirable evaluations of the algorithms
has drawn attention worldwide, and become a hot topic for both theoretical and practical research. In
that connection, this chapter opens with definitions of scenarios and target density in Section 17.2.
This is followed by the analysis of key indexes for evaluating radar data processing performance,

including average track initiation time, accumulative number of track interruptions, track ambigu-
ity, and accumulative number of track switches for data association in Section 17.3; track accuracy,
maneuvering target tracking capability, false track ratio, and divergence for track filtering in
Section 17.4.
Then, the evaluation of data fusion performance of the radar network system is described in

Section 17.5. The indexes introduced here include track capacity, radar network detection probabil-
ity, and response time.
Finally, in Section 17.6, we focus on theMonte Carlo method among several others for evaluating

radar data processing performance – such as the analytical, semi-physical simulative, and test val-
idation methods.
Note that the evaluation indexes computed through the Monte Carlo method have their limita-

tions, each representing the performance of an algorithm only in one respect. Worthwhile evalu-
ations on the algorithm depend on the overall evaluation of each index on an individual basis,
providing a reference for engineers, who usually give preferential consideration to some properties
of filtering algorithms in specific applications.
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18
Radar Data Processing
Simulation Technology

18.1 Introduction

Resulting from a combination of simulation and radar technology, the simulation of radar data
processing systems is the modeling of radar data processing with the use of software on digital
computers, so that the dynamic process of radar data processing recurs.
Increases in the diversity and complexity of functions of modern radar systems necessitate

the use of digital simulation technology to set up a radar data processing model with software
so that the dynamic process of the system recurs. The revision and perfection of the model
and its parameters as needed can undoubtedly greatly save manpower and resources, and shorten
the development cycle. Therefore, it is a wise choice to use digital simulation technology in
system design and testing.
This chapter aims to provide some simulation methods which can be used to analyze and design

the radar data processing system, briefly introduce the basic knowledge of system simulation, pre-
sent the method of generating random data, simulate various algorithms, and analyze the estimated
result of system performance. Radar data processing algorithms are very suitable, in essence, for
simulations on digital computers.
The major topics of this chapter are:

• random data generation methods in the Monte Carlo simulation;
• simulations of movement models, measurement processes, filter prediction algorithms, and
multi-target tracking and data association algorithms;

• track initiation and termination;
• statistical evaluation of errors.

Radar Data Processing with Applications, First Edition. He You, Xiu Jianjuan, and Guan Xin.
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18.2 Basis of System Simulation Technology

18.2.1 Basic Concept of System Simulation Technology

System simulation, in short, amounts to model testing. It is the process of researching into an exist-
ing system or one at the design stage through system model tests. The realization of simulation
requires, first of all, a “substitute” for the real system, which is called a model. It is not the repro-
duction of the prototype, but is the simplification and abstraction of the system according to the
emphasis of the research or actual need, so as to help researchers grasp the essence of the problem
or the main contradiction. The test technology of this type, which is based on the modeling system,
is called the simulation technology.
System simulation is a comprehensive subject arising during the past three decades. It involves

theories and technologies of related disciplines, such as system analysis, control theory, computa-
tional method, and computer technology. Simulation technology is a crucial and even indispensable
tool when it is hard or impossible to do tests on the real system. It plays an important role in modern
scientific research, production, and education.
With the advances in digital computer hardware and software, digital computer simulation has

been developing rapidly since the 1970s. Digital computer simulation is highly accurate, repeatable,
versatile, and cheap. Many computer simulation program packages and simulation languages are
available, which is convenient in use. Therefore, simulation technology is widely used in production
management, engineering, military research, scientific tests, national economy, important policy
decisions, and other areas of social and natural sciences, with impressive results. In the development
of ultimate national defense weapon systems and crucial technology, for instance, this technology
directly decides the advancement, development cycle, expenditure, and even the outcome of the
system being developed.
In the pre-computer days, the physical simulation then in use was a subspecialty of other subjects.

With the development and proliferation of computers, however, a large number of common theor-
ies, methods, and technologies have been put forward in the simulation field. As a consequence,
simulation has emerged as an independent subject.
System simulation is the process of setting up models of the system, process, phenomenon, and

environment (such as physical, mathematical, or other logical models), running the established
models in a certain period of time, and applying them to system tests and analyses and staff training.
The basic idea of system simulation is to set up a test model which is quite similar to the system
being studied. Through the model’s operation, the information, parameters, and materials necessary
to the system under study are obtained to provide a scientific basis for the development of the sys-
tem. Since the real system is replaced with the model in the test, its characteristics can be studied
thoroughly and safely while its environment can remain intact.

18.2.1.1 Classification of System Simulation

System simulation can be divided into three types, according to the models adopted [404].

1. Object simulation (also called physical simulation). Object simulation, using all subsystems or
components of a real system with artificial factors added, is based on geometrical or physical
similarity. The wind tunnel test of an air model, for example, is aimed at accumulating experi-
ence for battles and providing a basis for improvement in the system. Physical models have phys-
ical properties similar to those of real systems. They can be miniature versions of real objects
(e.g., miniature aircraft and ships in wind tunnel tests), or prototypical models with the same
function as real systems (e.g., trial manufactured prototypes).
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2. Semi-object simulation (also called mathematical/physical simulation). In semi-object simula-
tion, some pieces of the hardware of the system being simulated are used while others are simu-
lated by computers. The operational environment (including threats) can be either object- or
computer-simulated. The purpose of this type of simulation is to discover problems in the system
as early as possible, and add new technologies necessary for the perfection of the system. It is a
combination of mathematical models and physical ones (or real subsystems).

3. Computer simulation. The characteristic of computer simulation is that the system is expressed
with rigid mathematical models and some rules. It is a pure software system, without using any
hardware in the real system. Mathematical models refer to those established by describing the
relations between physical variables in the system with abstract mathematical equations.
Research into the mathematical model of a system can reveal its inner movement and dynamic
properties. What interests us most in the computer simulation of a system is its mathematical
model. This is the mathematical mode similarity-based simulation, in which mathematical
models are tested in place of real systems to simulate changes in their realities, and analyze
the whole process of their changes with quantitative methods. The system is expressed in rigid
mathematical formulas, figures, or computer programs.

As computers have progressively stronger functions to solve complicated mathematical models,
their applications in mathematical simulations have been increasingly emphasized and accepted.
Mathematical simulation tests take much less time than physical ones, and have much simpler data
processing requirements.

18.2.1.2 Basic Idea of the Monte Carlo Simulation and its Characteristics

Detailed Monte Carlo simulation analyses are often needed in the design and integration of radar
data processing systems. The Monte Carlo simulation is a random analysis method which uses large
amounts of computer simulation to test the system’s dynamic characteristics and summarize stat-
istical findings. It comprises generation of pseudo-random numbers, Monte Carlo simulation
design, interpretation of findings, etc. Its function is to simulate the real physical environment with
mathematical methods and test the system’s reliability and feasibility.
The Monte Carlo method, also known as the statistical test method, is one which approximately

solves mathematical, physical, and engineering problems with statistical sampling theory. Its basic
approach to problems is: first, a probability model which has similarity to the problem is established
and described; then, it undergoes random simulation or statistical sampling; after that, the results are
used to find the statistical estimates of the characteristics which serve as the approximate solution to
the original problem, whose accuracy is estimated last. This method is primarily based on the law of
large numbers in probability theory, with its main means as the sampling analysis of random
variables.
The characteristics of the Monte Carlo simulation are as follows:

1. Simple in computational method and program content, because its analysis is realized by many
repetitions of simple sampling.

2. The probability and speed of convergence has nothing to do with the dimension of the problem.
3. Highly adaptive, immune to the constraints of the problem’s conditions.
4. Slow in convergence, not suitable for practical problems with high accuracy requirements.

A key to the possible practical applications of the Monte Carlo method is whether it can generate
random numbers conveniently, economically, and reliably.
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18.2.2 Digital Simulation of Stochastic Noise

The simulation research of stochastic systems on digital computers requires the computers to
generate the random noise expected. The random noise under study is an ergodic steady stochastic
process, so its statistical characteristic can be described by the time average characteristics of a sam-
ple function x(t) in the stochastic process {x(t)}. Theoretically speaking, any random noise can be
obtained by the computation of uniformly distributed white noise. Therefore, this section introduces
how to use a computer to generate uniformly distributed white noise, and how to generate, from the
white noise, the colored noise with other distributions.

18.2.2.1 Production of the Uniformly Distributed Random Number in [0, l] Interval

Mathematically speaking, as long as random numbers with a certain distribution pattern exist, arbi-
trarily distributed random numbers can be obtained by various mathematical transformations and
sampling [405]. Actually, it is always the simplest uniformly distributed random number in
interval [0, l] that is generated first, and then it is used to generate random numbers with varied
distributions as required. Some languages, like Matlab, have already provided the sentences used
to generate the uniformly distributed random number in interval [0, l], and can be applied directly
when necessary, while others do not, and users have to program these sentences themselves. Cur-
rently, there are many ways to generate uniformly distributed random numbers, and here we only
introduce two linear congruential methods: multiplicative and mixed.

Multiplicative Congruential Method
The recurrence formula for using the multiplicative congruential method to generate random
numbers is

xi = λxi−1 modMð Þ ð18:1Þ

where λ and M are parameters. Given the initial value x0, an integer sequence {xi} can be obtained
from (18.1). Transform each xi, that is,

ui = xi=M ð18:2Þ

then ui is a uniformly distributed random number in interval [0, l], and uif g, i= 1,2,… is a uni-
formly distributed sequence in interval [0, 1].
For binary system computers, λ and M can be chosen under the following rules:

1. M = 2K , where K is an integer within the number range which can be expressed by the machine;
2. λ is usually the number that is closest to λ≈2p=2 and satisfies λ = 23a ± 3= 8a ± 3, in which a can

be any integer and p is the word length of the machine.

Mixed Congruential Method
The recurrence equation for using the mixed congruential method to generate random
numbers is

xi+ 1 = λxi + ε modMð Þ ð18:3Þ
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where initial value x0, increment ε, multiplier λ, and mode M are all non-negative integers. Obvi-
ously, when ε= 0, the mixed congruential method becomes the multiplicative one. When the mixed
method is used to generate uniform random numbers, for M = 2K , the possible maximum cycle is
Tmax = 2K (i.e., each integer in interval 0,2K−1

� �
can appear once in an entire cycle).

18.2.2.2 Production of Normal Distribution Random Numbers

The normal distribution plays an important role in probability statistics, with many statistical phenom-
ena subject to normal distributions. For example, in a radar system, the interior noise of the receiver,
radar measurement errors, etc. are mostly assumed normally distributed. Since the closed-form solu-
tion to the function of other distributions cannot be obtained, the direct sampling method cannot be
used to obtain the random samples with normal distributions, and other measures need to be taken.
Usually, when generating a normally distributed random number, it is necessary to first generate a

standard normal distribution, from which the wanted normal distribution is then obtained through
transformation. For example, if X�N 0,1½ �, let

Y = σX + μ ð18:4Þ
so Y �N μ,σ2½ �. Therefore, only the method of generating a standard normal distribution random
number is introduced here.

Generating a Standard Normal Distribution Random Number
with the Central Limit Theorem
The method of generating a standard normal distribution random number with the central limit
theorem is also called statistical approximation.
Let r1, r2,…, rN be independent normally distributed random numbers in interval [0, 1]. When N

is relatively big, it follows from this theorem that
XN
i= 1

ri is a normally distributed random number.

Therefore,

Y =
1
N

XN
i= 1

ri ð18:5Þ

also follows a normal distribution.
Since ri is a random number normally distributed in interval [0, 1],

E Y½ �=E 1
N

XN
i= 1

ri

" #
=
1
N

XN
i= 1

E ri½ �= 1
2

ð18:6Þ

D Y½ � =D 1
N

XN
i= 1

ri

" #
=

1
N2

XN
i= 1

D ri½ �= 1
12N

ð18:7Þ

that is, Y �N 1
2 ,

1
12N

� �
. Then, normalized Y follows the standard normal distribution whose mean is

zero and variance one, that is,
ffiffiffiffiffiffiffiffiffi
12N

p
1
N

XN
i= 1

ri−
1
2

 !
�N 0,1½ �. Normally, N ≥ 6. If N = 12, then
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X12
i = 1

ri−6 � N 0,1½ �. This is a standard normally distributed random number generated according to

the central limit theorem.
If r1, r2,…, rN are independent uniformly distributed random numbers in interval − 1

2 ,
1
2

� �
, like-

wise, when N is relatively big,

Y =
1
N

XN
i= 1

ri �N 0,
1

12N

� �
ð18:8Þ

Normalized Y follows the standard normal distribution whose mean value is zero and variance

one, that is,
ffiffiffiffiffiffiffiffiffi
12N

p
1
N

XN
i= 1

ri

 !
�N 0,1½ �. If N = 12, then

X12
i= 1

ri−6 � N 0,1½ �. This is a standard

normally distributed random number generated according to the central limit theorem.

Transformation Method
The computational equation for generating standard normal distribution random numbers using the
transformation method is

x1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2lnr1

p
cos 2πr2ð Þ, x2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2lnr1

p
sin 2πr2ð Þ ð18:9Þ

where r1 and r2 are independent random numbers uniformly distributed in interval [0, 1]. Their char-
acteristics are high accuracy, and x1 and x2 are independent standard normally distributed random
numbers.

Density Approximation Methods
Statistical approximation can yield accurate normally distributed random samples when N is large,
but it takes much more time for a computer to do it. To reduce the value of N, the following methods
can be adopted to generate standard normal distribution random numbers.
Method 1: Let

x =
rffiffiffiffi
N

p 1−
a

bN2

r4

N2
−c

r2

N
+ d

� �� �
ð18:10Þ

then x is a standard normally distributed random number, where a= 41, b = 13 440, c = 10, d = 15,
and r is a uniformly distributed random number in interval [0, 1]. In (18.10), if N = 2, satisfactory
results can be obtained.
Method 2: This is also known as the Hastion rational approximation method. It generates standard

normally distributed random samples by approximating the rational fraction to the inverse function
of the normally distributed function. Let r be a uniformly distributed random number, and let

x =

y−
a0 + a1y+ a2y2

1 + b1y + b2y2 + b3y3
, 0 < y ≤ 0:5

a0 + a1y + a2y2

1 + b1y+ b2y2 + b3y3
−y, 0:5 < y< 1

8>>><>>>: ð18:11Þ
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y =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−2lnr

p
, 0 < r ≤ 0:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2ln 1−rð Þp
, 0:5 < r < 1

(
ð18:12Þ

then x is a standard normal distribution random number, where a0 = 13:515517, a1 = 0:802853,
a2 = 0:010328, b1 = 1:432788, b2 = 0:189269, and b3 = 0:001308.

18.2.2.3 Production of Arbitrarily Distributed Random Numbers

The exponential, Rayleigh, LS, Weibull, and lognormal distributions are often used in radar and
communication systems. How can a computer generate these random numbers? As discussed
above, given the random sequence uniformly distributed in interval [0, 1], the simple subsample
of the given distribution can be obtained. Actually this process is done by transforming, through
some mathematical method, the given uniformly distributed random sequence in interval [0,1] into
a random sequence with a given distribution. As long as this given sequence in interval [0,1] passes
the test, so can all the simple subsamples with any distribution produced through strict mathematical
transformations.
The direct sampling method, also called the method of distribution function characteristics or

inverse function, makes use of the characteristics of a distribution function to obtain the random
sampling of the given distribution.

Theorem 18.1 Let the distribution function of random variable X be FX(x), and let R =FX xð Þ, then
R is the variable uniformly distributed in interval [0,1]. The procedure of direct sampling is illus-
trated next.

Example 18.1
Obtaining uniformly distributed random numbers in interval [a, b] by direct sampling.

Solution
Let X�U a,b½ �, then when a ≤ x ≤ b,

FX xð Þ=
ðx
a

1
b−a

dx =
x−a

b−a
Let

r =FX xð Þ

where r is a random number uniformly distributed in interval [0,1], then the sampling equation is

x = a+ b−að Þr ð18:13Þ

or

x= a + b−að ÞR ð18:14Þ

with R a random variable uniformly distributed in interval [0,1]. Equation (18.13) or (18.14) is the
sampling equation used to obtain the uniform distribution in interval [a, b].
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Example 18.2
Obtaining exponentially distributed random numbers by direct sampling.

Solution
Let X�E a½ �, that is, pX xð Þ= ae−ax, a> 0, x ≥ 0, then when x ≥ 0,

FX xð Þ =
ðx
a
ae−atdt = 1−e−ax

Let r be a random number uniformly distributed in interval [0,1], and let r = 1−e−ax, then

x = −
1
a
ln 1−rð Þ ð18:15Þ

so

x= −
1
a
ln 1−Rð Þ ð18:16Þ

where R�U 0,1½ �. Since R�U 0,1½ �, 1−R�U 0,1½ �. Therefore, (18.15) or (18.16) can be rewritten as

x = −
1
a
lnr ð18:17Þ

or

x = −
1
a
lnR ð18:18Þ

Equation (18.17) or (18.18) is the sampling equation of the exponential distribution.

Example 18.3
Obtaining the random number of Rayleigh distribution by direct sampling.

Solution
Let X ~ R(σ), that is,

pX xð Þ = x=σ2
	 


exp −x2=2σ2
	 


, x ≥ 0

where σ is the parameter of the Rayleigh distribution. In radar, for example, if X is the output of the
linear receiver, then σ is the mean square root of IF noise. When x > 0,

FX xð Þ=
ðx
0
pX tð Þdt = 1−exp −x2=2σ2

	 

, x ≥ 0

Let

R=Fx xð Þ
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then

x= σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ln 1−Rð Þ

p
ð18:19Þ

Similarly, (18.19) can be revised to

x = σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2lnR

p
ð18:20Þ

Equation (18.20) is the sampling equation of the Rayleigh distribution.

18.3 Simulation of Radar Data Processing Algorithms

18.3.1 Simulation of Target Motion Models

18.3.1.1 Motion Equation of Aircraft

In the case of targets like aircraft flying in the atmosphere, it is difficult to give an equation which
accurately describes their motion, because of their complicated kinetic properties, atmospheric tur-
bulence, and manned maneuvers. So, we only discuss some common target motion modes that are
more complicated than the CV, CA, and CT models of Section 3.2.1.

S Maneuver
The Smaneuver is shown in Figure 18.1. In the figure, T is the cycle of an Smaneuver, andΔφ is the
deviation angle of the target’s flight course from the main course.

Dive Maneuver
The dive is a maneuver that an aircraft takes in dive bombing. The motion model is simplified under
some approximate assumptions, with the aircraft viewed as a particle with some rigid characteris-
tics. The typical motion curve is shown in Figure 18.2.
Assumptions:

1. The deflection angle of an aircraft changes uniformly in the descending process, and the changes
in angle are the same in size but opposite in direction when the pilot pushes and pulls the lever.

2. The aircraft is in balance when descending; the actions of gravity, lift, etc. are ignored, and what
is considered is only the balance relation between the thrust force of the aircraft’s engine and the
resistance which is in a certain proportion to the aircraft’s velocity. The aircraft’s thrust forces in
horizontal and vertical directions are proportional to its velocity.

3. The speeding up is completed the moment a dive starts, the throttle is fixed in the dive, and the
thrust force of the engine is a constant value.

4. There is a fixed proportional coefficient q between the horizontal and vertical velocities created
by the same amount of thrust force.

T

tΔϕ

T/4

Figure 18.1 S maneuver

449Radar Data Processing Simulation Technology



The input of the model is the descending distance ΔL, the descending altitude ΔH, and the des-
cending time T given by the mode editor, and its output is the simulated trajectory of the aircraft in
dive and climb motions. The model is built in the 2D (axis L, which is in the same direction as the
flight direction and axis H, which is vertical to the ground) longitudinal plane in the flight direction.
If the dive-and-climb process is divided into joystick push and pull modes (the aircraft changes

from joystick push to joystick pull mode at moment T/2), the following constraints result from the
assumptions above.

1. Joystick push process (t ≤ T=2) VH tð Þ= −V0qsin a0tð Þ, VL tð Þ=V0 cos a0tð Þ; joystick pull process
(t ≥ T=2), VH tð Þ= −V0qsin a0 T − tð Þð Þ; velocity in direction H VH =V0 cos a0 T − tð Þ½ �, where a0 is
the absolute value of angular velocity and V0 is the initial horizontal velocity in the dive
and climb.

2. At moment t =T=2, the motion changes from joystick push to joystick pull, the descending alti-
tude is H/2, and the descending distance is L/2.

Therefore, we get

ðT=2
0

sina0tð ÞV0qdt =
ΔHj j
2

ð18:21Þ

ðT=2
0

cosa0tð ÞV0dt =
ΔL
2

ð18:22Þ

which are the initiation equations of dives, and a simultaneous solution yields

a0 =
4
T

arctan q × ΔHj j=ΔLð Þ ð18:23Þ

v0 =ΔL× a0=2sin a0T=2ð Þ ð18:24Þ

Change from pushing to
pulling at T/2 moment

V0cos (a′t)

–qV0sin (a′t)

a′t

V0

O
X (L)

Y (H)

Figure 18.2 Motorized dive
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From constraint 1 follows the corresponding clock triggering equation

x tð Þ= x 0ð Þ+
ðt
0
v0 cos a0tð Þdt ð18:25Þ

y tð Þ = y 0ð Þ−
ðt
0
qv0 sin a0tð Þdt ð18:26Þ

where t ≤ T=2, x(0) and y(0) are the aircraft’s coordinates in axes L andH at the initial moment, then

x tð Þ= x T=2ð Þ+
ðt
T=2

v0 cos a
0 T − tð Þ½ �dt ð18:27Þ

y tð Þ= y T=2ð Þ−
ðt
T=2

qv0 sin a0 T − tð Þ½ �dt ð18:28Þ

where t ≥ T=2, x(T/2) and y(T/2) are the aircraft’s coordinates in axes L and H at time T/2.

Pitch-Up Maneuver
The pitch up is a maneuver which an air raider executes in loft bombing. In the pitch-up process, the
flying velocity changes in both direction and magnitude. A typical pitch-up maneuver is the 180�

arcing turn made by an aircraft in the vertical plane. As shown in Figure 18.3, the pitch-up maneuver
starts at time t1 and ends at time t2.

18.3.1.2 Real-Time Track Creation

In system simulation, there may be several targets of interest, and the target fade-in-and-out fre-
quency is high. Therefore, it is necessary to create tracks in real time.
First of all, a track parameter file needs to be set up for the targets in a simulation of the system

according to the target environment requirements. These parameters include track initiation, seg-
mentation of target motion types, maneuver types, etc. At the initialization stage in the simulation
process, the file is read in, and the coordinates transformed in the meantime.

O

H

L

h

t2

t1

Figure 18.3 Pitch-up maneuver
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At the following stages, track data is computed once per sampling interval T according to the
system timer. Generally speaking, since several targets are dealt with, the motion type of each target
should be determined for track segmentation management.
The creation of tracks in real time can help predetermine the initial target environment in the

working airspace when the radar starts up. Then, in the simulation process, parameters are set to
control the time sequence in which each flying target fades in and out flexibly and in real time,
so as to change the number of targets in the airspace and their characteristics.

18.3.2 Simulation of the Observation Process

During each radar scan, if a target is detected successfully, the observations disturbed by the noise
have to be simulated. Owing to the interruption from nature and the accuracy of instruments,
the signals detected by the radar are not real values, but random variables with noise. The simulative
method is to add zero-mean, white Gaussian noise errors to the accurate values, to generate the
observation values of range, azimuth, and pitching angle. The assumptions of various noises
are given as follows.

18.3.2.1 Range Noise

Suppose that the range ρ detected by the radar satisfies

ρ= �ρ + qρ ð18:29Þ

where �ρ is the actual range and qρ is the range noise, satisfying

E qρ
� �

= 0

E q2ρ

h i
= σ2ρ

8<: ð18:30Þ

The standard deviation σρ is related to the pulse width τ, the signal-to-noise ratio S/N, and the
velocity of light c. Therefore, the following assumption can be made:

σρ =
cτ

2
ffiffiffi
2

p � 1ffiffiffiffiffiffiffiffiffi
S=N

p =
cτ

2
ffiffiffi
2

p � ρ2

ρ20
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S=Nð Þ0

p ð18:31Þ

where ρ is the detecting range, ρ0 is the range at the initial tracking moment, S/N is the signal-to-
noise ratio, and (S/N)0 is S/N at the initial tracking moment. Thus, by extracting the subsample qρ
that is subject to the N½0,σ2ρ� distribution, the radar’s simulated detecting range ρ can be obtained
from (18.29).

18.3.2.2 Direction Cosine Noise

The measurement of the three-coordinate radar in the direction cosine coordinate system is dis-
cussed here. Suppose that the direction cosine α 6¼ β detected by the radar satisfies
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α= �α+ qα

β = �β + qβ

(
ð18:32Þ

where �α and �β are the actual direction cosines, qα and qβ are the cosine noises, respectively, in the
two directions, satisfying

E qα½ �= 0, E qβ
� �

= 0 ð18:33Þ

E q2α
� �

= σ2α, E q2β

h i
= σ2β ð18:34Þ

The direction cosine noise is influenced by thermal noise and angle glint. Then,

σα = σthermal + σangle glint

σβ = σα

(
ð18:35Þ

Suppose that

σthermal =
θ0

1:89
ffiffiffi
2

p � 1ffiffiffiffiffiffiffiffiffi
S=N

p =
θ0

1:89
ffiffiffi
2

p � ρ2

ρ20
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S=Nð Þ0

p ð18:36Þ

where θ0 is the half power width of the antenna beam, S/N the signal-to-noise ratio, ρ the range,
ρ0 the tracking range at the initial moment, and (S/N)0 the S/N at the initial tracking moment.
The variance of angle glint is described as

σangle glint =
0:35L
ρ

ð18:37Þ

where ρ is range, L is span.
If transformed into rectangular coordinates (x, y, z), then (ρ, α, β) can be described as

α= cosεcosθ = x=ρ, β = cosεsinθ = y=ρ, and ρ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + z2

p
, in which ε and θ are, respectively,

the pitching angle and azimuth of the measured value. The measured value of azimuth and pitching
angle can also be obtained by directly adding the theoretical value to the zero-mean, white Gaussian
noise sampling.
Similarly, the simulation of the observation process can also be realized through the measurement

equation of the filter. Take the linear system Kalman filter as an example. The measured value
is z kð Þ=H kð ÞX kð Þ +W kð Þ, where H(k) is the measurement matrix and W(k) the measurement
noise sequence. If the system is nonlinear, the measured value can be obtained from
z kð Þ= h k,X kð Þ½ �+W kð Þ, where the measurement noise can be assumed additive zero-mean white
noise and h �ð Þ the nonlinear time-varying function matrix.

18.3.3 Tracking Filtering and Track Management

18.3.3.1 Filtering and Prediction Algorithm

Here we discuss determination of initial values, computation of initial covariance matrixes, and
evaluation of statistical indexes. In this filtering algorithm, the target measurement matrixH, initial
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covariance matrix P(0|0), and noise covariance matrix R are unknown. Corresponding equations in
rectangular coordinates are given as follows.

Computation of the Target Measurement Matrix
The following equivalent measurement equations give the measurement position of the target:

x= ρα ð18:38Þ
y= ρβ ð18:39Þ
z= ργ ð18:40Þ

where γ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−α2−β2

p
. Then, the measurement is linear and the measurement matrix H is

H =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

264
375 ð18:41Þ

In the case of nine dimensions, it is only necessary to add three more columns of zero elements to
matrix H.

Computation of Measurement Covariance Matrix R
When using the equivalent measurement in a rectangular coordinate system, x 6¼ y 6¼ z are random
variables but are not independent. Now suppose that

x= �x+ qx ð18:42Þ
y= �y+ qy ð18:43Þ
z= �z + qz ð18:44Þ

where qx, qy, and qz are, respectively, the ranging errors in directions x, y, and z. Therefore, their
covariance matrix is

R=

R11 R12 R13

R21 R22 R23

R31 R32 R33

264
375 ð18:45Þ

where coefficient Rij is

R11≈α2σ2ρ + ρ
2σ2α ð18:46Þ

R12 =R21≈αβσ2ρ ð18:47Þ

R13 =R31≈ασ2ρ−ρ
2α

γ
σ2α ð18:48Þ

R22≈β2σ2ρ + ρ
2σ2β ð18:49Þ
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R23 =R32≈βγσ2ρ−ρ
2β

γ
σ2β ð18:50Þ

R33≈γ2σ2ρ + ρ
2 α

γ

� �2

σ2α + ρ
2 β

γ

� �2

σ2β ð18:51Þ

Besides, the measurement covariance matrix R can also be computed with the method in (3.64)
and (3.70).

Computation of the Filtering Initial Value
In the filtering algorithm, if the initial value with a better algorithm is given, there could be great
influence on the convergence rate of filtering and better filtering estimates could be obtained. In
simulation, the determination of the initial state vector and initial covariance matrix can be found
in Section 3.2.3.

18.3.3.2 Multi-target Data Association Methods

There are many multi-target data association methods, and here a brief introduction is given to the
system by using the nearest-neighbor algorithm.
In this method, first an association gate has to be set up around the predicted position of each track

such that the probability of true observations falling in it is high, without allowing too many extra-
neous measurements, so as to reduce the computing complexity of the algorithm.
Let

Si =HPH0 +R ð18:52Þ

denote the innovation covariance matrix of the ith track, and

Y
�
ij kð Þ =Zj kð Þ−HX̂i k k−1jð Þ ð18:53Þ

the distance between the ith track prediction and the jth observed value in the kth recursion. Then the
statistical distance between the ith track and the jth observation can be computed as

d2ij = eY 0
ijSi

−1eY ij ð18:54Þ

If d2ij <G0, then the ith track is associated with the jth measurement. Otherwise, they are unrelated.
G0 is an optional parameter.

18.3.3.3 Track Initiation and Termination

The most commonly used method of track initiation is the two-point initiation method, which asso-
ciates the measurements of two successive frames. Let
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Zj kð Þ=
Zjx

Zjy

Zjz

264
375 ð18:55Þ

be the jth observed value at time k, and

Y ij kð Þ=
Yijx

Yijy

Yijz

264
375 =Zj kð Þ−Zi k−1ð Þ ð18:56Þ

the distance between the jth measurement Zj(k) at time k and the with measurement Zi k−1ð Þ at
time k−1.
Thus, one can obtain the statistics as

d2ij =Y ij
0S−1

ij Y ij ð18:57Þ

and

Sij = 2Ri + σT
2
ij ð18:58Þ

where Ri is the observation covariance matrix computed according to the ith measurement at time
k−1, σ is the covariance matrix of the target velocity vector v (zero mean), and

Tij = Tcj kð Þ−Tci k−1ð Þ ð18:59Þ

is the time difference in recording between the jth measurement at time k and the ith measurement at
time k−1.
If d2ij <G0, the jth measurement at time k successfully associates with the ith measurement at

time k−1. By using the nearest-neighbor method, the configuration relation between the measure-
ments at the two moments can be derived. Associated measurements form the initiation of a new
track, and those that failed to form tracks are treated as isolated measurements, waiting for the data
of the next frame. The isolated measurements, if failing to be initiated in the next frame, will be
discarded.
In the multi-target tracking case, besides data association and track maintenance, track termin-

ation is another concern. Once a target goes beyond the sensor’s detection range, the tracker has
to decide to eliminate the files of the redundant tracks accordingly to terminate the tracking process.
Current multi-target track termination technologies include the sequential probabilistic ratio test,
tracking gate method, and Bayesian track termination method. For details, see Chapter 11.

18.3.3.4 Statistical Evaluation of Errors

In order to compare the performance of various tracking filters, some commonly used evaluation
standards have to be given. Here, two main groups of methods are introduced.
The first group is based on “time average.” The errors of tracking filter position and velocity are

defined as follows.
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1. Position error

σ2x =
1
N

Xk
i= k−N+1

x̂ ijið Þ−x ið Þ½ �2 ð18:60Þ

where x(i) is the position at the moment of the ith step, x̂ ijið Þ is the estimated value of position
x(i), and N is the number of sampling points.

2. Velocity error

σ2_x =
1
N

Xk
i = k−N+1

_̂x ijið Þ− _x ið Þ� �2 ð18:61Þ

where x(i) is the velocity at the moment of the ith step, x̂ ijið Þ is the estimated value of velocity
x(i), and N is the number of sampling points.

It follows from the definition above that the smaller σ2x and σ2_x are, the better the filtering effect
will be, and vice versa.
The second group is based on “ensemble average.” That is, the estimation of the mean value and

variance of position x(k) and velocity _x kð Þ at a certain time k.
Denote by x(k) and _x kð Þ the position and velocity at time k, by x̂i kjkð Þ the estimate of position x(k)

in the ith simulation at time k, and by _̂xi kjkð Þ the estimate of velocity _x kð Þ in the ith simulation at
time k. Then, the mean of position error at time k is estimated as

Δ�x kð Þ = 1
M

XM
i= 1

Δx̂i kð Þ ð18:62Þ

where Δx̂i kð Þ= x kð Þ− x̂i kjkð Þ.
The mean of velocity error at time k is estimated as

σ2Δx kð Þ =
1

M−1

XM
i= 1

Δx̂i kð Þ−Δ�x kð Þ½ �2 ð18:63Þ

σ2Δ _x kð Þ =
1

M−1

XM
i= 1

Δ _̂xi kð Þ−Δ�_x kð Þ� �2 ð18:64Þ

where M is the number of Monte Carlo simulation runs, usually M = 30 – 50.
As can be seen, error variances σ2Δx kð Þ and σ2Δ _x kð Þ lessen as error means Δ�x kð Þ and Δ�_x kð Þ

approach 0, which indicates a higher accuracy of filtering (and vice versa).

18.4 Simulation Examples of Algorithms

This section deals with the simulation of several radar data association algorithms based on the
methods discussed in the previous sections. The performance of these algorithms will be used to
evaluate the methods for simulating the radar data processing process, because the association
between measurements and tracks is the key to the multi-target tracking technology.
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The PDA assumes that all the measurements in the association region of a certain target have
originated from the target or random clutter. This algorithm yields the desired results when tracking
a single target in dense clutter. In the multi-target environment, however, when the measurements
of other targets appear persistently in the association region of a certain target, false associations
are likely to arise, which in turn results in track loss.
The JPDA algorithm was thus put forward by Bar-Shalom to solve this problem. Accounting for

the probability of several measurements from other targets being in the association region of one
target, the JPDA arranges and combines all targets and measurements, from which feasible joint
events are selected for joint probability computation. The problem above can thus be solved. How-
ever, this algorithm is complicated and has excessive computational requirements. It may give rise
to combination explosion as the number of targets increases in the decomposition of the validation
matrix. Therefore, it is difficult for the JPDA to be implemented in engineering.
Many simplified versions of this algorithm were proposed for its easy engineering implementa-

tions, including an empirical probability computation equation in Ref. [199], a suboptimal JPDA
algorithm in Ref. [200], and a DFS approach in its simplified form in Ref. [201]. These models
simplify the association probability computation in the JPDA. For their basic filtering equations,
see Section 8.5.4.
Next, several typical multi-target scenarios will be set, and a comparison made between the three

algorithms above in terms of root mean square position error, time consumption per cycle, and cor-
rect association probability. Further, the JPDA and MHT will be compared to highlight the differ-
ence between the simplified and original algorithms.
Three typical simulation environments are considered here.

Environment 1: Track two cross-moving targets, whose initial states are, respectively,
X1 = [−29 500 m, 400 m/s, 34 500 m, −400 m/s]0

X2 = [−26 250 m, 296 m/s, 34 500 m, −400 m/s]0.
Environment 2: Track two targets moving in parallel, whose initial states are, respectively,
X1 = [−22 000 m, 150 m/s, 23 000 m, −150 m/s]0

X2 = [−22 600 m, 150 m/s, 23 000 m, −150 m/s]0.

Environment 1
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Figure 18.4 A comparison of the position error of target 1’s RMS on axis x
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Environment 2
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Figure 18.5 A comparison of the position error of target 2’s RMS on axis x

0
0

20 40 60 80
t (s)

100 120

R
M

S
 x

(m
)

500

600

700

800

900

400

300

200

100

Experience JPDA

Depth preferred JPDA

Suboptimal JPDA

Figure 18.6 A comparison of the position error of target 1’s RMS on axis x
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Figure 18.7 A comparison of the position error of target 3’s RMS on axis x
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Environment 3
Track 10 targets simultaneously, whose initial states are, respectively:

X1 = [−15 600 m, 500 m/s, 13 000 m, 120 m/s]0;
X2 = [−7600 m, 150 m/s, 30 000 m, 250 m/s]0;
X3 = [−21 000 m, 350 m/s, 23 000 m, −50 m/s]0;
X4 = [−10 500 m, −200 m/s, 24 500 m, 200 m/s]0;
X5 = [−18 250 m, 0 m/s, 26 500 m, −300 m/s]0;
X6 = [−14 600 m, −150 m/s, 9000 m, 50 m/s]0;
X7 = [−29 500 m, 400 m/s, 34 500 m, −400 m/s]0;
X8 = [−33 250 m, 100 m/s, 38 500 m, −200 m/s]0;
X9 = [−26 250 m, 296 m/s, 34 500 m, −400 m/s]0;
X10 = [−23 250 m, 296 m/s, 24 500 m, 400 m/s]0.

In the process of simulation, suppose that the average number of clutters in the gate is m = 3, the
range measurement error is σr = 100m, the angle measurement error is σθ = 0:01 rad, the sampling
interval is T = 1 s, the duration of the target’s motion is 120 s, and the simulation time is 50 s.
The findings of the simulation, as shown in Figures 18.4–18.10, are analyzed below.

Position Error of Root Mean Square
Figures 18.4–18.7 are, respectively, the curves of RMS position errors of targets 1 and 2’s filtering
results in the cross and parallel environments with use of the JPDA, MHT, and three simplified
JPDA algorithms. As shown, the MHT has the highest tracking accuracy, followed by the JPDA
and the DFS sequentially. Among the simplified JPDA algorithms, the DFS converges fastest
and functions better in tracking than the suboptimal and the empirical in turn.
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As indicated in Figure 18.4, the empirical has the largest error when the targets are in cross
motion, while the other two have smaller error and are steady in the whole tracking process.
A conclusion can be drawn from the above: the MHT yields the best tracking result, the JPDA

ranks second, and the DFS and the suboptimal give similar tracking results, which are better than
those of the empirical.
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Speed of Algorithm
Figure 18.9 shows a curve of the time consumed by the algorithms varying with the average clutter
number. As can be seen, the time consumption of the JPDA grows fastest with this number, fol-
lowed by that of the MHT, which in turn grows significantly faster than that of the suboptimal.
The DFS consumes less time than the empirical when this average number is smaller than 4, but
is more time consuming than the latter when it is larger than 4.
Therefore, the JPDA is the most time consuming, succeeded by the MHT, which consumes much

more time than the suboptimal. The DFS consumes least time when the number of targets being
tracked is small, while the empirical ranks last in time consumption when this number and that
of clutters are large.

Correct Association Probability
Figure 18.10 is the curve of the correct association probability of the algorithms varying with the
average clutter number, which provides the following results. In dense environments, the correct
association probability of the MHT drops slowest with the growth in number of clutters, followed
by that of the JPDA, with that of the empirical JPDA ranking last. This probability of the DFS is
higher than that of the suboptimal when the number of clutters is smaller than 6, while it is lower
than that of the latter but higher than that of the empirical when this number is larger than 6.
As suggested by the results of the various simulations, the MHT is more accurate in tracking, and

has a higher correct association probability when targets are dense, but does not have a good real-
time performance; the tracking accuracy and correct association probability of the JPDA are lower
than the MHT but higher than the simplified JPDA algorithms, and it has a bad real-time
performance.
Among simplified JPDA algorithms, the DFS is quick in convergence and has a steady tracking

effect. It has a faster computing speed and a higher correct association probability than the other two
when the number of clutters is smaller than 4. The convergence speed of the suboptimal is slightly
lower than that of the DFS, but the two algorithms are similar in stability and perform better than the
empirical. The correct association probability of the suboptimal is slightly lower than that of the
DFS when the number of clutters is smaller than 4, but higher than that of the other two algorithms
when the number is larger than 4. Its deficiency is that its speed is lower than that of the other two
and it is not easy to implement in engineering. The stability, speed of convergence, and correct asso-
ciation probability of the empirical are all lower than those of the other two algorithms, but the speed
of the algorithm is higher. When the number of clutters is smaller than 4, its speed is slightly lower
than that of the DFS, but much higher than those of the other two when the number is larger than 4.
Several factors may account for this:

1. The empirical uses the essential characteristics of the JPDA to compute association probabilities,
so its algorithm is direct and simple. However, the sum of the association probabilities of all the
tracks obtained with the algorithm is not 1, so incorrect echoes tend to be over-weighted by the
empirical probability.

2. The suboptimal, accounting for partially joint events, has a more reasonable association prob-
ability and a higher accuracy. Meanwhile, it is for this reason that the algorithm is comparatively
complicated.

3. The simplified form of the DFS, computing the association probability directly, can be as effect-
ive as the JPDA when the density of targets is moderate, and it is quick in computation, but the
complicated equations of its simplified form have excessive requirements for the memory cap-
acity of the system when targets are dense.
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The following conclusion can be drawn from the simulation and theoretical analyses. The track-
ing accuracy and correct association probability of the MHT are higher than those of the JPDA, and
both MHT and JPDA have a bad real-time performance. The tracking accuracy and correct asso-
ciation probability of the JPDA are both higher than those of the simplified JPDA algorithms.
In the three simplified JPDA algorithms, when the number of clutters is not large, the tracking

accuracy and correct association probability of the DFS are better than those of the other two.
Besides, the DFS has a good real-time performance and is easy to implement in engineering; the
suboptimal and the empirical can also satisfy the requirement of engineering implementation,
but the tracking accuracy and correct association probability of the suboptimal are higher. When
the number of clutters is large, the suboptimal has a higher correct association probability but a poor
real-time performance, and it is hard to implement in engineering. The two properties of the DFS are
moderate. The empirical has a good real-time performance and is easy to implement in engineering,
but its correct association probability is the lowest among them.
This section studies the use of computer simulation technology to analyze and evaluate the

problems in radar data processing, and gives examples of the simulation process of several data
association algorithms in multi-target tracking.

18.5 Summary

This chapter systematically introduces system simulation technology, so that readers can simulate
the algorithms introduced in previous chapters by combining the simulation and the radar data pro-
cessing technology, and evaluate their advantages and disadvantages in actual engineering
applications.
Section 18.2 introduces the basic knowledge of the system simulation technology, with emphasis

on the production of random numbers in the Monte Carlo simulation. Section 18.3, the focus of this
chapter, discusses the simulation of some radar data processing algorithms. Based on the introduc-
tion of the three most basic motion models (CV, CA, and CT models), this section introduces
another three maneuver models which occur frequently in aircraft flight: S, dive, and pitch-up man-
euvers. Then, it discusses the simulation technology in the observation process. In addition, it makes
an introduction to several key issues in track filtering and track management: filtering prediction
algorithms, multi-target data association techniques, track initiation and termination, and statistical
evaluation of errors. Section 18.4 gives an example of the simulation process.
The main framework of system simulation is presented in this chapter. Still, many problems

remain to be further explored. These will be the focus of our further research efforts.
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19
Practical Application
of Radar Data Processing

19.1 Introduction

Radar data processing is a process of estimating the track of a target and calculating its position with
the data provided by radars. In real application systems, the ultimate purpose is not estimating target
tracks, but taking advantage of these data to make judgments and take required actions. The radar
data processing technology is widely used. Its typical civilian uses include air traffic control (ATC)
and maritime surveillance (MS), while its military uses can be found chiefly in air defense, fire
control, and missile interception and guidance. Figure 19.1 shows the incorporation of this technol-
ogy into other systems
Radar data processing technology functions differently in different application systems. For

instance, in ATC it is used to carry out functions such as route control, approach control, conflict
warning, collision avoidance, and spacing adjustment and measure. In MS, it is used to calculate
precisely a ship’s course and speed, and to plot the conflict routes quickly and decide proper evasive
maneuvers to ensure safe navigation. In defensive applications, the typical functions include early
warning detection, threat estimation, weapon assignment, fire control, and so on.
This chapter mainly covers the application of the radar data processing technology in some

typical conditions and focuses on the structure of radar data processing and its realization.

19.2 Application in ATC Systems

19.2.1 Application, Components, and Requirement

The basic requirement of the civil aviation air control system is to transport passengers and freight
from one place to another safely and in an orderly fashion, which is realized through a service
system – ATC. Though emerging as early as in WWII, radar was not developed into a kind of
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ATC until the mid- to late 1950s. It helps air traffic controllers to monitor airborne aircraft in almost
all weather flight states by precisely positioning and identifying every aircraft in the air.
Common ATC radars fall into two types: primary surveillance radar (PSR) and secondary sur-

veillance radar (SSR). Sometimes SSR is adherent to PSR, forming an integrated ATC radar. An
ATC system is mainly composed of four parts: navigation equipment, surveillance and control
equipment, communication equipment, and personnel. Its goal is to guarantee safety, efficiency,
and orderliness in air traffic. In other words, it aims to reduce service cost and improve service
quality through utilizing air traffic resources reasonably, reducing delays and waiting times in
schedules, and selecting appropriate, fuel-saving lines.

1. Navigation equipment. This enables the aircraft to fly along the specified route, which is realized
by locating certain elaborately preset geological positions with radio signals, and by the pilot
sending the time and altitude when passing each of these positions to the ground to check
whether the flight complies with the plan or not.
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Figure 19.1 Relation between radar data processing and other systems
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2. Surveillance and control equipment. This is used to modify an aircraft’s deviation from the spe-
cified air route, avoiding collision and scheduling aircraft flow. Information about location,
course, speed, and properties is mainly provided by PSR and SSR.

3. Communication equipment. This consists of air–land–air voice lines, through which controllers
insert corrective actions into aircraft controls, while pilots report flight speed and altitude and
meteorological conditions to the controllers. The current ATC equipment realizes the complete
data fusion through different sensors (multiple-radar structures), computers, and consoles, as a
result of which the ATC system becomes a multi-radar data processing system with multiple
factors and levels.

4. Personnel. These are pilots and air traffic controllers. Pilots are responsible for keeping the
aircraft along the planned route and performing controllers’ orders. Controllers monitor flight
information of the airborne aircraft to identify dangers and decide the most appropriate ways
to deal with them. The modern ATC system emphasizes automation and intelligence, while
the roles of human beings and human–computer interfaces in this system are still factors to
be reckoned with.

19.2.2 Radar Data Processing Structure

First, the coordinates of a target (ρ, θ, φ) are given by radar measurement pretreatment (e.g., the
real-time modification of observations’ systematic errors, false alarm rate reduction, fixed track
measurement deletion, etc.), then they are transmitted and processed in standard formats. The tracks
obtained from coordinate transformation and tracking – which are assigned the attributes and alti-
tude of the target as well as unassociated measurements – will be shown to operators on plane
position indicators and digital data displays.
To establish a processing structure suitable for an ATC center, the following features should be

considered.

1. Systemic reliability and availability. When a minor fault occurs, the whole system must be
guaranteed to work normally (i.e., the system is able to be in the exception protection state).
When a serious fault occurs, the system should also be guaranteed to work in a lowered-
performance mode (i.e., the system should be switched to a reliable working state, although
its performance has been lowered). When a local fault occurs, the system should be capable
of recombining the subsystems.

2. Systemic automation level. Caution should be exercised when choosing the functions to be
automated, in case the operability degrades and the whole system becomes unnecessarily
complicated.

3. Systemic operational modularization. The system design should meet the requirements of dif-
ferent ATC systems, which include, for instance, route control conducted in different traffic
areas, control in terminal maneuver area, or hybrid control.

4. Systemic extensibility.
5. Systemic feasibility and cost.

In order to improve an ATC system when the air traffic increases – to enhance its safety and
efficiency – it is necessary to integrate data from different radars and control centers. Specific-
ally, radar data processing usually requires many radars’ track capability [15, 56, 406, 407], and
information about the development of flight plans needs to be exchanged among different
centers.
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The structure of a radar data processing system in the centralized ATC system is shown in
Figure 19.2. In this system, the general mainframe computer conducts radar data processing and
flight plan processing, including coordinate transformation and mono- or multi-radar tracks. The
input interface pre-treats radar measurements and also serves as an input data cache. Generally,
a specific minicomputer with strong input/output processing performance is needed. In addition,
another general minicomputer is used to control the data exchange with the console (i.e., to transmit
information – track, flight plan data, etc.), to preprocess data, to make data compatible with the fea-
tures of indicators and other peripherals, and to implement a human–computer interface.
The measurements recorded by radar stations are sent to the ATC center, where the central com-

puter processes input/output data, radar data, and flight plans to display them in the formof graphs and
data. To achieve target tracks, the controlled airspace is divided into several sorted grids, towhich the
target measurements correspond. In each grid, there is one sensor tagged with “main station,”which
means that when an aircraft is in this grid, it is right to consider tracking the measurements provided
only by this sensor. One standby radar is set in each grid that will function in place of the “main
station” out ofwork, lest the system performance should decline or fail. Similarly, there are also track
sorting grids, which overlap with track grids, simplifying the process of measurement-to-track
association [126, 199, 408–410]. Classified grid techniques can easily achieve simplifiedmulti-radar
tracks: it is unnecessary for the covering regions of all radars to overlap to a large degree, but the
overall coverage of the system is much larger than the sum of that of individual radars. As measure-
ments provided by different radars of adjacent grids are used, the system tracks are updated at dif-
ferent rates. The extrapolation of tracks is conducted with the track velocity information.
The main function of radar data processing of the ATC system in the terminal maneuvering area is

single-radar tracking, including automatic track initiation [411–413], computation and updating of
track quality [54,60], measurement–track association, smoothing and prediction of α–β, and man-
euver detection. Both track initiation and termination must comply with the m/n logic.

19.2.3 ATC Application

As civil aviation booms in China, the increasing number of aircraft sometimes jams an airspace over
a certain period of time, which could disable the airspace management center. Thus, ATC is applied
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to address the problem. ATC systems have already become standard devices for modern civil air-
craft, which can effectively warn the pilot of coming flight conflict and provide suggestions about
collision avoidance [414–418].
Through collecting information such as radar data, ADS data, meteorological information, and

flight plan data, air traffic flow management (ATFM) can be conducted to make full use of ATC
capacity and to ensure safe and orderly air traffic with fewer delays and congestions. Radar data, as
an important data source for ATFM, is the basis for this. ATFM can be better conducted only on the
basis of precise radar data. At present, all management centers in China apply single-radar data pro-
cessing systems, which are limited in monitoring range and low in accuracy, and wherein data loss
may occur during the handover between two management centers. Multiple-radar data processing
systems (MRDPSs) are the best option to provide a continuous display of air conditions to ensure
seamless, multiple-radar coverage in the entire airspace and flight safety. Multiple-radar networking
and data fusion not only extend the radar monitoring range to the entire airspace that all radars cover,
but also enhances the radars’ target monitoring quality and the reliability of the system itself.
The ATC command monitoring system (ATCCMS), based on information integration, has been

proposed to meet the requirements for enhancing safety in ATC. The ATCCMS can monitor ATC
operations and provide warnings and quality information about management decisions to ATC and
CAA (civil aviation administration) departments at all levels, by integrating all the current ATC
information and effectively processing basic data such as voice calls, radar data, and flight plans.
This system is divided into four parts: basic data sources, operational subsystems, management
decision subsystems, and supporting environments.

19.2.3.1 Basic Data Source

The basic data source includes radar signals, radio signals, flight telegrams, and such auxiliary flight
information as meteorological and navigation information.

Format Conversion of Radar Data
Currently, the ATC radars imported by CAAC are of great variety and origin: ranging from
Raytheon, Westinghouse, and Telephonics in the USA; Alenia in Italy; Thomson in France; to
Toshiba and NEC in Japan. They converge at the information center through specialized digital data
network (DDN) lines on the basis of the high-level data link control (HDLC) protocol, with elec-
trical interface following the RS332 or RS422 standard and CCITTV24/V28 criterion. The data are
mostly in three kinds of standard datagram format: ASTERIX, MPII, and CD-2. They are greatly
different in radar data format, therefore a standard format should be designed first in order to achieve
data exchange between different radars and the fusion of these data.
These data are received in real time by several synchronous communication cards configured in

the radar data receiver according to corresponding protocols and interface criteria. Then they are
converted to IP messages transmitted through the TCP in the Ethernet. The multiple threading
method is used in the radar data processing server to set up for each received radar data diagram
a single radar processing thread, through which the SOCKET service is established for data recep-
tion. For data stocked in the SOCKET buffer in real time and often containingmultiple-frame HDLC
data blocks, they are first saved and an index is built according to the reception time. The resulting
radar data file can be used in data analysis and radar image replay, before the data pretreatment stage.

Data Preprocessing
First, process and check the data block’s marker, address, and control fields, then interpret and
convert datagrams based on their type. The key point here is considering error handling. Errors
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are bound to occur in all radar signals in the process of data generation and network transmission,
leading to drops in radar data quality. These data errors include discordance between the declared
and actual length of data frames, emergence of non-standard datagram heads, and byte loss in data-
gram tails. Therefore, in terms of hardware, information processing centers commonly adopt two-
way signal transmission, real-time monitoring, and auto-switch methods to help the system receive
data of higher quality. In terms of system software, the data block with errors may be modified in
line with different situations, or this data frame may be discarded directly, and meanwhile a quality
report is established for subsequent analyses to guarantee high system stability.
The final step of multi-radar data pretreatment is to form a standard internally unified format in

the system. Information in different radar data is expressed in different ways. For example, track
position can be shown both in polar coordinates and Cartesian coordinates. Therefore, the received
track information is described by the virtual base class in the C++ frame, and the member variables
consist of radar ID, receiving time, quality, state, coordinates (x, y, z), speed, acceleration of tracks,
Mode-3/A and Mode-C codes, and so on, which are shown in SI units.
The data expression of every radar signal type is the subclass derived from the base class. Then,

the special operations are defined according to the characteristics of the radar datagram to initialize
and read member variables. For information that does not exist or cannot be provided in a telegram,
the corresponding member variable will be set to zero or a special value, which thus guarantees a
unified data format in subsequent processing.

19.2.3.2 Functional Subsystem at the Operational Level

The operational part of ATCCMS can be divided into six function subsystems: ATC voice recog-
nition and processing, radar data processing, correlation of flight plans and radar data, correlation of
control instructions and flight states, track pre-estimation and crash detection, and graphical user
interface (GUI).

Voice Recognition and Processing
VR/LP realizes the semantic conversion of controllers’ voice signals to control commands.

Radar Data Processing
The original radar signals processed by the front-end data processor, plus SSR transponder ID code
and navigation data (e.g., speed and course), will be sent to the GUI to display radar images after
data format interpretation.

1. Coordinate transformation.Data from various radars correspond to their own various reference
frames, and are expressed in various ways. So, before track association and fusion, all the data
should be converted in real time into a unified coordinate system, which is usually the Carte-
sian coordinate system centered at a certain radar station or another data processing center.
Currently, the stereographic projection method is usually adopted to transform coordinates.
However, this has some drawbacks. For one thing, errors may be introduced into measure-
ments when projections are conducted, because high-order proximity is used to increase pre-
cision, while the earth is ellipsoidal rather than spherical. For another, it distorts data: for
example, stereographic conformal projection can guarantee that the azimuth instead of the
range remains undistorted, as a result of which system errors are not constant but related to
measurements. Another method in common use is the geographical coordinate transformation
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method, which adopts geocentric coordinates as the unified coordinate system for high-
precision coordinate transformation.

2. Time registration. This mainly means unifying tracks measured by various synchronous or asyn-
chronous radars at different moments to the same moments on the time axis.
First, a unified time benchmark is set up – usually in such a manner that each radar station and

information processing center adopts the GPS time system. Then, GPS time stamps are added to
the received track information. After these two times are compared, the data communication
delay is defined precisely. If there is no GPS time stamp at the radar data output for the moment,
the time delay may be defined via average estimation.
Most radars send track information of a sector after this sector is completely scanned, and

some time is needed for data recording and track processing. Consequently, the moment
of track output has a delay compared with the moment at which the track was detected. This
delay is usually validated as a fixed system parameter through average estimation of measure-
ments.
Finally, the tracks in one processing period are unified to a systematic period through

methods such as linear interpolation/extrapolation and modified Taylor expansion methods.
Sometimes, the virtual integration method is applied, which integrates tracks to an “inner track
updating time” related to the location of observation area.

3. Radar head processing delay compensation and due north registration. Radar head signal pro-
cessing, data records, and single-radar tracks possess a certain delay, which leads to a track data
output time lag compared with the time when the radar antenna beam irradiates the target. Special
methods should be applied to modify this delay. Generally, the main part of the delay can be
regarded as the system constant of the radar heads and single-radar tracks, and generally a
one-time modification is enough – it is unnecessary to make real-time compensations. In add-
ition, the real-time compensation of the processing delay’s random shifts also needs to be coped
with, but the value of this delay is so minor that it can be regarded as a random error – not to be
considered in the process of temporal and spatial registration, but dealt with in the process of
fusion.
Different from geographical north, the nominal due north of ATC radars not only has system

error but also random drift. Therefore, when it is transformed to unified coordinates of control
centers, the north bias calibration is necessary. In general, the constant part of the difference
between the standard north of a radar and geographical north can be regarded as a systemic con-
stant, needing only one-time modification rather than real-time compensation. The fluttering part
of the north deviation can be considered as a component of radar angle measurement error, thus
special compensation is unnecessary in the process of temporal and spatial registration. After
continuous track coordinates’ processing and time registration, compensation for the drift in
the north deviation amounts to real-time registration with the same target detected by all radars
as the ID point.

4. Error registration. Random and systemic errors occur in all radar target measurements, so there
is deviation between the tracks of the same target from different radars. The process of correcting
this error is called “error registration.” Random errors arise mainly from random observation
noise and unintentional maneuvers of targets, and can be eliminated better in the fusion process.
System errors result mostly from the angle and range measurement accuracy of radars, the
positions of radar stations and inaccurate due north, as well as the error in the coordinates’
transformation approximation algorithm itself. Random errors are eliminated with the SME
criterion in both local tracking and data fusion at the center. System errors give rise to fixed
deviations of observations from their true values. They are eliminated with the LSmethod, which
is used to obtain the error covariance matrix of each radar serving as a systemic parameter by
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getting an estimate of the systemic error of each radar, and making one-time registrations for the
measurements and compensations for every single-radar track.

5. Track association. In the MRDP system, each single radar station possesses its own information
processing system with large amounts of target track information. Then, an important problem is
how to determine whether two local tracks from different systems represent the same target or
not, which is a problem of correlating tracks to tracks (i.e., track association). Finally, track
fusion is conducted. For the processing centers, track association and fusion algorithms are at
the core of their work.
To maintain system tracks, it is necessary to judge the input tracks detected by different radars,

and associate tracks of the same target. The main track maintenance algorithms are the weighted
statistical distance test, likelihood ratio test, and nearest-neighbor test. With single-radar tracks
as input, the ATCCMS system is concerned mainly with information on civil aircraft, and thus
usually adopts a method based on the nearest neighbor to associate code Mode-3/A and track
batches.
The association credibility factor FC is established for every new track input by addition or

subtraction according to the following level, and the value of FC is used to decide whether they
are associated or not.
i. Identify whether the target is of primary or secondary type, or of joint type.
ii. Determine whether targets of the same kind have the same track ID.
iii. Establish position association windows according to the nearest-neighbor rule, and judge

whether they share compatible horizontal positions.
iv. Identify whether they have compatible Mode-3/A codes (i.e., the same SSR codes).
v. Identify whether they have compatible Mode-C codes or flight altitudes.
vi. Identify whether they have compatible flight speeds and courses.
This process and the subsequent process of track fusion guarantee the maintenance of

system tracks: tentative system tracks should be established for those new tracks that are
not associated; the tentative system tracks correlated to several single-radar tracks in succes-
sion are converted into validated system tracks and undergo fusion computing; a tentative or
validated system track which fails to be correlated to any single-radar track for several times
will be cancelled.
The classical assignment, maximum likelihood, likelihood ratio, and multiple hypothesis

methods all need a great deal of computation, and are hard to implement in engineering.
The NN, weighted, and modified methods, though simple in algorithm and fast in speed of

processing, are suitable only in the case of sparse targets.
The sequential, double threshold, K-NN, and MK-NN methods are of great efficiency in

track association tests, and of relatively high data processing speeds. They are all applicable
in the presence of dense targets and/or crossing, split, and maneuvering tracks. The sequential
method can be introduced to multiple local nodes to form a multidimensional assignment algo-
rithm, so it is worth wider applications. Compared with the sequential and double-threshold
methods, the advantage of the K-NN and MK-NN is that they have no requirement for local
systems.
The fuzzy association algorithm could process fast with lower memory, communication

load, and better association results. In terms of speed, it is slower than the K-NN and MK-
NN, but quicker than the sequential and double-threshold methods. In the case of highly man-
euverable targets, the performance of multiple hypothesis tracking (MHT) is better than that of
the IMMJPDA and Kalman filtering.
Not all methods are appropriate for the data association of multiple local radar tracks in the

ATC multi-radar data processing system, therefore, a compromise should be made in practical

471Practical Application of Radar Data Processing



implementations so as to find, through selection, the most suitable track association method.
Currently, the weighted statistical distance test method is fast in processing and easy to realize,
so it is the only option in most practical track associations.

6. Establishment and cancellation of system tracks. The establishment of multi-radar system
tracks is similar to that of single-radar ones. When the single-radar local track of a main radar
cannot be associated with any system track in the association gate, a tentative system track
starts to be established. When a certain number of single-radar local tracks which serve as
system parameters continuously associate with the tentative system track, it is turned into a
validated system track. When a tentative or validated system track cannot be associated with
any radar track for several successive times (the number of times is a system parameter), it is
then cancelled.

8. Data fusion. After all the local tracks of single radars are processed, the next issue is track com-
bination, or track fusion, a process of obtaining the new fused track of a target through the fusion
of the associated tracks of the target.
Typical track fusion algorithms include the weighted average, hierarchical fusion, and linear

combination algorithms. Because the measurement accuracy of different radars varies, the
weighted average method (in order to make the fused target track capable of describing the target
better) sets weightings for the fused tracks based on the measurement accuracy of radar – high
weightings for those with high accuracy and low weightings for those with low accuracy. The
weightings can be flexibly set as required when the system is at work. Here, fusion processing
refers to the weighted fusion of normalized position, altitude, and velocity of the associated tar-
get track. At last, the track after weighted fusion is applied to update the corresponding system
track of the target.
The linear combination algorithm is deducted from the perspective of optimal

combination. The fusion center adopting this algorithm needs only combination instead of
filtering to get fusion estimates, but it has to estimate the cross-covariance matrixes between
the radars.
In the hierarchical fusion algorithm, the global state estimate of target = global prediction

+ correction term. The correction term consists of two parts. The first part refers to the
following process: the filtering value of every single-radar track is compared with the global
prediction, the resulting differences are then inversely weighted with the corresponding
single-radar filtering covariance, and all the results are summed. The second part is carried
out as follows: to compare the overall prediction with every single-radar prediction, the
resulting differences are then weighted inversely with the corresponding single-radar filtering
covariance, before all the results are summed at last. Then, the sum of these two parts is
weighted by the covariance of the global estimate. Statistically, the results of the hierarchical
fusion and linear combination algorithms are roughly the same.

9. Reproduction of system track output. The expected fusion target track is obtained after the multi-
radar target tracks have undergone correlative fusion. Then, the remainder of the work is to
reproduce the output of the fusion target track on the corresponding monitors so that every con-
troller work station can process them further.

Flight Plan and Radar Data Correlation
Information such as PLN, FPL, and RPL is taken from the flight telegram automatic processing
system, and associated with radar identified targets according to the SSR code. This is a process
of providing each radar record with a flight call sign.
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Control Instructions and Flight Status Correlation
After being associated with flight plans, radar data represents the flight status of the aircraft. Some
key data of control instructions – such as flight number, type of control quality, and value of
instructions – should undergo correlation matching with flight status data so that radar track records
associated with the control quality are picked out for track pre-estimation.

Track Pre-estimation and Collision Detection
Data such as the identified control instructions, current flight conditions, aircraft performance, and
meteorological conditions work together in checking whether the relative distance between aircraft
has contravened safety interval requirements. Alarm information will be sent out if a possible air-
craft collision is detected.

The architecture of the operating function subsystems is shown in Figure 19.3.
It is a necessary option for the current ATC service, and the only approach to ATC automation, to

establish multi-radar data processing systems in larger ATC centers and accomplish radar network-
ing. However, the ATC multi-radar data processing system is very complex, involving many
aspects that are tough to deal with.

19.2.3.3 Functional Subsystem of Management and Decision Level

The functional subsystems of the management and decision levels are non-real-time; they mainly
provide high-level decision support for administrative staff and controllers on duty.
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Figure 19.3 Functional architecture of ATCCMS
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19.2.3.4 Supporting Environment

The supporting environment of the ATCCMS includes the computer network environment and the
database environment to guarantee communication and connection between computers and
basic data.
The logic architecture of the ATCCMS is shown in Figure 19.4.

19.3 Application in Shipboard Navigation Radar

Even if visibility is extremely bad, a helmsman must have a clear picture of his ship’s surroundings
to ensure safe navigation. In addition, he has to spot potential collisions quickly and accurately in
advance, and make decisions to prevent collision by performing optimal maneuvers. Navigation
radars show the helmsman neighboring ships’ relative movements, based on which he will
predict any dangerous conditions.
The main function of the radar data processing system in collision avoidance applications is the

realization of accurate estimation of target position and speed when the target is moving at a uniform
speed in a straight line, which requires accurate positioning of the target and tracking of maneuver-
ing targets at the same time [419–422]. Obviously, the above requirements are contradictory: the
more accurate the prediction with linear movement, the worse the performance in tracking maneu-
vering targets, as is apparent when the α–β filter is used. The α–β filter is widely used because of its
simplicity. Usually, tradeoffs are made between the following requirements: for targets with
medium speed, a slower response will be applied to achieve higher accuracy; for targets with faster
speed, a quick response will be achieved at the cost of lower accuracy.
The anti-collision system with adaptive double-channel tracking filters developed by Roman

Selenia, an Italian company (for details, see Ref. [416]), mainly consists of a navigation radar, a
digital measurement recorder, a microcomputer, displays, and controllers. The functional block dia-
gram is shown in Figure 19.5.
The original video signal from the radar system, timing data, and antenna position code data are

transmitted together to the measurement recorder, which simultaneously provides the computer and
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displays with detection data and coordinate data. The computer executes the track-while-scan algo-
rithm, working out the expected relative course and velocity of all ships being tracked. This system
can track more than 40 targets within 25 nautical miles (1 nautical mile = 1.852 km), and the track
initiation can be conducted automatically or performed by operators. The track algorithm applied is
the adaptive α–β filtering algorithm with time-varying parameters.
Figure 19.6 illustrates the principle of the tracking algorithm of the Selenia collision avoidance

system, which is based on two different parallel processing components: the “quick” and the “accur-
ate” filter. The former is used mainly for ship tracking, while the latter is for narrowband filtering so
as to reach higher accuracy under stable conditions, and therefore the value of α and β in the former
is bigger than in the latter. The two filters both apply constant α–β parameters. But when conducting
accurate filtering, three α–β values are allowed and the switch logic circuit is provided. Table 19.1
lists all α–β values and the corresponding response time (calculated by the number of radar scans).
In the track initiation phase, only the quick filter channel is working.
After the transient time of Ni scanning, the accurate filter is initialized by target track estimates

through gate 1. Then, it processes measurement data in parallel with the quick filter, but here the first
permissible pair α–β is used. Under stable conditions, a test will be conducted to determine whether
the target speed is low, medium, or high. Its α–β value may be selected appropriately according to
the result of the test. The same test should be conducted periodically so as to consider the changes in
ship speed. This adaptiveness to target speed aims to make the relative error of speed estimate nearly
constant. According to this method, the slower the target speed, the higher the accuracy of the filter,
but at the cost of a longer response time. The output of this filter is used to estimate the display,
extrapolation and nearest point of proximity (CPA), and time of arriving at the nearest point of
proximity (TCA), and it may be used to detect target maneuvers by comparing predicting positions
and radar measurements. Once target maneuvers are detected, the position and speed estimates pro-
vided by the quick filter are forced via gate 2 to the accurate filter. In this way, adaptiveness to target
maneuvers is acquired. Then, the output of the accurate filter will be processed and displayed. As
long as the target keeps maneuvering, the periodical data flow from the quick to the accurate filter
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will be continuous, hence the interaction between these two channels will minimize the transient
time of the whole track filter.

19.4 Application in Shipboard Radar Clutter Suppression

19.4.1 Principle of Clutter Suppression in Data Processing

Because of the special working environment, shipboard radars face great disturbance from clutter,
including ground (e.g., the ground, seashores, and islands), sea, and atmosphere (such as cloud, rain,
snow, hail, and atmospheric turbulence) clutters. The abnormal atmospheric propagation at low
altitude over the sea makes it difficult to detect and track sea-skimming targets. The conventional
way to suppress clutter is to take appropriate measures in radar signal processing subsystems. Mov-
ing target indication (MTI), moving target detection, digital pulse compression, and constant false
alarm rate (CFAR) are the commonly used methods, which have proven effective to a certain extent.
As has been proven, whichever technique is used, there are still residual clutters leaked to the radar
data processing subsystem, and a great number of false measurements will emerge in severe work-
ing conditions. This brings about difficulties in track initiation and filtering of data processors, and

Table 19.1 Main parameters of the filtering algorithm

Filter Target α–β Scanning times (s)

Quick Maneuver 0.54–0.2 6
Accurate Fast 0.18–0.0178 20

Medium 0.11–0.0065 40
Slow 0.07–0.0025 60
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even saturates the computer. Therefore, it is necessary to discuss the problem of how to suppress
clutter in the radar data processing phase.
After being detected and determined through the signal processor, radar echoes are sent to the

data processing subsystem, which includes the echo pretreatment, correlation filter, and radar con-
trol modules. The echo pretreatment module has such functions as angle and distance measurement,
platform modification, and measurement condensation within beams. The correlative filter has
functions such as measurement condensation among beams, track initiation, measurement–track
association, track filter prediction, and track management. Radar control is responsible for the
scheduling and control of radar coverage, operation missions, jamming countermeasures, signal
processing, and radar sources. Connecting with the data processor, the display control subsystem
can display radar working states and track information, and radar parameters, area data processing
parameters, and interface parameters can be controlled manually through it. The communication
module conducts data communications between the serial port, the parallel port, and the network.
There are four features in clutter suppression of the data processing subsystem.

1. Accumulativeness of information. Radar data processing is based on the software platform, so its
real-time requirement is not as strong as that of signal processing. It can accumulate and compare
the radar echo information of neighboring periods. Target information can be accumulated suf-
ficiently, and then processed properly when the clutter jamming is serious.

2. Pretreatment. A few radar scanning periods will be used to collect clutter information, and store
or update the distribution of clutter.

3. Optionality. Screening measurements will inevitably cause the loss of some true target measure-
ments, and therefore the methods applied to suppress clutter will be adopted only if necessary
(they are optional).

4. Limitations. In the data processing phase, the information available to suppress clutter is scarce,
and closely coupled with radar work modes and signal processing methods.

19.4.2 Clutter Suppression Method through Shipboard Radar
Data Processing

Shipboard radar encounters severe clutter disturbance from the atmosphere and marine environ-
ment when in operation. Especially during sea trials, residual clutter affects its overall perform-
ance. To solve this problem, a series of specific experiments have been conducted to collect clutter
data and observe clutter phenomena in the hope that a solution will be found. The trial data indi-
cates that there are land/sea clutter, angles, and atmospheric duct phenomena in echo data. After
the signal processing subsystem adopts corresponding anti-clutter measures, there are still some
residual clutters – including cyclic distributed, close low-elevation dense, and noise-like clutters –
and those caused by meteorological phenomena. In order to eliminate residual clutters and
increase the number of measurements, a series of measures were taken in the data process-
ing phase.

19.4.2.1 Clutter Suppression Method for the Echo Pretreatment Module

As the foremost part of data processing, the echo pretreatment module has the most abundant clutter
information. Generally, a complete measurement includes the following information:
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1. Radar time and position of a transmitting beam.
2. The number of measurements of echoes of this transmitting beam after sampling and threshold

detection.
3. Parameters of the spatial position of each measurement.
4. The radar measurements of some radar systems also containing the Doppler velocity of the

target.

Select a set of sea trial data to conduct statistical analyses. The data are all echoes of the radar
searching a range of bearing approximately 90�, and the radar working time is 1492 s. Rules to elim-
inate clutter are as follows.

1. Echo width judgment. The amplitude and width of echo signals reflect the energy of target
echoes. Echo width refers to the number of continuous distance units which echo analog signals
occupy after sampling quantization and amplitude detection. According to statistics, there is an
obvious difference in echo width between real targets and clutters. Most clutters may be elim-
inated effectively according to this feature.

2. Amplitude judgment. An amplitude threshold is set for the echo occupying two continuous dis-
tance units. The threshold is adjusted according to different distances, and measurements whose
amplitude is lower than the threshold will be eliminated.

3. Doppler velocity judgment. First, measurements whose radial velocity is about zero are elim-
inated. Then, in the process of measurement condensation, the most obvious difference is the
Doppler velocity, guaranteeing that the adjacent or crossing targets will not be condensed
into one measurement. In addition, during measurement–measurement association and
measurement–track association, comparing the Doppler radial velocity between measure-
ments or between measurements and track is a criterion for judging whether they are asso-
ciated or not.

4. Clutter map judgment. Specific clutter maps are employed to deal with the severe cyclic clutter
phenomenon. The cyclic clutters are concentrated at the scanning layer of low elevation: they are
of cyclic distributions in the distance–azimuth figure and of pectination distributions in the dis-
tance–elevation figure, and their position is relatively fixed. The method to eliminate cyclic clut-
ters is to count the total number of echoes in a number of adjacent scanning periods within a
certain range by the sliding window. When the total number of echoes exceeds the threshold,
cyclic clutter phenomena are considered present within the range, and the measurements within
the range will be regarded as clutters and eliminated.

19.4.2.2 Clutter Suppression Methods for the Radar Control Module

Radar Control by Manual Intervention
The radar working parameters of the entire airspace should be altered by adjusting the network com-
mand of the control subsystem or manual intervention command of the DSP control module, and
according to the working environment (e.g., offshore, high sea, sea conditions, and meteorological
complexity) of ships. The parameters include STC control, Doppler processing modes (such as
number of pulses, notch width, number of sliding windows), movement compensation parameters,
clutter thresholds, pulse cancellation, gain, and detection control parameters.
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Radar Control with Area Control
Once the distribution of primary clutters is clearly observed on the PPI of the display control sub-
system, several clutter areas are established by manual work. Radars’ working parameters within
clutter areas are then artificially set and revised.

Adaptive Radar Control with Clutter Maps
Specific clutter maps and radar working modes are set to detect land/sea and meteorological clutter
areas through applying radar beams with special working parameters, and then land/sea and
meteorological clutter maps are established according to the echoes. The residual clutter map is
set by processing residual clutters at normal work. The three clutter maps store statistical features
of clutters within the airspace, including spatial position, distribution density, amplitude, and Dop-
pler information. When arranging transmitting beams, the radar control module looks up the clutter
distribution features of the corresponding area in the clutter maps in accordance with the orientation
of the beam center, and determines the working parameters of transmitting beams subject to the
corresponding criteria of clutter control. The establishment of clutter control criteria is related to
many factors such as battle tasks and radar resources.

19.4.2.3 Methods of Clutter Suppression of the Correlation Filter Module

If the above measures still fail to suppress clutters effectively, the correlation filter module will
encounter great difficulties. As dense clutter measurements emerge in many successive periods
in a certain area, automatic track initiation and correlation processing consume a large amount
of computer resources, and the computer will be out of condition in serious cases. Thus, special
track initiation and track filtering rules must be adopted. In areas with many residual clutters, special
zones should be established where relatively stricter track initiation rules are adopted for measure-
ments (e.g., the common initiation rule of 3/5 switched to 4/5 or 5/5). Besides the position infor-
mation of measurements, information such as amplitude and Doppler velocity should also be
considered when associating measurements and tracks. Velocity filtering is to be conducted for ini-
tiated tracks, and false tracks deleted. Manual zones should be established for areas with excessive
residual clutters. The operators should adopt, based on their observations, the track initiation and
maintenance rules integrating semi-automatic and manual modes.

19.4.2.4 Radar Control with Manual Intervention

Some special areas where different control and management methods are adopted are set up within
the radar coverage range according to clutters’ different spatial distributions: silent, shielding, man-
ual, and map control zones. The silent zone is the special area mainly used by the radar control
module, where radar beams are only received rather than transmitted in order to counter jamming
or suppress clutters. The shielding zone, mostly applied by the echo pretreatment module, is an area
used to counter strong clutters where radar waves are only sent. The manual zone is mostly
employed by the correlation filter module, and the echoes in it are processed with unconventional
track initiation and maintenance algorithms. The map control zone is mainly adopted by the radar
control and echo pretreatment modules. The former controls the working parameters of radar beams
based on the features of the clutter maps in the map control zone, while the latter filters out clutter
measurements according to the characteristics of clutter maps in the map control zone. Based on
electrical map background, the radar display and control module can display such geographic
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information as coastline, islands, and drilling rigs. Such information may serve as the basis for
clutter determination, or for the control of radar working modes and regions.
In practical engineering, it is necessary to suppress clutters in the data processing phase.

Different radar working modes and environments show different characteristics of clutter
distributions, thus different data processing methods should be adopted. Radar signal processing
and data processing are two closely related parts, and the clutter suppression system with good
performance should be an adaptive one in which the two parts can work in harmony. The rapid
development in DSP techniques and computer performance facilitates the integration of the two
systems. The method above has proved effective in its application to shipboard radar systems of a
certain type.

19.5 Application in Ground-Based Radar

19.5.1 Principle of Data Acquisition

The technology of 3D laser radar imaging scanning is an innovative surveying tool that has emerged
with the development of space array scanning technology and reflectorless long-distance quick
ranging technology. It is another breakthrough in the field of surveying after GPS.
As a data acquisition technology, it can be divided into airborne and land-based laser radar acqui-

sition systems. The airborne laser radar is the most effective tool to acquire 3D ground digital
information massively and promptly. In addition, information about ground, tree height, underwater
terrain, water depth, etc. can be acquired with its fore and aft reflection. It is widely used in the
surveying of terrain, forest, underwater, and so on.
The ground-based laser radar is small and convenient, precise and efficient, safe and stable, and

highly operable. It can set up a detailed and precise 3D image of the area of interest within a few
minutes, and provide precise quantitative analyses. Thus, it can be applied in a great variety of
fields: local 3Dmodels of cities, ancient building surveying, relics preservation, reverse engineering
applications, complex building construction, geological research, building deformation monitoring,
to name just a few.
Extensive studies have been carried out on the theory and application of laser radars, but many

subjects in this field remain to be explored further. Given its wide application, we focus here on
problems relating to ground-based laser radars’ working principles, data processing procedures,
data precision, and influencing factors.
The ground-based laser radar is a new type of surveying instrument integrating many high and

new technologies, in which non-contact fast laser measuring modes are adopted to acquire phased
geometric data in the form of point clouds, terrain, and 3D surfaces of complex objects. It consists
mainly of the laser ranging and laser scanning system, while integrating CCD digital photography,
internal correction, and other systems. Its working principles are as follows.

1. The scanner transmits a laser to the target of interest.
2. The time difference between laser transmission and reception is used to calculate the distance

between the plot surveyed and the scanner.
3. The values of horizontal and vertical stepping angles are used to calculate in real time the 3D

coordinates of the points being measured.
4. The resulting coordinates are sent to the memory device in order to be saved.
5. The saved coordinates are processed by corresponding software.
6. A 3D geometric model of the target being surveyed is thus obtained.
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In fact, the original observations obtained by the laser radar fall into four broad types:

1. The horizontal and vertical values of laser beams acquired according to the two continuously
rotating mirror angle values, used to reflect the pulse laser.

2. The distance between the scanner and the scanning spot, calculated based on the time of pulse
laser transmission.

3. The reflection strength of the scanning spot.
4. The scene image data acquired by the built-in digital camera.

The first two types are used to calculate 3D coordinates of the scanning spot, and the last two to
match colors for the reflecting spot or to carry out texture mapping for models.

19.5.2 Data Processing Procedure

The original data provided by laser radars are 3D coordinate data based on the instrument coord-
inate system, obtained with the delivery attached commercial software. They are great numbers of
attribute-less, discrete point array data suspended in the air, normally called “point clouds.” Com-
prising many outliers and system errors, they cannot be used directly. In addition, they also
include a great deal of redundant information, which is of little help in the subsequent data ana-
lysis but takes a lot of time to calculate. For these reasons, the pretreatment before data analysis is
a necessary step.
The data processing procedure of the ground-based laser radar can be broken down into

four steps.

1. Elimination of outliers. As mentioned above, the original point cloud data contain a lot of out-
liers, errors, and irrelevant information, for a variety of reasons: for example, data from the sig-
nals reflected from moving targets (e.g., flying birds or some other free targets within the field of
view of laser radar), local jumping data (like points below the ground), foreground shielding
data, and local echo-less cavities (such as laser penetrating windows or illuminated targets
absorbing all laser signals). These outliers, errors, and extraneous information are eliminated,
corrected, and/or compensated mostly through man–machine interactive operation, with deliv-
ery attached data processing software in the interactive editing environment.

2. Splice of models. The ground-based laser radar has a certain penetrating capability, but as with
the close-range camera, in its gathered data it still happens that the foreground blocks the back-
ground. In addition, to acquire the 3Dmodel of a target, many stations should be set around this
target in order to acquire point cloud data from different angles. The direct output of a ground-
based radar is based on the local coordinate data of its camera station coordinates. To acquire
the overall 3D model of the target under study, the point cloud obtained from different angles
should be integrated with the help of overlapping information (i.e., the point cloud of all cam-
era stations should be integrated into the coordinates of one camera station); this is the so-
called model splicing process. In the process of integration, there are two basic methods to
get the value of two adjacent overlapping areas: one is to select the data of one station as
the final data; the other is to resample data on the overlapping area between two camera
stations.

3. Unification of reference coordinates. The unification of reference coordinates is a prerequisite for
subsequent data processing and analysis. There are two methods to unify the reference coordin-
ates: one is to convert to local coordinates, like the splice of models above; the other is to unify in
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one set of absolute coordinates, such as projecting to the coordinates of a certain city building or
national coordinates. The former can be achieved on the overlapping information, while the latter
is actually coordinate projecting conversion. Therefore, the conversion can be accomplished only
with enough control points.

4. Data simplification. The ground-based laser radar has high measurement accuracy, high effi-
ciency, and fast 3D model establishment, but it also has some demerits: non-continuous cover-
age, huge amount of data volume, etc. This huge data volume in particular makes the subsequent
data processing, transmission, and further processing really difficult. The sampling data of the
laser radar comprises lots of redundant data. For example, the edging information is enough to
construct the façade of a structure, but the laser radar still provides all the sample information
including both the façade edge and the internal part. The redundant information is of little help to
model construction or model feature extraction, therefore it is necessary to select or devise the
corresponding algorithm to simplify the point cloud data. Currently, data processing methods
mainly include two types.
• Simple resampling. Resample the original data set in a certain sampling interval, such as sam-
pling with an interval of one row or one column. This method has an obvious drawback: both
redundant and non-redundant information are weakened, and some useful information is lost.

• Combination and resampling for homogeneous areas.Within the original data set, the homo-
geneous area, such as the façade of a building, has huge redundant data. Through some algo-
rithm, combine this area, replacing the numerous original sampling data with fewer sampling
points or combining sampling points, to realize the aim of data simplification. This method has
obvious advantages (i.e., data resampling varies adaptively with the actual conditions of
targets, which not only simplifies data but also saves useful characteristic information effect-
ively). Data simplification is not only a difficult problem but also a leading edge topic in the
field of laser radar data processing. There is no data simplification algorithm applicable to
every situation at present. The data simplification tools available can simplify and smooth
the original point cloud data only to some extent.

5. Application analysis. After the previous data processing, outliers and redundant data are elimin-
ated and thedatavolume is decreased significantly.Thesedata canbeapplied innumerousways. In
civil engineering, for example, the edge information of the observed object can be acquired, the
fracture information extracted, and the volume calculated through data partitioning. In virtual real-
ity, point cloud data can be converted into the corresponding 3D digital model.

The ground-based laser radar has a bright application prospect for its excellent technical features
such as high efficiency, complete coverage and true three-dimensional measurement. From the per-
spective of technical features, it can be used not only in topographical survey of building construc-
tion, highways, bridges, dams and local terrain and deformation monitoring, but also in fields such
as industry measurement, cultural relics protection, CAD design and animation production. At pre-
sent, it has been introduced to many fields, and the relative applied research and theoretical research
are developing gradually.

19.6 Applications in Shipboard Monitoring System

19.6.1 Application, Components, and Requirement

With the rapid development of maritime traffic and inland river transport, the tonnage of ships is
increasing constantly, and ports and fairways are becoming more and more crowded. In addition, in
bad weather conditions, accidents like shipwrecks or crashes often take place in shoals and heavy
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traffic waters. Nowadays, ships are generally equipped with shipboard navigation radars. Undoubt-
edly, shipboard radars play a significant role in safe navigation. However, the antenna radius cannot
be too big due to the limitation of installation space and therefore the azimuth resolution cannot be
too high either.
When it comes to determining the relative movement between ships, the ship being moni-

tored is moving and so is the monitoring radar because it is onboard another ship, so it often
happens that the moving state of the monitored target is misjudged in a short period of time,
which can result in crash accidents. In a meandering fairway, because of the land block, the
blocked ships often cannot be detected, targets with a small echo area (such as wooden ships
and buoys) cannot be found easily beyond a certain distance, and some navigation obstacles
(such as shoals, shipwrecks, or submerged reef, fishing nets and breakwaters) are difficult to
find on screen. Even though the target can be monitored, the radar is unable to determine
whether it is sailing into or out of the port or to get related navigation parameters such as speed,
course, and collision avoidance warning. Hence, it cannot provide the necessary navigation
information for ships. This will inevitably restrain the speed of ships and increase the insecure
factors for navigation.
It is to make up the deficiency of shipboard radar that the marine surveillance/vessel traffic

control system has been proposed. At present, many countries and regions have established a ves-
sel traffic control system. Typical vessel control systems consist of a radar station, microwave
transmission, data processing, terminal display, and operating control subsystems, as well
as VHF and UHF communication and hydro-meteorological units, with the following main
functions.

1. Display the chart and topographic/geomorphic map. Based on the chart and topographic/geo-
morphic map, the system can display, on a radar synthetic display, a colored radar background
situation map, presenting permanent facilities such as ports, anchorage, fairway, and marks, the
depth of water and coastline.

2. Display the radar target and its parameters. Radar signals sent by radar stations will be pro-
cessed by the data processing equipment, and the targets being tracked will be nominated
and registered. Meanwhile, the speed, course, and collision avoidance information for the targets
will be displayed in real time. Usually, the data processing equipment can track and process more
than 100 batches of targets and provide navigation information for them all.

3. Conduct marine supervision and management. This system can track and monitor ships that
infringe regulations or break into a sea area illegally, and give necessary warning. For wrecked
ships, this system can report their location and command rescue efforts.

4. Assist in port affairs management. The data collected by this system, such as inward and outward
time, tonnage, load, destinations, registration/cancellation, and anchorages can be input to the
vessel data management network and presented in data forms. These data can also be recorded
for replay afterwards.

19.6.2 Structure of the Marine Control System

Marine traffic control depends mainly on data acquisition, processing, and transmission systems.
The data acquisition system consists of primary or secondary radars, meteorological and marine

sensors, telegrams, telephones, and other data. The data processing system includes several com-
puters capable of a variety of processing tasks (general-purpose, mini-, and micro-computers). The
types of data to be processed include [57, 423, 424]:
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1. Radar echoes, aiming to survey the location and speed of all ships, and if possible, the distance
between ships.

2. Shipping information on the berth and goods of ships.
3. Technical information on monitoring all equipment performance.
4. Information provided by additional radio positioning systems to complement information

provided by radars.

The data transmission system is made up of conventional or special inner communication and
display units. Transmission modes depend on users, such as traffic control personnel and port staff.
In the daytime, the TV coordinates displaying method can be adopted, which can gather information
provided by radars in ports or along the fairway.
Normally, it takes more than one radar to realize the entire coverage of a port or fairway. To avoid

the advent of blind areas, radars must be carefully deployed at fixed points and usually should be
positioned high. Another issue related to radar positioning and choice of beam pitching is to reduce
the influence of sea clutters. In the surveillance phase, radar range is restricted to dozens of thousand
meters, but when in navigation, it is 5–10 km. The latter situation requires high range resolution and
range accuracy of 7–10 m.Because they normallywork on bandXorK, radars can have perfect bear-
ing resolution with limited antenna sizes. As to the scanning periods of radars, if the target speed is
5 m/s, a 3 s scanning period is sufficient. Actually, the target moves 15 m during this period, which is
nearly twice as much as the position error. To realize the track-while-scan function of all radars, both
α−β filter and KF algorithms need to be applied. Meanwhile, the multiple-radar tracking system is
also widely used, monitoring and controlling the overall traffic in the central control room.

19.7 Application in the Fleet Air Defense System

Data processing is widely used in fleet air defense systems, like the Aegis system. Aegis is an all-
weather, all-airspace, shipboard air defense missile weapon system of the US Navy, safeguarding
aircraft carrier or destroyer and frigate formation, undertaking area air defense combat tasks. It has
been the main air defense system for the US Navy since the 1980s, and is regarded as the third gen-
eration of ship-to-air missile weapon system [425]. The multi-functional phased array radar is the
core of the Aegis combat system. The data processing technique relevant to the phased array radar
can be found in Chapter 14, so the following subsection briefly discusses the application of the data
processing technique in Aegis.

19.7.1 Components and Function of the Aegis Fleet Air Defense System

The Aegis fleet air defense system consists mainly of the multi-function phased array radar, weapon
control system, missile fire control system, missile and launching system, and maintenance and test
equipment.

19.7.1.1 AN/SPY-1A Multi-function Phased Array Radar

The AN/SPY-1A multi-function phased array radar is an S-band electronically scanned phased
array radar, with functions such as the detection, search, and tracking of multiple targets and
guided missiles; its maximum detecting range for aircraft is 370 km. Through the work of
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computers and beam controllers, the AN/SPY-1A can control time and energy resources flexibly
to enable parameters such as beam pointing, beam energy, beam width, pulse repetition
frequency, and radiant power changeable in real time; it can produce complex waveforms
required by transmitter excitation, choose and process proper echo signals, and adjust strategies
on the requirement of detection, tracking, and electronic countermeasures; it can simultaneously
process information in 11 modes, such as search, track, display search and track moving targets,
missile guidance, passive search and track, barrage jamming detection, warning and recognition.
In the track-while-search mode, it always scans the whole airspace to find new targets. Consid-
ering that it is difficult to detect anti-ship missiles because of their low-altitude penetration, the
multi-beam high-data-rate search is used in low-altitude areas, while in other airspaces fewer
beams and lower data rates are applied in search; if necessary, beams can be concentrated on
an estimated fan threaten area to conduct search. To tackle anti-radiation missiles, radars can
be temporarily shut in a flash (a fraction of a second), and revert to the track mode after being
powered on in 1 s.
An important function of AN/SPY-1A is to send guidance command to flying missiles and con-

trol illuminating radars to illuminate targets for the semi-active radar terminal guidance system. The
midcourse guidance commands sent from the weapon control system are transmitted to the flying
missiles and reported to the command decision-making system via AN/SPY-1A.

19.7.1.2 MK1 Weapon Control System

This system undertakes some command and fire control functions.

19.7.1.3 MK99 Missile Fire Control System

This system receives the command from theMK1weapon control system, cooperating with the AN/
SPY-A1 in providing target illumination in the terminal guidance phase for the SM-2. In addition, it
can control the Phalanx close-in weapon system and harpoon missiles as well.

19.7.1.4 MK1 Operational Readiness and Test System

This system is chiefly responsible for the real-time and pre-work tests of the AN/SPY-1A multi-
function phased array radar, MK1 command decision-making system, and MK1 weapon control
system in the Aegis system, as well as their centralized coordination, working state diagnosis, fault
isolation, and maintenance.

19.7.2 Main Performance Indexes

1. Target type: aircraft with high performance, anti-ship missiles, and supersonic sea-skimming
anti-ship missiles.

2. Operation airspace: far boundary 74 km (median altitude), 20–25 km (super-low altitude),
150 km (high altitude); high boundary 24 km; low boundary 25–30 km.

3. Guidance system: inertial navigation/instruction + semi-active radar target homing.
4. Guidance law: proportional guidance.
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5. Missile fusillade interval: 5 s, 1 s.
6. Multi-target tackling capability: intercepting 12–16 targets simultaneously in 360� and whole

airspace.
7. System anti-jamming capability: capable of resisting various types of electronic jamming and sea

clutter/meteorological disturbances.
8. Radar detection performance:

• azimuth scope of electronic scanning, ±50�;
• elevation scope of electronic scanning, ±60�;
• number of surveillance targets, 400 batches;
• number of track targets, 200 batches.

19.8 Applications in AEW Radar

19.8.1 Features, Components, and Tasks

For ground-based and sea-based radars, the capability for surveillance in larger areas is restricted
by the earth’s curvature, and natural or artificial obstacles. Visual restrictions make the defense
system more vulnerable to attack from low-altitude aircraft invading at high speed or long-
distance terrain-following cruise missiles. It is natural to mount the surveillance radar higher
to overcome the limitations of the coverage range, but for marine systems the benefits brought
about by this method are limited. Setting radar sensors in the air platform can elevate radar stations
by hundreds of meters. Compared with ground-based and sea-based radars, if the coverage cap-
ability of airborne radars is strong enough, the extension of their low-altitude coverage is
considerable.
Suppose that a target is moving at an altitude of 100 m at a speed of 1000 km/h. If the altitude of

the ground-based radar is 300 m, then the target may be detected 120 km away, and the interception
time is 7 minutes. But if the flight altitude of the airborne radar is 9000 m, then it can detect the target
hundreds of kilometers away, and the time it takes is 20 minutes earlier before the target’s entry into
the effective range of the weapons.
The airborne early warning (AEW) system detects targets and conducts command missions by

means of aircraft, and surveillance radar is a main part of this. Integrating functions such as early
warning, command, control, and communication, the AEW acts as a mobile radar station and air-
borne command center, with features such as good low-altitude performance, large surveillance
range, powerful survivability, strong command and control capability, high flexibility and maneu-
verability. In general, the AEW consists of the following subsystems:

1. high-performance long-range surveillance radar;
2. friend-or-foe recognition device;
3. one or more computers for radar data processing, navigation, and control;
4. consoles and displays used by all kinds of operators;
5. data channels for communication with the ground base or friendly aircraft;
6. electronic support devices for foe radiant source identification and orientation.

In wartime, the system can undertake the following typical tasks:
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1. Early warning. The main task of an AEW aircraft is to warn about air targets, and command and
control of air operations. Warning against air targets is the main and basic task of AEW aircraft.
The AEW aircraft can detect, recognize, and track various kinds of target far away from its own
airspace, providing sufficient early warning time for its own forces. It can conduct air defense
early warning tasks independently, and construct an air defense early warning network with the
long-range and close-range radar.

2. Command and control. AEW aircraft can conduct search, detection, and command tasks within
battlefields, perform long-range information associations with commanding centers in the wide
front and many operation directions, and undertake relay communication tasks. Advanced AEW
aircraft can conduct effective guidance, command, and control of massive air surprise attacks and
multiple aircraft in air combat. Combined with air surprise attack forces, they can greatly
enhance the capability for quick response and efficiency of air surprise attacks. Coordinating
with the installations and devices of the interception and attack system and the C3I system, they
can increase the integrated combat capability of the air defense system. When executing inter-
ception tasks, with the guidance of ground-based radars, they can guide their own fighters to
conduct long-range interceptions.

3. Passive detection or secret early warning. When an AEW aircraft conducts this task, the detec-
tion radar should be kept silent and only the electronic support measure (ESM) and communi-
cation surveillance measure (CSM) subsystems are used to find the positions of enemy forces
and weapons. The passive detection system can be employed to detect electronic radiant sources
beyond the detection range of the early warning radar, with capabilities for fast response and
highly accurate frequency measurement. In dense electromagnetic environments, it has a high
interception probability. Through the cross location of direction finding with other surveillance
stations or different points on its own route, it can quickly detect the bearing and electronic
parameters of enemy electronic signals. The attributes of targets can be identified through the
analysis of received radiant signals. The CSM subsystem can also acquire the enemy’s other
tactical information.

4. Air communication center. The AEW aircraft is usually equipped with a super-powered UHF
radio station, UHF transceiver, VHF and UHF AM/FM radio station, HF data link, and joint
tactical information distribution system (JTIDS). Acting as an air tactical information center,
it can receive and relay joint tactical communications.

5. Enhancing efficiency of air defense combats. In the air defense system of a nation, the use of
AEW aircraft can effect a reduction in number of CAP operational aircraft, and even their abol-
ishment, as well as greatly decreasing the size of land-based air defense forces on duty. The
working efficiency of a high-performance AEW aircraft equals that of 8 to 10 high-performance,
high-power, ground-based air defense radar stations.

19.8.2 Data Processing Technology

There is no essential difference in radar data processing methods between AEW systems and sur-
face-based radars, but differences do exist. The most obvious difference is that the movement of the
platform should be taken into consideration in the AEW radar system, which requires continuous
modification of the detected measurements according to time-variable data provided by the airborne
navigation system. The double parallel line patrol route is the typical movement mode of the AEW
aircraft, as shown in Figure 19.7.
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Without loss of generality, suppose that an AEW aircraft is moving at altitude H with constant
velocity V, from point O along the double parallel patrol route (i.e., the AEW aircraft is moving
cyclically along O! A! B!C!O), in which sections OA and BC are straight lines, sections
AB and OC are two semi-circles, the distance between the two parallel airways is d, the patrol dis-
tance of straight flight is L, and the turning radius is r = d=2.

19.8.2.1 Active Phased Array Radar Technology

As the phased array radar system has great flexibility in antenna beam formation and scanning con-
trol, the electronically scanning phased array radar consists of thousands of independent transmit-
ting and receiving array elements, and it can realize beam scanning with the computer-controlled
array. Compared with the ordinary rotating antenna radar, it has such merits as flexibility of scan-
ning, high reliability, strong anti-jamming capability, minor aerodynamic influence on the aerial
carrier, and excellence in stealth performance. Capable of detecting and processing multiple targets,
it is a new radar system appropriate to future information warfare.
In the phased array system, the advanced space-time adaptive processing (STAP) technology can

be applied to endow AEW aircraft radar with superior performance. The features are as follows.

1. High reliability. As proven by tests, with 10% of the units failing, there is no significant influence
on system performance and instant repair is unnecessary. When the unit failure rate rises to 30%,
the system gain lessens by 3 db, but the basic working performance can still be maintained.

2. Fast scanning beam, reaching the millisecond or even microsecond level.
3. Strong anti-jamming capability.
4. Strong capability to distinguish short-range targets.

19.8.2.2 AEW Aircraft Data Fusion Technology

Various sensors of AEW aircraft platforms provide target information, which can be shown on the
controllers’ display or displayed in the form of signals generated by computers. Automatic fusion of
these data from sensors will greatly relieve the burden on the controllers of assessing or recognizing
a specific target and deciding on ways to deal with this target.
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Figure 19.7 Double parallel line patrol route
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In the electronic task system of AEW aircraft, there are three pairs of sensor systems: inertial
navigator and GPS receiver; PSR & SSR/IFF interrogator; PSR & ESM/CSM receiver. Through
data fusion, they can provide ample and more accurate information, which enhances the system
performance of target detection and recognition [426].
To provide target track data to the air defense information system, the early warning system must

depend on the coordination of radar and inertial navigation systems. Because of the influence of
drift error on inertial navigators and the Schuler error resulting from the rotation of the earth, as
well as minor random errors, the position data from the inertial navigator for the aerial carrier is
not accurate, and therefore it is necessary to correct the inertial navigator. At present, the inertial
navigator of the early warning system is combined with the GPS receiver to obtain highly accurate
position data. It can determine its position by receiving code signals from four GPS satellites at the
same time, with the application of universal C/A code (standard positioning service), whose pos-
ition accuracy 95% probability is less than 100 m (equal to 40 CEPm) – far greater than that of the
Tacan or Loran system.
If an air target is detected by the AEW radar, the target echo signals will form measurements.

If there is an SSR transponder, after being received and decoded by it, the response signals will
also form SSR measurements, which may form tracks after being processed by the data pro-
cessor. Friend-or-foe identification responding signals work by associating with their corres-
ponding target signals. They are often acquired simultaneously, and the association between
them is usually realized by a gate set at the position of the measurements, the size of which
is used to balance the reliability of these associations and the decrease in probability of false
associations.
There are many difficulties in data fusion between the radar and ECM/CSM. The radar pro-

vides complete position information on targets and their motion condition information, while the
ESM/CSM only provides their angle information, whose accuracy is lower than that of the radar.
In addition, radar data and ESM/CSM data are asynchronous and cannot be associated simply.
First of all, the position data of the radar and ESM/CSM should be adjusted to the same time, and
then some criteria should be taken to determine if the two data sources originate from the
same target.
There have been many studies on association determination algorithms in recent years, mainly on

the tracking and filtering of targets’ position data and radiant sources’ angle data, angle value
comparison between each object and each radiant source after being filtered, and association value
calculation of any two angle values. The definition of an association value makes algorithms dif-
ferent from each other. This value is often defined with the angle mean square error over a period of
time, but sometimes bymeans of the fuzzymathematical method. In addition, the tracking algorithm
with the association of angle information is a new research field as well. It has a higher accuracy of
determination by converting the association of position data acquired by the radar and ESM/CSM to
tracks into that of the two sensors to multiple targets.

19.8.3 Typical Working Mode

Take E-3A for example. The working modes of its airborne radars include AEW, over-the-horizon,
marine, passive, and so on. The AEWmode can be divided into look-up and look-down modes. The
former is mainly for the detection of flying targets in the airspace above the aircraft’s horizontal line
of sight, while the latter is mainly for the detection of flying targets in the airspace below, especially
so with flying targets at low altitude.
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19.8.3.1 AEW Mode

The AEWmode is mainly for the detection of high or low-altitude moving targets. The radar usually
adopts pulse compression technology to ensure maximum detection range and range resolution. The
look-up AEW mode is mainly used to detect moving targets above the aircraft’s horizontal line of
sight, and its antenna elevation should be above 0�. As there is no clutter jamming in the detection
region, it can adopt PD and PE detecting methods. The look-down AEWmode is generally applied
to detect moving targets in strong ground and sea-wave clutters in the area below this line of sight.
Its antenna should be below 0�. Because there is strong clutter jamming in the detection region, it
must adopt the PD detecting method. Applications of the AEW mode are as follows.

1. Air defense and detection of moving targets at high and low altitudes. The AEW mode of large
AEW aircraft is mainly for air defense. In this mode, the radar’s detection range for small aerial
targets is about 300 km. For instance, the detection range of E-3A and E-2C is 400 km and
270 km, respectively. For large targets, the maximum detection range should be about
600 km, and the maximum detection range of E-3A and E-2C is 667 km and 560 km, respect-
ively. Though capable of early air warning, the small AEW aircraft’s radar detection range
toward air targets is limited, and its detection range is only 50–70% of that of big AEW aircraft.
In addition, as the beam width of radar antenna is limited, it has difficulty considering both high
and low altitudes, and therefore a certain search mode will be employed by the antenna. The
airborne PD radar usually changes its pulse repetition frequency in the search process to achieve
optical detection. In the look-up AEW mode, the flight altitude of AEW aircraft depends on the
air defense warning task, warning area, and performance of the AEW aircraft itself, etc.
Because of the influence of ground clutter, the look-down detection range of the radar in AEW

mode is smaller than that in look-up mode (only about 80% that of the latter). While in look-
down mode, the radar can detect the target in the frequency domain and its velocity with appli-
cation of the PD method. However, detecting the moving targets at close range makes no sense,
so the look-down mode is usually applicable to intermediate and long-range warning. In look-
down mode, the radar’s detection capability relies on the flight altitude, because of the influence
of its line of sight, and if the flight altitude is relatively lower, the AEW function may be affected.
Besides, the direction of the antenna beam also affects the warning airspace of an AEW aircraft:
if it is horizontal, targets beyond the line of sight may be detected; if it lowers one level, the
middle range targets and surface targets could be detected. Therefore, flight altitude and antenna
direction are two important factors affecting the detection capability of a radar.

2. Guiding and intercepting air targets. The radar of the giant AEW aircraft can provide continuous
intercept vectors for multiple targets at the same time, which means that it can provide “one-to-
one” or “several-to-several” guidance modes.When intercepting air targets, guidance can be div-
ided into rough guidance and accurate guidance according to the time interval between informa-
tion provisions and information amounts.

As modern war fighters are equipped with good-performance fire control radars, when intercept-
ing air targets, AEW aircraft usually adopt “several-to-several” rough guidance. Which guidance
mode should be used depends on the type of operations. Generally, AEW aircraft should undertake
warning tasks within secure regions in which their own security can be guaranteed. Accurate guid-
ance is necessary in cases where targets are judged to possibly be very dangerous, so continuous
tracking is needed. For faraway targets whose threat degree cannot be determined, rough guidance
can be used. For the same batch of targets, rough guidance should be used first, and when conditions
are right, accurate guidance can be applied.
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As the detection range of the radar in the AEW mode of giant AEW aircraft is relatively far, the
same guidance and interception method can be adopted in the look-up and look-down modes. For
small AEW aircraft, the detection range in AEW mode is relatively near. If adopting continuous
accurate guidance, the AEW aircraft itself will be in danger, and therefore rough guidance should
be the first priority.
The radar of the E-3A AEW aircraft has all-elevation target surveillance capability. Only when

the radar measures the altitude of targets can it realize accurate guidance. If the radar provides no
target altitude, then it can only work in the plane’s accurate guidance mode, in which case the AEW
aircraft must acquire altitude information on targets through other methods.

19.8.3.2 Over-the-Horizon Mode

When in over-the-horizon mode, the AEW aircraft is mainly responsible for long-range warning
tasks and detecting enemy aircraft carriers or warship formations. In this case, the radar antenna
beam should be directed toward the aircraft’s horizontal line of sight. The application of the radar
in this mode is as follows.

1. Long-range warning. To guard against enemy aircraft carriers and warship formations, it is
required that the maximum detection range of the AEW aircraft radar be fully applied. In this
mode, the aircraft should adopt a maximum cruise altitude of 9000–12,000 m, and the radar
should also work in its maximum range, so that it has about 10 hours to warn against these enemy
targets.

2. Command and navigation. AEW aircraft attacking marine targets can be used to command air-
craft and warship formations to attack enemy surface targets. For aircraft carrying air-to-ship
missiles and with good-performance airborne fire control radars, rough guidance can be adopted
to brief the target position, properties, and kinematic factors. For those carrying bombs but with-
out airborne fire control radars, accurate guidance should be used to brief their own flight elem-
ents and enemy targets’ positions and kinematic factors. When commanding the operation of a
fleet, combat command can be handed over to the commanding center of the fleet because the
fleet moves slowly, and what the AEW aircraft should do is to brief position, kinematic factors,
formation, target properties, and quantity of enemy surface targets.

19.8.3.3 Marine Mode

When in the marine mode, the AEW aircraft is used mainly to search for small marine targets and
submarine targets in cluttered environments such as coastlines and islands. The applications of this
mode are listed below.

1. Detecting and attacking small marine targets. The AEW aircraft is moving along its coastline or
within a responsible region within its native land, undertaking the offshore defense air command
task, or providing the ground commanding center with information about the position, kinematic
factors, formation, target properties, and quantity of enemy marine targets.

2. Searching for submarines and commanding anti-submarine operations.When used to search for
submarines, the application of AEW aircraft is essentially the same as that of detecting and
attacking small marine targets. In the surveillance region, the flight altitude can be lowered
to about 1000 m. The aircraft can practice submarine search directly, or command and coordinate
anti-submarine helicopters and ships in searching for and attacking submarines.
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19.8.3.4 Passive Working Mode

1. Applicable in electronic warfare. The passive working mode of the E-3A AEW aircraft is applic-
able to electronic warfare. Being a passive detector, it can cooperate with other ESMs to detect
the position of enemy radar signal sources and detect enemy jam transmitters. Especially when
enemy forces conduct detection and jamming toward the aircraft, the passive working mode
enables the aircraft to take counter-reconnaissance and anti-jamming measures. In this mode,
the data fusion performance of the radar with other passive detection systems will influence
the engagement competency directly.

2. Applicable to self-defense survivability. Being an effective means of low-altitude air defense, the
AEW aircraft poses a great threat to enemy air defense, and thus it is also a prime target for
enemy air defense and air forces. In this mode, the AEW aircraft can effectively avoid enemy
anti-radiant missile strikes, so the passive mode is appropriate for self-defense survival. In actual
combat, the passive mode of the radar should be used together with other self-defense equipment
of the aircraft.

19.9 Application in Air Warning Radar Network

Air warning missions cannot be satisfactorily completed by a single radar or many radars working
independently. Compared with single radars, radar networks have some remarkable advantages
such as high detection probability, broad detection region, high tracking accuracy, good anti-stealth
performance, and strong electronic countermeasures. We discuss in brief the method of data pro-
cessing in the air warning radar network.

19.9.1 Structure of Radar Network Data Processing

A radar network is an organic whole integrating radars with various systems, frequencies, and
polarization modes deployed in such a manner that information about air situations from these
radars is trapped and delivered as if through a piece of netting and then integrated and controlled
in the central station, forming an organic whole. It is mainly made up of three parts: terminal
radar, data transmission, and central processing systems. Data calibration, correlation, and fusion
are the core of the last system [427]. Figure 19.8 shows the data processing structure of a radar
network.
In this figure, a radar station in the network consists of radars, measurement recorders, a series of

receivers, track data computers, a transmitter, and a display. Tracking takes place at every station at
the same time, and includes track management of different levels [375, 428–432]. Tracks can be
categorized into two groups: local and systemic. The former is produced and updated according
to the measurements transmitted by local radars, while the latter is a unique clear track acquired
from the association and fusion of several local tracks. Both local and system tracks are stored
at the memory device of each station. The target report conveys the most practical and latest infor-
mation to a radar station, but the not-so-reliable data are not filtered yet. It may also receive from
many other stations a great deal of track information, which may be obsolete but relatively reliable:
track ID and quality, latest update time, target coordinates, and speed and type.
Measurement data is primarily used to associate with local tracks or to produce new tracks. Track

information should first be associated with ultimate tracks to update system tracks, or should be
fused with local tracks to produce new system tracks [13, 54, 60]. The initiation of a new track,
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or the updating of local or system tracks, or the production of new system track, is always sent out by
system tracks. As long as at least one radar detects a target, tracks of all the stations will be moni-
tored. The track will be cancelled when it fails to be associated with any measurements within two
scanning periods of the slowest antenna. The same track ID for the same target of different stations is
provided through track ID management. This means that when a false track ID switch occurs, track
IDmanagement serves to calibrate the different track IDs of the same initial track, and re-change the
final track ID of all stations.

19.9.2 Key Technologies of Radar Network Data Processing

19.9.2.1 Time Registration

The scanning of the antennas within a radar network is usually asynchronous, and it would be dif-
ficult to realize data fusion if there was no unified time standard. Hence, the same time benchmark is
required for the information reported by the radars of a network. In other words, these observations
must be synchronized before being fused, which is also called “time registration.” Time registration
refers mainly to the process of synchronizing tracks detected by various synchronous or asynchron-
ous radars at different times to the same time on the time axis. First, a unified time benchmark should
be set. This can be done by means of the high-stability clock of satellite positioning systems, like the
double satellite positioning system of China, which meets accuracy requirements but is susceptible
to interference. Alternatively, it can be completed by utilizing high-stability rubidium atomic clocks
in every station as synchronous signals, but time registration should be made before utilization.
Refer to Section 5.2 for more details on time registration.

19.9.2.2 Space Registration and Coordinate Transformation

Accurate Position of Single Station Radar
The accurate positioning and spatial geometric calibration of monostatic radars in the radar network
is the basis for stations to share data through coordinate transformation, and to conduct accurate
positioning for targets and data fusion for measurements. The positioning and spatial calibration
of radars can be realized with the accurate positioning service provided by China’s double satellite
positioning system.
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Figure 19.8 Data processing structure of the radar network
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Coordinate Transformation
In the radar network system, the target measurements reported by each radar are located in its local
coordinates. Therefore, before information fusion for multiple stations, the measurement values of
all other radars should be transformed into a unified coordinate system. Common unified coordinate
systems include the following.

1. Earth-centered Cartesian coordinates: inertial coordinates, appropriate for strategic early warn-
ing and detection systems with large surveillance ranges.

2. Cartesian coordinates whose fusion center is the coordinate origin: inertial coordinates. When
these coordinates are adopted, the altitude of targets out of the fusion center’s line of sight but
detected by other radar is negative.

3. Geographical coordinates: non-inertial coordinates. The fusion result can be displayed directly
on electronic maps.

4. Stereographic coordinates whose fusion center is the coordinate origin: inertial coordinates.
Conformal mapping is the most important merit here, which keeps the angle values between
tracks unchanged after coordinate transformation. However, it involves complicated calculations
during coordinate transformation.

To sum up, the selection of a unified coordinate system depends on the mission of the radar net-
work and the performance of the radars. For coordinate transformation, refer to Section 5.3.

19.9.2.3 System Error Registration

As the target observations of the radar network always have random errors and system errors, errors
may occur between different radar tracks of the same target. The modification process of these errors
is called “error registration.” The random errors mainly derive from random observation noise and
targets’ random maneuvers, which can be eliminated through filtering methods. But system errors
(such as inaccuracy in radars’ angle and range measurement, radar stations’ position and due north,
and the error of coordinate transformation approximation algorithms) cannot be eliminated through
filtering, so it is necessary to estimate errors in advance and make compensation afterwards. The
most desirable method of error registration requires that the target position is known, which is dif-
ficult to meet in practical circumstances. At present, most studies focus on the error matching algo-
rithms in unknown target circumstances, such as the RTQC algorithm based on spherical/polar
coordinates and the GLS algorithm based on geodetic coordinates.

19.9.2.4 Multi-station Track Association and Fusion

The radars in the air warning radar network have their own information processing systems, which
collect a great number of target tracks, make comprehensive judgments on the large number of
tracks from different systems, and determine target tracks. This process is multi-station track asso-
ciation. Multi-station track association algorithms normally include statistics-based and fuzzy math-
ematics-based methods. The former mainly consist of the weighted, modified, sequential, classical
assignment, double threshold [433] algorithms. The latter mainly consist of the fuzzy double thresh-
old, fuzzy comprehensive function, and multi-factor fuzzy comprehensive decision algorithms. Fol-
lowing track association, the fusion center fuses the associated tracks to obtain more accurate system
tracks; this process is known as “track fusion.” Track fusion algorithms include the simple convex
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combination, Bar-Shalom–Campo, and maximum posterior probability state estimation fusion
algorithms [433].

19.10 Application in Phased Array Radar

The past decade has witnessed the increasing importance of phased array radars in warfare. They
have replaced traditional mechanical scanning radars on a large scale, and are used widely in
ground-based, shipboard, and airborne radars. The application of varied new and high technologies
has greatly enhanced the performance of phased array radars, and also compounded the complexity
of the process of radar data processing. The example of the MESAR will be cited below to illustrate
the application of radar data processing techniques.

19.10.1 Functional Features

Developed by Britain in the late 1980s and early 1990s, the MESAR is an advanced experimental
active phased array radar exploiting the state-of-the-art digital and solid-state microwave technolo-
gies then available [434]. As an experimental platform, it is used to test new technologies to be
adopted in the phased array radar system. It adopts an octagon array face with a diameter of
1.8 m and possesses 918 transmitting elements, in which only 156 elements are installed with trans-
ceiver modules to reduce the cost. The system frequency range is 2.7–3.3 GHz, the peak power of
each module is 2W, the average power is 100W, the beam width is approximately 3�, and it trans-
mits horizontally polarized waves.

19.10.2 Data Processing Procedure

19.10.2.1 Measurements Processing

When the radar updates a known track, the pencil beams can only illuminate the track’s adjacent
space, which may contain the association thresholds of other targets, so the updating of this track
cannot be accomplished at once. Associating a false measurement with the track will decrease the
track accuracy, and therefore the MESAR adopts the simple nearest-neighbor algorithm in most
cases when conflicts occur in the association and updating of tracks.

19.10.2.2 Track Filter

The MESAR uses a constant-velocity Kalman filter with a maneuver detector strategy for track
smoothing. It provides a filter with adaptive memory space according to the mobility of the target.
When the target is judged to be in motion at constant speed, the filter adopts low process noises;
when the target is judged to be maneuvering, process noises are enhanced to adapt the filter to the
maneuvers of the target. This is the adjustable white noise maneuvering target tracking method
discussed in Chapter 9.

19.10.2.3 Adaptive Track Update Rate

The next update time of the MESAR is calculated according to two factors.
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1. Guaranteeing a high probability that the target will fall within the 3 dB beam on the next update.
This value depends on the filtering precision of the azimuth and the elevation of the track, and on
the value of azimuth and elevation of the track’s possible maneuver. It implies that an update of
the track must be completed before the target falls outside the 3 dB beam width (i.e., before the
target is lost).

2. Obtaining the expected location and speed tracking accuracy. This means that if the track is not
updated in time, the expected tracking accuracy cannot be achieved even if the target is not
missing.

If the updating time is too long, this means that one of the two above conditions is not satisfied. If
the updating time is too short, this means that the time the tracking function takes has exceeded the
optimal value.

19.10.3 Test Examples

19.10.3.1 Multiple-Function Operation

Figure 19.9 shows a typical display output screen of theMESAR. This PPI screen displays the result
of search and tracking of the targets within its scanning airspace, where the range scale is 55 km,
bearing 45�, and elevation 50�. The screen information includes the following.

1. Search for measurements: these measurements are obtained mainly thanks to the search function
and they include false measurements due to false alarms.

2. Track update validated: these measurements are validated as true targets.
3. Track update lost: an updated track fails to be detected.
4. Slow tracks: these tracks fall below the specified velocity threshold.
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Figure 19.9 Screen of PPI display
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19.10.3.2 Adaptive Tracking

The MESAR’s track update rate and waveform are adaptive to target environments. Figure 19.10
shows the tracks and measurements of two aircraft taking highly maneuverable turns, flying from
the top left, zigzagging and taking detours, making turns close to the radar and flying straight to the
top right. The change in measurement density reflects the process that the track update rate varies
with the prediction confidence. In other words, the update rate is the lowest in straight flight,
increases when the target is approaching the radar, and once maneuvers are detected, reaches a max-
imum to maintain tracking accuracy.

19.10.3.3 Split Track Tracking

When the radar detects a track splitting process, it must make the two split tracks sufficiently accur-
ate as soon as possible. The MESAR can initiate new tracks for “extra”measurements, while updat-
ing tracks. Figure 19.11 illustrates the radar’s function when an aircraft flying at 10 km altitude
projects a bomb, which produces split tracks.
The MESAR is a multi-functional phased array radar system capable of adaptive tracking and

control in real time. But it needs to be improved with respect to the tracker in two ways. For
one thing, more advanced track filters and measurement association methods can be adopted, such
as the IMM, JPDA, and MHT techniques. For another, it can be improved by developing new func-
tions, such as variable beam width, simultaneous multiple receiving beam processing, and super-
resolution techniques, as well as optimizing the performance for the rotating system of the antenna.
These problems have been tackled in succeeding research on MESAR II.
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Figure 19.10 Adaptive update rate
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19.11 Summary

Aiming to provide readers with a clearer picture of how the radar data processing technology is
applied in engineering implementations, this chapter presents a comprehensive introduction to some
of its typical applications in the following systems: air traffic control, shipboard navigation, ship-
board radar clutter suppression, ground-based laser radar, marine surveillance, fleet air defense,
shipboard artillery control radar, AEW radar, air warning radar network, and phased array radar.
These applications, although in different fields, have some similarities. Firstly, all the algorithms

suitable for radar data processing have common mathematical bases: they are based on dynamic
system simulation, filtering, statistical decision, optimal control, andmanagement theory. Secondly,
the common purpose of incorporating radar data processing techniques is to selectively reduce the
data quantity from sensors to users, to select information related most closely to judgment and con-
trol, and to display the information in a way most satisfying to operators. Lastly, the demand for
radar data processing varies with the application system, which requires different solutions.
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Figure 19.11 Split track tracking
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20
Review, Suggestions, and Outlook

20.1 Introduction

This book features topical discussions. Each special topic starts with an introduction to the basic
concepts and filtering methods, followed by theoretical analyses and studies on the topic, and con-
cludes with examples illustrating the practical implementations of the theories, technologies, and
techniques with some dos and don’ts. With target tracking and data association as the main thread,
it presents comprehensive, systematic, in-depth discussions of the latest developments in the radar
data processing technology, delves further into some major subjects, and provides a multitude of
references.
This chapter offers a review of the main theoretical achievements covered in this book, sugges-

tions on several issues, and a forecast of future trends in radar data processing techniques.

20.2 Review of Research Achievements

20.2.1 The Basis of State Estimation

Chapters 1 and 2 focus on some basic concepts of radar data processing and several time constant
parameter estimation methods commonly used in basic linear systems: ML, MAP, LS, and MMSE.
This leads to parameter estimation in dynamic situations in Chapter 3, which starts with an

introduction to state estimation methods in linear systems, including the establishment of a system
model, corresponding filtering models, filter initialization methods, definition and judging
method of filter stabilization, controllability and observability of random linear systems, and
steady-state KF.
State estimation of nonlinear systems is dealt with in Chapter 4, in which nonlinear filtering

methods including EKF, UKF, and PF are discussed. A comparative analysis is made of the tracking
accuracy and computational load of some linear and nonlinear filtering algorithms with the same
target in the same simulation environment.
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20.2.2 Measurement Preprocessing Technology

The preprocessing technology of measurement data is essential in the correct processing of radar
data. Effective techniques can reduce the computational load, with tracking accuracy improved.
Chapter 5, therefore, introduces some techniques for preprocessing measurements, including spatial
and temporal synchronization of data from different sensors and data compression. Temporal syn-
chronization serves mainly to resolve the inconsistency between data rates from different sensors,
while spatial synchronization chiefly guarantees that all data formats can be unified into the same
coordinate system. Data compression techniques are used to reduce the calculation load of subse-
quent data processing and improve tracking efficiency.

20.2.3 Track Initiation in Multi-target Tracking

In terms of multi-target track initiation in Chapter 6, this book describes initial wave gates and cor-
relation wave gates and then introduces techniques for multi-target track initiation.
Track initiation techniques can be conveniently divided into two general categories. One is target-

oriented sequential processing techniques, including the logic-based and modified logic-based
methods. These are mostly used in track initiation of targets in sparse clutter, for their fast initiation
speed but poor initiation results in the presence of dense clutter.
The other category is batch processing techniques, including the HT and MHT methods. These

are very effective for initiating tracks of targets in dense clutter, but needmany rounds of scanning to
initiate a track. Finally, a comparison is made in performance between the two categories in the same
simulation environment.

20.2.4 Multi-target Data Association Method

ML-based and Bayesian data association approaches are compared and analyzed in Chapters 7 and
8, respectively. The former is based on the likelihood ratio of observation sequences; in other words,
it does not yield the probability that the sequence is correct. It includes track splitting, UML, 0-1-IP,
and GC algorithms. All these algorithms adopt batch processing tools, which involve extra
calculation.
Bayesian approaches to data association are based on Bayesian rules. They perform recursive

calculations and can be realized with computers. Two Bayesian approaches are discussed: subopti-
mal and optimal. The first deals only with the latest set of validated measurements, mainly including
NN, PDA, IPDA, and JPDA. The second computes association probabilities for each sequence of
measurements, mainly including the OBF and MHT. The OBF can have excessive computing
requirements.

20.2.5 Maneuvering Target and Group Tracking

Maneuvering target tracking approaches in Chapter 9 mainly include maneuver detection integrated
and adaptive tracking algorithms. The former can be further divided into two types: filter-gain
adjustment and filter-structure adjustment. Adaptive ones include the MIE, multiple, Singer,
current, IMM, and jerk models. The performances of these algorithms were compared through
simulation analyses.
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In the group tracking part (i.e., Chapter 10), several typical algorithms are compared with respect
to group initiation, separation and association, and group speed estimation. A detailed discussion is
made of two typical (centroid and formation) group tracking algorithms in terms of track update,
merging and splitting of group targets.

20.2.6 Multi-target Tracking Termination Theory and Track Management

Chapter 11 starts with a discussion of several multi-target tracking termination techniques based on
NNA algorithms: SPRT, TG, CF, Bayesian, and AN Bayesian. It then deals with track ID and track
quality management techniques, including methods of single and double-track ID management,
selection of initiation criteria, and track cancellation by means of track quality. In this part, the track
quality management is also expounded in single and multi-station cases.

20.2.7 System Error Registration Issue

Radar observation systems have two types of error: random and system. Random errors can be elim-
inated through various filtering methods but system errors are deterministic, and cannot be handled
in this way. They need pre-estimation and compensation, and this process is called error registration.
As proven in practical applications, target tracking errors may become larger than their theoretical
values due to system errors in multi-radar network tracking systems. When they are too large, the
tracking results of multiple radars are even worse than those of single radars. In the worst situation,
many tracks may be generated for the same target, which leads to ambiguities.
Therefore, Chapter 15 is devoted to system error registration, covering modeling methods and

registration algorithms of mobile radar systems, with a comparative analysis of MLRM and
ASR algorithms.

20.2.8 Performance Evaluation of Radar Data Processors

The performance of radar data processors involves myriad factors, so does its evaluation index
systems. In Chapter 17 of this book, the performance evaluation index systems of radar data
processors are discussed in terms of average track initiation time, accumulated number of track
interruptions, track ambiguities, accumulated number of track switches, track accuracy, maneuver
tracking capability, ratio of false track, divergence, track capacities, detection probability of radar
networks, response time, etc.

20.2.9 Simulation Technology of Radar Data Processing

This book gives an overview of basic knowledge on system simulation in Chapter 18, and presents
methods of generating uniformly and normally distributed random numbers in Monte Carlo
simulative tests. Simulation examples of radar data processing algorithms are given to illustrate
the integration of system simulation and radar data processing technologies with the aim of tackling
practical problems in radar data processing.

501Review, Suggestions, and Outlook



20.2.10 Applications of Radar Data Processing Techniques

This book addresses itself to some data processing methods developed according to the intrinsic fea-
tures of different radars, including passive, phased array, and PD radars in Chapters 12, 13, and 14.
Passive radars are dealt with in terms of spatial association of measurements, optimal deployment

of passive sensors under the rule for the minimum area of position concentration ellipses, and pas-
sive location using time difference of arrival.
The discussion of PD radars focuses on such typical algorithms as optimal distance–velocity

coupled tracking and target tracking of Doppler measurement integrated radars. For algorithms
of target tracking by Doppler measurement integrated radars, the discussion focuses on USEKF,
USUKF, DUKF, and IMM-DUKF algorithms, with the performance of CMKF, UCMKF, EKF,
and USEKF in two simulation environments compared and analyzed.
When it comes to phased array radars, tracking filtering methods are discussed in terms of multi-

target processing, variable sampling interval filtering, and resource scheduling strategies, with stress
laid on three adaptive sampling approaches: SSGF, IMM, and PCT, whose performance in simu-
lations is compared and analyzed.
With regard to radar data processing applications, research on the data processing technology of

network radars is presented in Chapter 16 in terms of performance, indexes, and optimal deployment
from the perspective of the design and analysis of radar networks. Data processing procedures of
mono-, bi-, and multistatic radar networks are also introduced, as are track association techniques –
the core of the data processing process of radar networks.
Radar data processing is the process of estimating the tracks of targets and forecasting their future

positions with the data provided by radars. In practical implementations, track estimation is not the
ultimate aim of radar systems, but users need to use the estimations to make judgments and then take
action as required. Therefore, the last section of this part (i.e., Chapter 19) is devoted to the appli-
cations of radar data processing techniques in the ATC, shipborne navigation radar, shipborne radar
clutter suppression, ground laser radar, marine surveillance, fleet air defense, AEW radar, aircraft
warning radar network, and phased array radar systems.

20.3 Issues and Suggestions

20.3.1 The Application of Data Processing Technology in Other Sensors

The extension of the radar data processing approaches discussed in this book to other sensors is a
topic to be further explored, because modern combat systems cannot depend only on radars to
achieve optimum combat results. It is essential for them to incorporate multi-sensor assemblies
integrating various active and passive (TV, sonar, infrared ray, laser, ESM, and ELINT) detectors
covering a broad band of frequencies to provide various observation data, from the optimization and
integration of which combat information (including target detection, state estimation, target prop-
erties, behavioral intention, situation evaluation, threat analysis, fire control, ECM, combat modes,
and decision aids) can be acquired in real time.

20.3.2 Track Initiation in Passive Sensor Tracking

Passive sensors have difficulty determining the initial states of single targets. If the errors in the
assumed values of the initial state and covariance are large, the filters tend to diverge. In the
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multi-target case, passive sensors face more difficulties with the effective initiation of tracking
filters, and dynamic choice and allocation of association gates.
Track initiation techniques of passive sensors, therefore, are worthy of extensive studies. Besides,

research efforts in the area of multi-radar integrated tracking should be directed at track initiation
techniques, and the determination of the number of radars needed in track initiation based on the
compromise between performance and computing load according to tactical requirements.

20.3.3 Non-Gaussian Noise

The radar data processing techniques discussed in this book are based on the assumption that both
measurement noise and process noise are Gaussian. This is an approximation to some extent, but in
reality neither of them is Gaussian. Therefore, techniques of radar data processing in the presence of
non-Gaussian noise are a topic for further practical research.
In addition, colored noise-related subjects need to be explored, since both the measurement noise

and process noise in this book are assumed white noise.

20.3.4 Data Processing in Non-standard and Nonlinear Systems

Except in Chapters 4 and 12, all data processing models are based on discrete standard system
models. Although tremendous achievements have been made in the research on data processing
of non-standard and nonlinear systems in their long research histories, numerous problems have
not been solved yet, and many need further study. An example of these in non-standard system
models is system state equations, including control terms, process noise, and measurement noise.

20.3.5 Data Processing in Multi-radar Networks

Up to now, enormous research efforts have been channeled into the data processing problems of
multi-radar networks, but the theoretical findings have not yet produced the desired practical results.
This is because many of them are based on ideal assumptions (e.g., Gaussian distribution, measure-
ment synchronization, and no system deviations), which cannot be satisfied in all engineering
environments. Therefore, modifications and improvements in the present theories and methods
according to the actual engineering requirements have become an urgent problem.
Further, while the possibly great benefits brought about by radar network information fusion have

been widely recognized, the guarantee of real-time fusion efficiency of practical radar systems
(where various detection errors tend to occur) has long become knotty in this field and further
research still needs to be undertaken.

20.3.6 Joint Optimization of Multi-target Tracking and Track Association

In practical applications, the problem to be tackled concerning data processing of distributed radars
is not the respective optimization of each processor’s performance, but the joint optimization of
multi-target tracking and track association in the whole processing system. So far, little research
has been done on this topic and no definite conclusions can be drawn in the unclassified literature.
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20.3.7 Comprehensive Utilization of Target Features and Attributes
in Multi-radar Tracking

Section 12.7 touches briefly on the attribute data association issue of passive radars, instead of
delving deeply into how to make comprehensive use of position, kinetic, feature, and attribute
parameters, and subjective knowledge.
In the military field where electronic warfare is becoming increasingly complex, system errors are

liable to arise in sensor systems due to serious clutter and false alarms, and especially false asso-
ciations are apt to result from the tracking and association based only on statistical distances. In this
case, it is vital that various features and attributes of targets be fully tapped in track processing so as
to improve the reliability of the fusion system for effective, accurate tracking.
Whereas some approaches to using such information have been introduced in the references, they

are still far from enough for practical applications.

20.3.8 Comprehensive Optimization of Multi-radar Information
Fusion Systems

Chapters 3 to 10 are concerned with target state estimation, multi-target tracking, maneuvering tar-
gets, and group tracking. However, each of these problems is approached separately. When it comes
to multi-target tracking, track association, and state estimation, the comprehensive optimization of
information fusion performance is not considered against the overall performance of the system.
In practical applications, the front ends of distributed multi-radar information fusion systems usu-

ally cascade multi-target tracking data processors. What needs to be considered is not the separate
optimization of every processor’s performance, but the overall optimization of multi-target proces-
sors and distributed information fusion systems in cascade connections. This necessitates adjusting
every local performance index, adding feedback layers, constructing unitary performance indexes
(which are then embedded in each processing process at every stage), and thus completing the opti-
mization of unitary fusion performance.
Introducing feedback information at distributed fusion nodes to sensor stages can improve the

tracking accuracy of these stages significantly, certainly on condition that both data and track asso-
ciations are correct. Little research has been done on how to obtain joint optimized results in the
presence of false and missed associations in both stages, and no definite practical conclusions
are available in open-source references up to now.

20.3.9 Tracking Multi-targets in Complex Electromagnetic
Waves and Dense Clutter

The four groups of approaches to radar data association (ML and Bayesian, maneuvering and group
target tracking) described in Chapters 7 to 10 are incapable of responding to the fresh challenges posed
by the complex electromagnetic environment in modern warfare with multi-radar and multi-target
tracking. Topics for future research in this area of practical significance to engineering include:

1. multi-radar, multi-target tracking in the presence of blanket jamming;
2. multi-radar, multi-target tracking in the presence of massive deceptive jamming;
3. multi-radar, multi-target tracking in the presence of compound jamming (i.e., various types of

man-made interference simultaneously);
4. tracking multi-targets in complex electromagnetic waves and dense clutter;
5. multi-target tracking with low resolution and multiple paths.
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20.4 Outlook for Research Direction

Despite continuous advances in the radar data processing technology, there are still many areas
needing further research and exploration. Some main research directions are expounded below.

20.4.1 Information Fusion and Control Integration Technology
of Multi-radar Networks

In modern warfare, multi-radar networks are needed in the joint detection of the same area and the
integration of time, space, and detection information. So, the integration and coordination of the
information from multiple radars in networks is a new topic of study.
Some approaches to single-radar, multi-target tracking (including JPDA and MH) are covered in

Chapter 8, but further research is needed to investigate whether and how they can be extended to
multi-radar cases. For example, there are no plans as yet for the OBF, 0–1 integer programming,
NNPDA, IMM-PDA, and DPDA techniques to be used directly in multi-radar, multi-target inte-
grated tracking. The research on both how to use them in multi-radar systems and their performance
analysis is of great real significance.
Furthermore, in order to perform effective management and centralized resource allocation,

multi-radar information fusion centers need (according to the realistic requirement of information
fusion and situation awareness) to control each radar’s work andmode, and hence provide complete,
correct, universal, continuous, and timely air situation information about the entire combat zone.

20.4.2 Joint Optimization of Target Tracking and Identification

This book is concerned mostly with target tracking. However, in the complex battlefield nowadays,
it is essential that the sensor system be able to track targets in hundreds of batches, and identify these
various and numerous targets, with a timely and quick response.

20.4.3 Integration Technology of Search, Tracking, Guidance,
and Command

The integrated use of multiple radars and multi-functional radars requires that the data processing
system have functions such as search, tracking, guidance, and command. In reality, it is natural that
integrated data processing systems with more comprehensive functions and stronger performances
will be needed with the continuous advancement in technology.

20.4.4 Multi-radar Resource Allocation and Management Technology

Multiple radars constitute the complementary system of multi-sensor systems, and hence these
sensors should be properly managed according to some working criteria so as to obtain optimal data
collection performance. Sensor management usually involves space, mode, and time management.
Primary topics of study in this field are performance prediction, target assignment of sensors,
control standards for spatial and temporal ranges, configuration and control strategies, interface
techniques, target assignment priority techniques, and indication and transfer techniques.
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20.4.5 Database and Knowledge Base Technology in Radar
Data Processing

According to specific tactical backgrounds, the establishment of radar data processing databases and
knowledge bases, and the adoption of high-speed parallel inference mechanisms, are key issues in
the engineering and practical applications of radar data processing techniques, which require special
attention in the research to come.

20.4.6 Engineering Realization of Advanced Radar Data Processing
Algorithms

The radar data processing technology has been widely applied in both military and civil fields, but
data processing algorithms are usually very simple and need approximation to different degrees.
The growing complexity in engineering applications, and the increasingly demanding requirements
of data processing in effect, call for the application of advanced radar data processing algorithms,
enabled by the rapid development in computer technology. How to apply the theoretically advanced
data processing algorithms to engineering reality has become an important and arduous task in the
radar data processing field.

20.4.7 High-Speed Calculation and Parallel Processing Technology

In order to satisfy real-time requirements and realize continuous tracking of high-speed and highly
maneuverable targets in complex environments, it is necessary that data processing systems be able
to tap more detection information, advanced algorithms, and hardware and software platforms.
Besides, they are also required to be capable of breaking down the data processing algorithms into
parallel ones suitable for parallel machines, and developing corresponding software and hardware
for parallel calculations, so as to adapt themselves to the requirements of these algorithms in their
processing capability.
Research topics in this respect include the following issues for engineering implementations: real-

time data transmission with high speed and large volume, systematic calculations with high speed
and efficiency, and task assignment and synchronous control in parallel processing.

20.4.8 Establishment of System Performance Evaluation
Methods and Test Platforms

The explanation of radar data processing performance prediction and evaluation methods given in
Chapter 17 is confined to theoretical analysis. Moreover, some other problems need to be solved
urgently. One of them is how to establish evaluation systems and test platforms, so as to measure the
performance of data processing algorithms and analyze and evaluate these algorithms, and the sys-
tem performance, in a comprehensive and objective manner.

20.4.9 Common Theoretical Models for Variable Structure
State Estimation

Because of the rapid development in sensor network systems and the mobile ad hoc network
(MANET) technology, the structure and parameters of multi-source information systems can
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change with sensor nodes. Therefore, state estimation models adaptable to changes in the structure
and parameters of these systems are an important subject of research in state estimation fusion in the
future trend toward networking.

20.4.10 Automatic Tracking of Targets in Complex Environments

An urgent problem in application is the automatic tracking of targets with low detection probabil-
ities, especially of small targets with high speed in the presence of massive residual ground and
meteorological clutters and acute electromagnetic interference. This problem can be resolved
through inter-frame filtering techniques, tracking before detection approaches, and advanced algo-
rithms with the radar front end being unchanged.

20.4.11 Tracking and Invulnerability of Multi-radar Network Systems

In the era of information warfare, the network is the basic platform for multi-radar, multi-target
tracking systems. When one or several radars are subject to observation ranges, enemy jamming,
atmospheric conditions, and malfunctions, they can observe the target only over a part of the time
period, which leads to discrete tracks and even track loss. However, through the real-time data
exchange between radars in the net, different data can be shared in the shortest possible period
of time, hence filling in the observation blanks, which gives rise to improvements in observation
accuracy and minimization of the blind zones and instability of target tracks in the interference
region.
Therefore, invulnerability to destruction is a guarantee of performance for any radar network

system. That is to say, after some nodes of a radar system are destroyed, its target tracking system
can maintain normal operation or resume it effectively in due time.

507Review, Suggestions, and Outlook



References

[1] Wang, X., Zhang, G., He, R., et al. 2000. Radar and Detection –Modern war piercing eye. Beijing: National Defense
Industry Press.

[2] Huang, P., Yin, H., and Xu, X. 2005. Radar Target Characteristics. Beijing: Publishing House of Electronics Industry.
[3] Tong, Z. 2008. Integrated Electronic Information System. Beijing: National Defense Industry Press.
[4] Elias-Fuste, A.R., Broquetas-Ibars, A., Antequera, J.P., and Yuste, J.C.M. 1992. CFAR data fusion center with inhomo-

geneous receivers. IEEE Transactions on Aerospace and Electronic Systems, 28(1): 276–285.
[5] He, Y., Guan, J., Meng, X., et al. 2011. Radar Target Detection and CFAR Processing, 2nd edn. Beijing: Tsinghua

University Press.
[6] Wu, S. and Mei, X. 2008. Radar Signal Processing and Data Processing Techniques. Beijing: Publishing House of

Electronics Industry.
[7] Yang, J. 1994. Battlefield Data Fusion Technology. Beijing: Publishing House of Ordnance Industry.
[8] Chair, Z. and Varshney, P.K. 1986. Optimal data fusion in multiple sensor detection system. IEEE Transactions on

Aerospace and Electronic Systems, 22: 98–101.
[9] He, Y., Wang, G., and Guan, X. 2010. Information Fusion Theory with Application. Beijing: Publishing House of

Electronics Industry.
[10] Quan, T. 2009. Target Tracking Advanced Theory and Techniques. Beijing: National Defense Industry Press.
[11] He, Y. and Zhang, J. 2006. New track correlation algorithms in a multisensor data fusion system. IEEE Transactions on

Aerospace and Electronic Systems, 42(4): 1359–1371.
[12] Mao, E., Long, T., and Han, Y. 2001. Digital signal processing of stepped frequency radar. Acta Aeronautica et

Astronautica Sinica, 22(6): 16–20.
[13] Liu, X. 2010. Digital Signal Processing. Beijing: Publishing House of Electronics Industry.
[14] Maroulas, V. and Panos, S. 2012. Improved particle filters for multi-target tracking. Journal of Computational Physics,

231(2): 602–611.
[15] Llinas, J. and Waltz, E. 1990. Mutisensor Data Fusion. Boston, MA: Artech House.
[16] Bar-Shalom, Y. and Fortmann, T.E. 1988. Tracking and Data Association. New York: Academic Press.
[17] Farina, A. and Studer, F.A. 1985. Radar Data Processing, Vols 1, 2. Letchworth, UK: Research Studies Press.
[18] He, Y., Tang, J., et al. 1991. Integrated Multi-radar Tracking Algorithm. Yantai: Naval Aeronautical and Astronautical

University Research Reports.
[19] He, Y., Wang, G., Lu, D., and Peng, Y. 2000. Multisensor Information Fusion with Applications, 1st edn. Beijing:

Publishing House of Electronics Industry.
[20] Fu, M., Deng, Z., and Zhang, J. 2003. Kalman Filtering Theory and Application in Navigation System. Beijing:

Science Press.

Radar Data Processing with Applications, First Edition. He You, Xiu Jianjuan, and Guan Xin.
© 2016 Publishing House of Electronics Industry. All rights reserved. Published 2016 by John Wiley & Sons
Singapore Pte. Ltd.



[21] Kalman, R.E. and Bucy, R.S. 1961. New results in linear filtering and prediction theory. ASME Journal of Basic
Engineering, 83D: 95–108.

[22] Benedict, T.R. and Bordner, O.W. 1963. Synthesis of an optimal set of radar track-while-scan smoothing equations.
IEEE Transactions on Automatic Control, AC-8(2): 27–32.

[23] He, Y., Tang, J., et al. 1991. Research on the Algorithm of Short Range Weapon System Multi-target Track Processing.
Yantai: Naval Aeronautical and Astronautical University Research Reports.

[24] Cantrell, B.K. 1973. Description of an α, β Filter in Cartesian Coordinates. Naval Research Laboratory Report,
Distributed by NTIS.

[25] David, L.H. and James, L. 2008. Handbook of Multisensor Data Fusion. New York: CRC Press.
[26] Singer, R.A. 1970. Estimating optimal tracking filter performance for manned maneuvering targets. IEEE Transactions

on Aerospace and Electronic Systems, 6(4): 473–483.
[27] Pearson, J.B. and Stear, E.B. 1972. Kalman filter applications in airborne radar tracking. IEEE Transactions on

Aerospace and Electronic Systems, 10: 319–329.
[28] Peterson, I.R. and Savkin, A.V. 1999. Robust Kalman Filtering for Signal and System with Large Uncertainties.

Boston: Birkhauser.
[29] Wax, N. 1955. Signal-to-noise improvement and the statistics of track populations. Applied Physics, 26(5): 586–595.
[30] Sittler, R.W. 1964. An optimal data association problem in surveillance theory. IEEE Transactions on Military

Electronics, MIL-8: 125–139.
[31] Sea, R.G. 1971. An efficient suboptimal decision procedure for associating sensor data with stored tracks in real-time

surveillance systems. Proceedings of the 10th IEEE Conference on Decision & Control, Miami Beach, FL, December,
pp. 33–37.

[32] Singer, R.A. and Stein, J.J. 1971. An optimal tracking filter for processing sensor data of imprecisely determined origin
in surveillance systems. Proceedings of the 10th IEEEConference onDecision&Control,Miami Beach, FL, December,
pp. 171–175.

[33] Bar-Shalom, Y. and Tse, E. 1975. Tracking in cluttered environment with probabilistic data association. Automatica,
11(5): 451–460.

[34] Fortmann, T.E., Bar-Shalom, Y. and Scheffe, M. 1983. Sonar tracking of multiple targets using joint probabilistic data
association. IEEE Journal of Oceanic Engineering, 8(3): 173–183.

[35] Reid, D.B. 1979. An algorithm for tracking multiple targets. IEEE Transactions on Automatic Control, AC-24:
843–854.

[36] Singer, R.A. and Sea, R.D. 1971. A new filter for optimal tracking in densemultitarget environments. Proceedings of the
9th Allerton Conference on Circuit and System Theory, Urbana, IL, pp. 210–211.

[37] Bar-Shalom, Y. and Birmiwal, K. 1982. Variable dimension filter for maneuvering target tracking. IEEE Transactions
on Aerospace and Electronic Systems, 18(5): 611–619.

[38] Kirubarajan, T. and Bar-Shalom, Y. 1998. IMMPDAF for radar management and tracking benchmark with ECM. IEEE
Transactions on Aerospace and Electronic Systems, 34(4): 1115–1134.

[39] Zhou, H., Jing, Z., and Wang, P. 1991. Tracking of Maneuvering Targets. Beijing: National Defense Industry Press.
[40] Blackman, S.S. 1986. Multiple-Target Tracking with Radar Applications. Boston, MA: Artech House.
[41] Carlson, N.A. 1990. Federated square filtering for decentralized parallel processes. IEEE Transactions on Aerospace

and Electronic Systems, 26(3): 517–525.
[42] Julier, S.J. and Uhlmann, J.K. 1997. A new extension of the Kalman filter to nonlinear systems. SPIE, 3068: 182–193.
[43] Gordon, N.J. 1997. A hybrid particle filter for target tracking in clutter. IEEE Transactions on Aerospace and Electronic

Systems, 33(1): 353–358.
[44] Deng, Z. 2007. Information Fusion Filtering Theory with Applications. Harbin: Harbin Institute of Technology Press.
[45] Blackman, S.S. and Popoli, R. 1999. Design and Analysis of Modern Tracking Systems. Boston, MA: Artech House.
[46] Dong, Z. 1995. Warships Command and Control System Theoretical Basis. Beijing: National Defense Industry Press.
[47] Sun, Z., Zhou, Y., and He, L. 1996. Active and Passive Positioning Technology by Single or Multiple Observers.

Beijing: National Defense Industry Press.
[48] Jing, Z. 1995. Neural Networks-Based Tracking Theory with Applications. Beijing: National Defense Industry Press.
[49] Sun, Z., Guo, F., Feng, D., et al. 2008. Passive Location and Tracking Technology by Single Observer. Beijing:

National Defense Industry Press.
[50] Peng, D., Wen, C., and Xu, A. 2010.Multi-sensor Multi-source Information Fusion Theory with Applications. Beijing:

Science Press.
[51] Xia, P. 2010. Target Tracking and Information Fusion. Beijing: National Defense Industry Press.
[52] He, Y. and Tang, J. 1996. Multiradar integrated tracking. Journal of Electronics (in Chinese), 018(003).
[53] Wang, B., He, Y., Wang, G., and Xiu, J. 2010. Optimal allocation of multi-sensor passive localization. Science China

Information Sciences, 53: 2514–2526.

509References



[54] Wang, B., He, Y., Wang, G., and Xiu, J. 2011. Optimal allocation of multi-sensor passive localization. Science China
Information Sciences, 41: 1251–1267.

[55] He, Y., Tan, Q., and Jiang, R. 1989. Multi-sensor integrated systems track correlation algorithm. Fire Control &
Command Control, 1989(1): 1–12.

[56] He, Y., Peng, Y., Lu, D., andWang, G. 1999. Track correlation algorithm based on fuzzy synthetic function. Journal of
Electronics (in Chinese), 1999(1): 91–96.

[57] Wang, G. 2004. Radar Network Key Technology Research (Postdoctoral Research Report). Nanjing: Fourteenth
Institute, CETC.

[58] He, Y. 1996. Distributed multi-target multi-sensor data fusion algorithm. Ph.D. thesis, Tsinghua University, Beijing.
[59] Yang, W. 2004. Multi-sensor Data Fusion with Applications. Xian: Xidian University Press.
[60] He, Y., Wang, G., Lu, D., and Peng, Y. 2007. Multi-sensor Information Fusion with Application, 2nd edn. Beijing:

Publishing House of Electronics Industry.
[61] Hall, D.L. 1992. Mathematical Techniques in Multisensor Data Fusion. Boston, MA: Artech House.
[62] Bar-Shalom, Y. and Li, X.R. 1995. Multitarget–Multisenser Tracking: Principles and Techniques. Storrs, CT: YBS

Publishing.
[63] Kang, Y. 1997. Data Fusion Theory with Application. Xian: Xidian University Press.
[64] Han, C., Zhu, H., and Duan, Z. 2006. Multi-source Information Fusion. Beijing: Tsinghua University Press.
[65] Ashraf, M.A. 2013. A new nearest-neighbor association approach based on fuzzy clustering. Aerospace Science and

Technology, 26(1): 87–97.
[66] Guo, G., Zhuang, Z., and Chen, C. 1995. Electromagnetic Feature Extraction and Object Recognition. Changsha:

National University of Defense Technology Press.
[67] Aidala, V.J. 1976. Behavior of the Kalman Filter Applied to Bearings-Only Target Motion Analysis. Naval Underwater

Systems Center (NUSC), Technical Report 4984, November.
[68] Sorensor, W. 1985. Kalman Filtering: Theory and Application. New York: IEEE Press.
[69] Carlson, E.A. and Berarducci, M.P. 1994. Federated Kalman filter simulation results. Navigation, 41(3): 297–321.
[70] Hall, D.L., Linn, R.J., and Lins, J. 1991. A survey of data fusion systems. Proceedings of SPIE Conference on Data

Structure and Target Classification, Orlando, FL, April, Vol. 1470, pp. 13–36.
[71] Gong, Y. 2003. Adaptive Filtering. Beijing: Publishing House of Electronics Industry.
[72] Zhang, J. 2008. The algorithm study of multi-sensor multi-target tracking. Ph.D. thesis, Naval Aeronautical and

Astronautical University, Yantai.
[73] He, Y., Wang, B., Wang, G., and Xiu, J. 2010. A clustering localization algorithm with adaptive threshold in passive

sensor network. Journal of Astronautics, 31(4): 1125–1130.
[74] Su, W. 2009. Single or multiple station passive direction finding crossover positioning technology research. Master’s

thesis, Naval Aeronautical and Astronautical University, Yantai.
[75] Wang, B., He, Y., Wang, G., and Xiu, J. 2010. Dual station passive: average location algorithm precision analysis.

Journal of Sichuan Ordnance, 31(4): 78–81.
[76] Hu, L. 2004. Passive Locating. Beijing: National Defense Industry Press.
[77] Zhou, Y., Jia, Y., andWang, H. 1999. Passive radar. Proceedings of 7th Annual National Radar Conference, pp. 60–63.
[78] Xiu, J., He, Y., and Wang, G. 2000. The realization of passive detector for multiple target tracking. Ship Electronic

Engineering, 2000(1): 25–28.
[79] Cheng, Y., Pan, Q., Zhang, H., et al. 2003. Multistation passive fusion tracking based on extended Kalman filter.

Journal of System Simulation, 15(4): 548–550.
[80] Li, S., Zeng, T., Long, T., et al. 2002. Improvement on passive location algorithm based on extended Kalman filter.

Journal of Beijing Institute of Technology, 22(4): 521–524.
[81] Zhou, D., Hu, Z., and Wu, H. 1997. Adaptive extended Kalman filtering for passive missile guidance problem. Journal

of Astronautics, 18(4): 31–36.
[82] Zhang, H., Zhang, Y., and He, Z. 1992. A robust adaptive extended Kalman filter and its application to flight state

estimation. Information and Control, 21(6): 343–348.
[83] Hu, X., Wang, C., and Guo, Z. 1995. Extended Kalman filter in flight target high angle and low angle estimation. IEEE

International Radar Conference, pp. 803–807.
[84] Song, T.L. and Speyer, J.L. 1985. A stochastic analysis of a modified gain extended Kalman filter with application to

estimation with bearing only measurements. IEEE Transactions on Automatic Control, AC-30: 940–949.
[85] Wang, G., Mao, S., and He, Y. 2002. Optimal unbiased converted measurement Kalman filtering in the mean-square

sense. Journal of System Simulation, 14(1): 119–122.
[86] Wang, G. and He, Y. 1999. Unbiased converted measurement covariance minimum mean square error estimation.

Beijing: Aviation Institute of Electrical Branch Annual Meeting.
[87] Phanenf, R.J. 1968. Approximate nonlinear estimation. Ph.D. thesis, MIT, Cambridge, MA.

510 References



[88] Julier, S.J. and Uhlmann, J.K. 2000. A newmethod for the nonlinear transformation of means and covariances in filters
and estimators. IEEE Transactions on Aerospace and Electronic Systems, 45(3): 477–482.

[89] Xiong,W., Chen, L., He, Y., and Zhang, J. 2007. UnscentedKalman filter with colored noise. Journal of Electronics &
Information Technology, 29(3): 598–600.

[90] Wang, G., Xiu, J., and He, Y. 2004. An unbiased transform based Kalman filter for 3D radar. Chinese Journal of
Electronics, 2004(4): 697–700.

[91] Xiong, W., Zhang, J., and He, Y. 2004. A debiased unscented transform based Kalman filter. Proceedings of
International Radar Conference, France.

[92] Merwe, R. and Wan, E.A. 2001. Efficient derivative-free Kalman filters for online learning. European Symposium on
Artificial Neural Networks, pp. 205–210.

[93] VanDyke, M.C., Schwartz, J.L., and Hall, C.D. 2004. Unscented Kalman filtering for spacecraft attitude state and
parameter estimation. AAS/AIAA Space Flight Mechanics Conference.

[94] Wang, S., Cheng, Y., Yang, D., and Cui, H.T. 2003. UKF and its application to bearings-only tracking problem. Flight
Dynamics, 2(2): 59–62.

[95] Gordon, N. and Salmond, J. 1993. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE
Proceedings on Radar and Signal Processing, 140(2): 107–113.

[96] Wan, E.A. and van der Merwe, R. 2000. The unscented Kalman filter for nonlinear estimation. Proceedings of IEEE
Symposium 2000 (AS-SPCC), Lake Louise, Alberta, Canada, October, pp. 153–158.

[97] Carvalho, H. and Del Moral, P. 1997. Optimal nonlinear filtering in GPS/INS integration. IEEE Transactions on
Aerospace and Electronic Systems, 33(3): 835–849.

[98] Pitt, M. and Shephard, N. 1999. Filtering via simulation: auxiliary particle filters. Journal of the American Statistical
Association, 94(446): 590–599.

[99] Carpenter, J., Clifford, P., and Fearnhead, P. 1999. An improved particle filter for non-linear problems. IEE Proceed-
ings of Radar, Sonar and Navigation, 146(1): 2–7.

[100] van der Merwe, R. and Doucet, A. 2000. The Unscented Particle Filter. Technical Report CUED/F- INFENG/TR 380,
Cambridge University, Cambridge, 2000.

[101] Karlsson, R. and Bergman, N. 2000. Auxiliary particle filters for tracking a maneuvering target. Proceedings of the
39th IEEE Conference on Decision & Control, 4: 3891–3895.

[102] Doucet, A., Gordon, N., and Krishnamurthy, V. 2001. Particle filters for state estimation of jump Markov linear
systems. IEEE Transactions on Signal Processing, 49(3): 613–624.

[103] Iba, Y. 2001. Population Monte Carlo algorithms. Transactions of the Japanese Society for Artificial Intelligence,
16(2): 279–286.

[104] Doucet, A., Freitas, N.D., and Gordon, N. 2001. Sequential Monte Carlo Methods in Practice. Berlin: Springer-
Verlag.

[105] Orton, M. and Marrs, A. 2001. Incorporation of Out-of-Sequence Measurements in Non-Linear Dynamic Systems
Using Particle Filters. Technical Report.

[106] Herman, S.M. 2002. A particle filtering approach to joint passive radar tracking and target classification.
Ph.D. thesis, University of Illinois, Urbana, IL.

[107] Sanjeev Arulampalam, M., Maskell, S., and Gordon, N. 2002. A tutorial on particle filters for online nonlinear/
non-Gaussian Bayesian tracking. IEEE Transactions on Aerospace and Electronic Systems, 55(2): 174–188.

[108] Farina, A. and Ristic, B. 2002. Tracking a ballistic target: comparison of several nonlinear filters. IEEE Transactions
on Aerospace and Electronic Systems, 38(3): 477–482.

[109] Gustafsson, F., Gunnarsson, F., Bergman, N., and Forssell, U. 2002. Particle filters for positioning, navigation and
tracking. IEEE Transactions on Signal Processing, 50(2): 425–437.

[110] Karlsson, R. 2002. Various Topics on Angle-Only Tracking Using Particle Filters. Technical Report LiTH-ISY-
R-2473.

[111] Kim, S.J. and Iltis, R.A. 2002. Performance comparison of particle and extendedKalman filter algorithms for GPS C/A
code tracking and interference rejection. Conference on Information Sciences and Systems, Princeton University,
Princeton, NJ.

[112] de Freitas, N. 2002. Rao-Blackwellised particle filtering for fault diagnosis. IEEE Aerospace Conference Proceedings,
Vol. 4, pp. 1767–1772.

[113] Doucet, A., Godsill, S., and Andrieu, C. 2003. On sequential Monte Carlo sampling methods for Bayesian filtering.
Statistics and Computing, 10(3): 197–208.

[114] Karlsson, R., Gusfafsson, F., and Karlsson, T. 2003. Particle filtering and Cramer–Rao lower bound for underwater
navigation. IEEE International Conference on Acoustics, Speech and Signal Processing, Vol. 6, pp. 65–68.

[115] Bruno, M.G.S. 2003. Sequential importance sampling filtering for target tracking in image sequences. IEEE
Transactions on Signal Processing, 10(8): 246–249.

511References



[116] Kwok, C., Fox, D., and Meila, M. 2004. Real-time particle filters. Proceedings of the IEEE, 92(3): 469–484.
[117] Bolic, M. 2004. Architectures for efficient implementation of particle filters. Ph.D. thesis, State University of

New York at Stony Brook, Stony Brook, NY.
[118] Wei, X., Zhang, J., and He, Y. 2005. Multisensor multitarget tracking methods based on particle filter. Proceedings of

International Symposium on Autonomous Decentralized Systems, pp. 306–309.
[119] Wei, X., Zhang, J., and He, Y. 2005. A new multisensor particle filter method. Proceedings of 5th International

Conference on Machine Learning and Computing, Vol. 8, pp. 614–617.
[120] Wei, X., He, Y., and Zhang, J. 2005. Multisensor sequential particle filter. Acta Electronica Sinica, 33(6): 1116–1119.
[121] Zhao, R. and Gu, Q. 2000. New filtering algorithms with applications in navigation systems. Tsinghua University

Journal, 40(5): 24–27.
[122] Yuan, Z., Zheng, N., and Jia, X. 2003. The Gauss–Hermite particle filter. Acta Electronica Sinica, 31(7): 970–973.
[123] Liu, J.S. and Chen, R. 1998. Sequential Monte Carlo methods for dynamical systems. Journal of the American

Statistical Association, 93: 1032–1044.
[124] Kitagawa, G. 1996. Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. Journal of

Computational and Graphical Statistics, 5(1): 1–25.
[125] Yi, X., He, Y., and Guan, X. 2006. Study on a novel coordinate transformmethod.Geomatics and Information Science

of Wuhan University, 31(3): 237–239.
[126] Deng, Z. and Sun, Z. 1994. Robust Kalman filtering insensitive to continuous outlier. Journal of Tsinghua University,

1994(1).
[127] Hu, S. and Sun, G. 1992. Statistical diagnosis method for outliers from spacecraft tracking data. Journal of

Astronautics, 1999(2).
[128] Hu, F. and Sun, G. 1995. Fault-tolerant improvement on Kalman filter. Acta Automatica Sinica, 1999(5).
[129] Liu, C., Sun, F., Chen, X., and Cao, J. 2002. Fault tolerant on integrated navigation system when existing outliers.

Journal of Chinese Inertial Technology, 2002(6).
[130] Bar-Shalom, Y. and Li, X.R. 1995. Multitarget–Multisensor Tracking: Principles and Techniques. Storrs, CT: YBS

Publishing.
[131] Bai, J., Wang, G., Kong, M., et al. 2009. Study on data association methods for distributed passive sensors with long

baseline. Chinese Journal of Electronics, 18(2): 270–274.
[132] Bai, J., Wang, G., Wang, N., et al. 2009. Study on optimum cut angles in bearing-only location systems. Acta

Aeronautica et Astronautica Sinica, 30(2): 298–304.
[133] Taek, L.S. and Darko, M. 2012. Smoothing innovations and data association with IPDA. Automatica, 48(7):

1324–1329.
[134] Zhang, N. 2002. Application of coordinate conversion in radar real time display software. Modern Radar, 2002(5):

30–32.
[135] Wei, X. 2001. Surface warship formation combat system information fusion technology research. Master’s thesis,

Naval Aeronautical and Astronautical University, Yantai.
[136] Johson, G.W. 1974. Choice of coordinates and computational difficulty. IEEE Transactions on Aerospace and

Electronic Systems, 19(2): 77–80.
[137] Cantrell, B.H., Grindlay, A., and Dodage, C.H. 1976. Formulation of a Platform-to-Platform Radar Integration

System. NRL Memorandum Report 3404.
[138] Broida, T.J. 1991. Choice of coordinate systems for multiple sensor fusion. SPIE, 1611.
[139] Cheng, H. and Sun, Z. 1997. On the influence of coordinate transform upon measurement error of long-baseline

distributed sensors system. SPIE, 3067: 136–145.
[140] He, Y., Wang, G., and Xiu, J. 2000. Redundant data compression and location accuracy analysis in T/R-R bistatical

radar system. International Conference on Signal Processing, August, China, pp. 1951–1955.
[141] Xiu, J., He, Y., andWang, G. 1999. Analysis on the feasibility and the positioning accuracy of bistatic radar redundant

data compression. Naval Aeronautical and Astronautical University, 1999(3).
[142] Xiu, J., He, Y., Wang, G., and Yan, H. 1999. A theorem on bistatic radar redundant data compression. Proceedings of

7th Annual National Radar Conference, Nanjin, pp. 542–545.
[143] Wei, X. and He, Y. 2003. Research of different dimension process in one centralized multi-radar system. Journal of

System Simulation, 15(6): 845–848.
[144] He, Y. andWei, X. 2003. State estimation techniques for radars with different observation dimension in one distributed

data fusion system with feedback information. Journal of Astronautics, 24(2): 156–161.
[145] Dong, Z. 1999. The track initiation method. Information Command Control System and Simulation Technology, 1999

(2): 1–6.
[146] Xing, F., Wei, X., and Wang, H. 2010. Dense multi-formation track initiation algorithm based on K-means clustering

and Hough transform. Journal of Naval Aeronautical and Astronautical University, 25(6): 624–628.

512 References



[147] Farina, A. and Pardini, S. 1979. Multi-radar tracking system using radial velocity measurement. IEEE Transactions on
Aerospace and Electronic Systems, 15(3): 555–562.

[148] He, Y. 1988. The comprehensive algorithm study of multi-sensor multi-target. Master’s thesis, Naval University of
Engineering, Wuhan.

[149] Su, F., Wang, G., and He, Y. 2004. Track initiation algorithm based on the modified logic. Modern Defence
Technology, 32(5): 66–68.

[150] Su, F., Wang, G., and He, Y. 2001. A new fast track initiation method in clutter environments. Radar System Simu-
lation and Aided Design Algorithm in Radar Technology Application Seminar, Chinese Institute of Electronics –
Radar Branch, Yantai, Vol. 8, pp. 132–137.

[151] Duda, R.O. and Hart, P.E. 1972. Use of the Hough transformation to detect lines and curves in pictures. Communi-
cations of the ACM, 135: 11–15.

[152] Sklansky, J. 1978. On the Hough technique for curve detection. IEEE Transactions on Computing, 27(10): 923–926.
[153] Wang, G., Kong, M., and He, Y. 2005. Hough transform and its application in information processing. Beijing:

Publishing House of Ordnance Industry.
[154] Carlson, B.D., Evans, E.D., and Wilson, S.L. 1995. Search radar detection and track with the Hough transform. Part I:

System concept. IEEE Transactions on Aerospace and Electronic Systems, 30(1): 102–108.
[155] Carlson, B.D., Evans, E.D., andWilson, S.L. 1995. Search radar detection and track with the Hough transform. Part II:

Detection statistics. IEEE Transactions on Aerospace and Electronic Systems, 30(1): 109–115.
[156] Carlson, B.D., Evans, E.D., andWilson, S.L. 1995. Search radar detection and trackwith the Hough transform. Part III:

Detection performance with binary integration. IEEE Transactions on Aerospace and Electronic Systems, 30(1):
116–124.

[157] Casasent, D.P. and Slaski, J. 1988. Optical track initiator for multitarget tracking. Applied Optics, 22: 4546–4553.
[158] Chen, J., Leung, H., Lo, T., et al. 1996. A modified probabilistic data association filter in real clutter environment.

IEEE Transactions on Aerospace and Electronic Systems, 32: 300–314.
[159] Leung, H., Hu, Z., and Blanchette, M. 1996. Evaluation of multiple target track initiation techniques in real radar track-

ing environments. IEE Radar Proceedings, Sonar Navigation, 143(4): 246–254.
[160] Cai, Q., Xue, Y., and Zhang, B. 1997. Phased Array Radar Data Processing and Its Simulation Technologies. Beijing:

National Defense Industry Press.
[161] Xiu, J., He, Y., and Jiu, J. 2012. Study on passive tracking algorithm of targets in clutter. Systems Engineering and

Electronics, 34(2): 227–230.
[162] Zhang, J. 2004. Multi-sensor multi-target tracking algorithm performance comparison analysis and research. Master’s

thesis, Naval Aeronautical and Astronautical University, Yantai.
[163] Smith, P. and Buechler, G. 1975. A branching algorithm for discriminating and tracking multiple objects. IEEE

Transactions on Automatic Control, AC-20: 101–104.
[164] Morefield, C.L. 1974. Solution of multiple choice estimation problems via 0–1 integer programming. Proceedings of

IEEE Conference on Decision & Control, November, pp. 753–754.
[165] Morefield, C.L. 1975. Efficient computational forms for Bayesianmultitarget tracking. Proceedings of 6th Symposium

on Nonlinear Estimation Theory and its Applications, September, pp. 208–216.
[166] Morefield, C.L. 1975. Application of integer programming to track assembly problems. Proceedings of IEEE Confer-

ence on Decision & Control, December, pp. 428–433.
[167] Morefield, C.L. 1976. Application of Bayesian decision theory to multitarget surveillance problems. Proceedings of

National Aerospace Electronic Conference.
[168] Morefield, C.L. 1977. Application of 0–1 integer programming to multitarget tracking problems. IEEE Transactions

on Automatic Control, AC-22: 302–312.
[169] Morefield, C.L. 1979. Decision directedmultitarget tracking. Proceedings of IEEEConference on Decision&Control,

pp. 1197–1201.
[170] Mao, S., Zhang, R., Xu, W., et al. 1990. Pulse Doppler Radar. Beijing: National Defense Industry Press.
[171] Stein, J.J. and Blackman, S.S. 1975. Generalized correlation of multitarget track data. IEEE Transactions on

Aerospace and Electronic Systems, 11(6): 1207–1217.
[172] He, Y., Song, Q., and Wei, X. 2010. Track alignment–correlation technique based on phase correlation. Acta

Electronica Sinica, 38(12): 2718–2723.
[173] He, Y., Song, Q., and Wei, X. 2010. A track registration–correlation algorithm based on Fourier transform. Acta

Aeronautica et Astronautica Sinica, 31(2): 356–362.
[174] Bar-Shalom, Y. 1992. Multitarget–Multisensor Tracking: Advanced Application, Vol. II. Decham, MA:

Artech House.
[175] Yi, X., Guan, X., and He, Y. 2005. Gray track correlation model for distributed multitarget tracking system. Signal

Processing, 21(6): 653–655.

513References



[176] Gennari, G. and Hager, G.D. 2004. Probabilistic data association methods in visual tracking of groups. Proceed-
ings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2,
pp. 876–881.

[177] van Keuk, G. 2002. MHT extraction and track maintenance of a target formation. IEEE Transactions on Aerospace
and Electronic Systems, 38(1): 288–294.

[178] Gning, A. and Mihaylova, L. 2010. Ground target group structure and state estimation with particle filtering. IEEE
International Conference on Information Fusion, pp. 1–8.

[179] Singer, R.A. and Sea, R.G. 1973. New results in optimizing surveillance system tracking and data correlation perform-
ance in dense multitarget environments. IEEE Transactions on Automatic Control, AC-18: 571–582.

[180] Zhang, J., Xiu, J., He, Y., and Wei, X. 2006. Based on the theory of D–S distributed interactive multi-sensor data
association algorithm. Science China, 36(2): 182–190.

[181] Jin, G., Zhao, D., and Zhang, Y. 1991. Relevant target track. Radar & Ecm, 1991(2).
[182] Park, S.-T. and Lee, J.G. 2001. Improved Kalman filter design for three-dimensional radar tracking. IEEE Transac-

tions on Aerospace and Electronic Systems, 37(2): 727–739.
[183] Papadimitriou, C.H. and Steiglitz, K. 1982. Combinatorial Optimization: Algorithms and Complexity. Englewood

Cliffs, NJ: Prentice-Hall.
[184] Yang, C. and Liu, G. 1999.Multi-sensors for a long range target tracking. Systems Engineering and Electronics, 21(3):

42–47.
[185] Li, X.R. 1998. Tracking in clutter with strongest neighbor measurements. I. Theoretical analysis. IEEE Transactions

on Automatic Control, 43(11): 1560–1578.
[186] Song, T.L., Lee, D.G., and Ryu, J. 2005. A probabilistic nearest neighbor filter algorithm for tracking in a clutter

environment. Signal Processing, 85(10): 2044–2053.
[187] Wang, H.P., Wei, X., He, Y., and Wang, Y. 2010. Parallel centralized multisensor general association algorithm.

Chinese Journal of Scientific Instruments, 31(11): 2500–2507.
[188] Suo, J. 1999. Research on target tracking of radar. Ph.D. thesis, Dalian Maritime University.
[189] Wang, G. 2002. The key technology research of multi-sensors information fusion. Ph.D. thesis, Aerospace University,

Beijing.
[190] Yi, X., He, Y., and Guan, X. 2004. Cooperative location model under the nearest neighbor criterion. IEEE Position

Location and Navigation Symposium, Monterey, CA, Vol. 4, pp. 658–661.
[191] Zhu, Z. 1993. Modern radar data processing technology – the development of multi-target tracking technology.

Multiple Target Detection Technology to Track and Attack Album, China Leihua Electronic Technology Research
Institute.

[192] Brookner, E. 1998. Tracking and Kalman Filtering Made Easy. New York: John Wiley & Sons.
[193] Ding, Z., Leung, H., and Hong, L. 1999. Decoupling joint probabilistic data association algorithm for multiple target

tracking. IEE Radar Proceedings, Sonar Navigation, 146(5): 251–254.
[194] Song, X. and Sun, Z. 1999. Data association in multi-target tracking with multi-sensor. Systems Engineering and

Electronics, 1999(1): 27–33.
[195] Wei, X., Zhang, J.W., and He, Y. 2004. Filtering algorithms for passive location. Journal of Naval Aeronautical and

Astronautical University, 19(3): 309–311.
[196] Musicki, D. and Evans, R. 1994. Integrated probabilistic data association. IEEE Transactions on Automatic Control,

39(6): 1237–1241.
[197] Musicki, D. and Evans, R. 2004. Joint integrated probabilistic data association: JIPDA. IEEE Transactions on

Aerospace and Electronic Systems, 40(3): 1093–1099.
[198] Chang, K.C., Chong, C.Y., and Bar-Shalom, Y. 1986. Joint probabilistic data association in distributed sensor

networks. IEEE Transactions on Automatic Control, AC-31: 889–897.
[199] Bar-Shalom, Y. 1992.Multitarget–Multisensor Tracking: Applications and Advances. Norwood, MA: Artech House.
[200] Roecher, J.A. and Phillis, G.L. 1993. Suboptimal joint probabilistic data association. IEEE Transactions on Aerospace

Electronic Systems, 29(2): 510–517.
[201] Zhou, B. and Bose, N.K. 1993. Multitarget tracking in clutter: fast algorithms for data association. IEEE Transactions

on Aerospace and Electronic Systems, 29(2): 352–363.
[202] Xu, Y., Gao, X., Liu, Q., et al. 1993. Multi-target tracking and attack detection technology. China Lei Hua Institute of

Technology.
[203] Roecker, J.A. 1999. A class of near optimal JPDA algorithms. IEEE Transactions on Aerospace and Electronic

Systems, 30(2): 504–510.
[204] Bar-Shalom, Y. 1978. Tracking methods in multitarget environment. IEEE-AC, August.
[205] Zhang, J., Wei, X., and He, Y. 2004. Extended adjustable white noise model for maneuvering target. Fire Control &

Command Control, 29(5): 28–30.

514 References



[206] Rago, C., Willett, P., and Streit, R. 1995. A comparison of the JPDA and PMHT algorithm. Proceedings of the
International Conference on Acoustics, Speech, and Signal Processing, pp. 3571–3574.

[207] Houles, A. and Bar-Shalom, Y. 1989. Multisensor tracking of a maneuvering target in clutter. IEEE Transactions on
Aerospace and Electronic Systems, 25: 176–188.

[208] Li, S. and Mao, S. 1993. Some problems in multi-target tracking. China Leihua Electronic Technology Research
Institute.

[209] Chang, C.B., Whiting, R.H., and Athans, M. 1977. On the state and parameter estimation for maneuvering reentry
vehicles. IEEE Transactions on Automatic Control, AC-22: 99–105.

[210] Khaloozadeh, H. and Karsaz, A. 2009. Modified input estimation technique for tracking maneuvering targets. IET
Proceedings on Radar, Sonar and Navigation, 3(1): 30–41.

[211] Mazor, E., Dayan, J., and Bar-Shalom, Y. 1998. Interacting multiple model in target tracking: a survey. IEEE Trans-
actions on Aerospace and Electronic Systems, 34(1): 103–124.

[212] Guu, J.A. and Wei, C.H. 1991. Tracking technique for maneuvering target with correlated measurement noises and
unknown parameters. IEE Proceedings-F, 138(3): 278–288.

[213] Wei, X., Zhang, J., and He, Y. 2004. Extended current statistical model for maneuvering target. Electronics, Optics &
Control, 11(2): 15–17.

[214] Birmiwal, K. and Bar-Shalom, Y. 1984. Maneuver target tracking a cluttered environment with a variable dimension
filter. IEEE Transactions on Aerospace and Electronics, 20(9): 635–645.

[215] Hong, L. 1994. Multiresolutional multiple-modal target tracking. IEEE Transactions on Aerospace and Electronics,
30(2): 518–524.

[216] Li, X.R. and Bar-Shalom, Y. 1992. Model-set adaptation in multiple-model estimators for hybrid systems. American
Control Conference, pp. 1794–1799.

[217] Li, X.R. and Bar-Shalom, Y. 1996. Multiple-model estimation with variable structure. IEEE Transactions on
Automatic Control, AC-41: 478–439.

[218] Li, X.C. and Bar-Shalom, Y. 1993. Performance prediction of interacting multiple model algorithm. IEEE Transac-
tions on Automatic Control, 29(3): 755–771.

[219] Rice, T.R. and Alouani, A.T. 1998. Multiple model filtering. SPIE Conference on Acquisition, Tracking and Pointing,
Orlando, FL, Vol. 3365, pp. 100–112.

[220] Zhang, J., He, Y., andWei, X. 2002. Modified current model algorithm for tracking maneuvering targets. Proceedings
of 8th National Radar Conference, pp. 764–768.

[221] Fortmann, T.E., Bar-Shalom, Y., Scheffe, M., and Gelfand, S. 1981. Detection thresholds for multitarget tracking in
clutter. Proceedings of 20th IEEE Conference on Decision & Control, December.

[222] Fortmann, T.E., Bar-Shalom, Y., Scheffe, M., and Gelfand, S. 1985. Detection thresholds for tracking in clutter –
a connection between estimation and signal processing. IEEE Transactions on Automatic Control, AC-30: 221–228.

[223] Jazwinski, A. 1970. Stochastic Processes and Filtering Theory. New York: Academic Press.
[224] Chan, Y.T., Hu, A.G.C., and Plant, J.B. 1979. A Kalman filter based tracking scheme with input estimation. IEEE

Transactions on Aerospace and Electronics, 15(2): 237–244.
[225] Mehrotra, K. and Mahapatra, P.R. 1997. A jerk model for tracking highly maneuvering targets. IEEE Transactions on

Aerospace and Electronics, 33(4): 1094–1105.
[226] Munir, A., et al. 1995. Adaptive interacting multiple model algorithm for tracking a maneuvering target. IEEE Proc-F,

142(1): 11–16.
[227] Chen, L. and Tong, M. 2001. Interacting multiple model algorithm with neural networks. Acta Aeronautica et

Astronautica Sinica, 22(1): 54–56.
[228] Gao, S. and Pan, Q. 1996. Efficient square-root covariance factorization algorithms for interacting multi-model filters.

Journal of Xi’an Institute of Technology, 16(1): 20–25.
[229] Pan, Q., Liu, G., and Dai, G. 1999. Combined interacting multiple models probabilistic data association algorithm.

Acta Aeronautica et Astronautica Sinica, 20(3): 234–238.
[230] Qiao, X. 2003. Study of target tracking techniques in information fusion system. Ph.D. thesis, Xidian University, Xian.
[231] Campo, L., Mookerjee, P., and Bar-Shalom, Y. 1991. State estimation for systems with a sojourn-time-dependent

Markov switching model. IEEE Transactions on Automatic Control, 36(2): 238–243.
[232] Zhang, J., Wei, X., and He, Y. 2004. Analysis of algorithms for estimating a maneuvering target in clutter. Fire

Control & Command Control, 29(4): 71–74.
[233] Wang, H. 2009. The algorithm study of multi-sensor multi-target tracking. Master’s thesis, Naval Aeronautical and

Astronautical University, Yantai.
[234] Jia, P., Wu, J., Wang, L., et al. 1991. Dense multi-target tracking methods. Modern Defence Technology, 1991(2):

49–55.
[235] Sun, C. and Yuan, T. 1995. 2D Sea search radar target tracking group. Radar & Ecm, 1995(4).

515References



[236] Geng, W. 2008. Summarizing of group-target tracking. Proceedings of 10th National Radar Conference, Vol. 10,
pp. 367–371.

[237] Taenzer, E. 1980. Tracking multiple targets simultaneously with a phased array radar. IEEE Transactions on
Aerospace and Electronic Systems, 16(9): 604–614.

[238] Yang, C.-Y., Qu, J.-M., Mao, S.-Y., et al. 1995. An initialization method for group tracking. IEEE Electronics
Conference, Dayton, OH, pp. 303–308.

[239] Clark, D. and Godsill, S. 2007. Group target tracking with the Gaussian mixture probability hypothesis density filter.
Proceedings of the International Conference on Intelligent Sensors, Sensor Networks and Information Processing,
Melbourne, AU, pp. 149–154.

[240] Zhou, D., Geng, W., and Ni, C. 2010. Study of track initiation method based on barycenter of formation target. Radio
Engineering, 40(2): 32–34.

[241] Tang, Q., Huang, J., and Yang, X. 2007. Algorithm of track initiation and performance evaluation. Journal of System
Simulation, 19(1): 149–152.

[242] Zhu, H.Y., Han, C., Han, H., et al. 2004. Study on approaches for track initiation. Acta Aeronautica et Astronautica
Sinica, 25(3): 284–288.

[243] Tang, Q., Huang, J., and Yang, X. 2007. Algorithm of track initiation and performance evaluation. Journal of System
Simulation, 19(1): 149–152 (in Chinese).

[244] Zhao, Z., Chao, R., Wang, X., et al. 2010. Multi-radar track initiation algorithm based on probabilistic grid Hough
transform. Acta Aeronautica et Astronautica Sinica, 31(11): 2209–2215.

[245] Jin, S., Liang, Y., and Wang, Z. 2008. A two-hierarchy Hough transform based track initiation algorithm. Acta
Electronica Sinica, 36(3): 590–593.

[246] Wang, H.-L., Wang, D.-S., Tian, L.-S., et al. 2006. A new algorithm for group tracking. ICR2001: 1159–1163.
[247] Geng, W.-D., Liu, H.-Y., et al. 2006. A study of Kalman-based algorithm for the maneuvering group-target tracking.

ICR2001: 1211–1214.
[248] Frazier, A.P. and Scott, J.A. 1976. ATOMS-1: AnAlgorithm for Tracking ofMoving Sets. Report No. ECOM-0510-4,

AD-B015080L, System Planning Corporation, Arlington, VA, August.
[249] Binias, G. 1978. The formation tracking procedure for tracking in dense target environment. AGARD Conference

Proceedings No. 252, Strategies for Automatic Track Initiation, Monterey, CA, Vol. 8, pp. 1–11.
[250] Flad, E.H. 1977. Tracking of formation flying aircraft. Proceedings of the IEE International Radar Conference,

London, October, pp. 160–163.
[251] Taenzer, E. 1977. Tracking multiple targets simultaneously with a phased array radar. Proceedings of EASCON ‘77,

Washington, D.C., September, pp. 10-6A–10-6R.
[252] Ramachandra, K.V. 1979. Multitarget Kalman tracking filter. Electro-Technology (India), 23: 1–8.
[253] Binias, G. 1977. Computer controlled tracking in dense target environment using a phased array antenna. Proceedings

of IEE International Radar Conference, London, pp. 155–159.
[254] Tou, J.T. and Gonzalez, R.C. 1974. Pattern Recognition Principles. London: Addison-Wesley.
[255] Song, Q. 2010. Study on target track alignment correlation and sensor system error estimation technology. Ph.D.

thesis, Naval Aeronautical and Astronautical University, Yantai.
[256] Wei, X., He, Y., and Zhang, J. 2006. Particle filter method for a centralized multisensor system. In Yeung, D.S., Liu,

Z.-Q., Wang, X.-Z., and Yan, H. (eds), Advances in Machine Learning and Cybernetics. Berlin: Springer Lecture
Notes in Computer Science No. 39, pp. 64–69.

[257] Wei, X., Zhang, J., and He, Y. 2005. Multisensor joint probabilistic data association algorithm based on S–D assign-
ments. Journal of Tsinghua University, 45(4): 452–455.

[258] Zhang, J., He, Y., and Wei, X. 2007. Centralized multisensor fuzzy joint probabilistic data association algorithm.
Journal of Tsinghua University, 47(7): 1188–1192.

[259] Koch, W. and van Keuk, G. 1997. Multiple hypothesis track maintenance with possibly unresolved measurements.
IEEE Transactions on Aerospace and Electronic Systems, 33(3): 883–892.

[260] Shea, P.J., Alexander, K., and Peterson, J. 2003. Group tracking using genetic algorithms. Proceedings of 6th
International Conference on Information Fusion, pp. 680–687.

[261] Ferry, J.P. 2009. Group tracking on dynamic networks. Proceedings of 12th International Conference on Information
Fusion, Seattle, WA, Vol. 7, pp. 930–937.

[262] Mori, S. and Chong, C.-Y. 2009. Tracking of groups of targets using generalized Janossy measure density function.
IEEE International Conference on Radar, pp. 1–7.

[263] Mihaylova, L. 2009. Group object structure and state estimation in the presence of measurement origin uncertainty.
Proceedings of 15th IEEE Workshop on Statistical Signal Processing, pp. 473–476.

[264] Feldmann, M. and Franken, D. 2009. Advances in tracking of extended objects and group targets using random
matrices. Proceedings of 12th International Conference on Information Fusion, Seattle, WA, pp. 1029–1036.

516 References



[265] Lian, F., Han, C.Z., and Liu, W.F. 2010. Sequential Monte Carlo implementation and state extraction of the group
probability hypothesis density filter for partly unresolvable group targets-tracking problem. IET Radar, Sonar and
Navigation, 4(5): 685–702.

[266] Wei, X., Pan, X., and Peng, Y. 2010. Unscented bias estimation technique for maneuvering sensor. Acta Aeronautica
et Astronautica Sinica, 31(4): 819–824.

[267] Wei, X., Xing, F., and Peng, Y. 2011. Bias estimation for moving sensors network using cooperation targets. Systems
Engineering and Electronics, 33(3): 544–547.

[268] Dong, Y., He, Y., Wang, G., et al. 2006. Generalized least squares registration algorithm with earth-centered
earth-fixed (ECEF) coordinate system. Acta Aeronautica et Astronautica Sinica, 27(3): 463–467.

[269] Cui, Y., Wei, X., and He, Y. 2012. Mobile platform sensor registration algorithm based on MLR. Acta Aeronautica
et Astronautica Sinica, 33(1): 118–129.

[270] Xiong, W., Pan, X., Peng, Y., and He, Y. 2012. Height estimation in distributed 2-D radar network. Sensor Letters,
10: 1–5.

[271] Geng, W. 2007. A study on group target merging and splitting method based on PDA. Radio Engineering, 37(2):
24–26.

[272] Liu, H. and Geng, W. 2010. A study of merging and splitting methods for group targets based on pattern space. Radio
Engineering, 40(2): 53–56.

[273] Septier, F. and Pang, S.K. 2009. Tracking of coordinated groups using marginalized MCMC-based particle algorithm.
IEEE Transactions on Automatic Control, AC-31: 1–11.

[274] Tao, R., Deng, B., and Wang, Y. 2009. Fractional Fourier Transform with Applications. Beijing: Tsinghua Univer-
sity Press.

[275] Holmes, J.E. 1977. Development of algorithms for the formation and updating of tracks. Proceedings of IEE
International Radar Conference, London, pp. 81–85.

[276] Fieskes, W. and Van Keuk, G. 1980. Adaptive control and tracking with the ELRA phased array radar experimental
system. Proceedings of IEE International Radar Conference, Arlington, VA, pp. 8–13.

[277] Sea, R.G. 1973. Optimal correlation of sensor data with tracks in surveillance systems. Proceedings of the
6th International Conference on Systems Sciences, Honolulu, HI, pp. 424–426.

[278] Maged, Y.A. 1980. Critical probabilities for optimum tracking system. Proceedings of IEE International Radar
Conference, Arlington, VA, pp. 330–335.

[279] Alspach, D.L. and Lobbia, R.N. 1979. A score for correct data association in multi-target tracking. Proceedings of
IEEE Conference on Decision & Control, Fort Lauderdale, TX, pp. 389–393.

[280] Casner, P.G. and Prengaman, R.J. 1977. Integration and automation of multihole collocated radars. Proceedings of IEE
International Radar Conference, London, pp. 145–149.

[281] Bath, W.G. 1982. False alarm control in automated radar surveillance systems. Proceedings of IEE International Radar
Conference, London, pp. 71–75.

[282] Zhang, J., Xiu, J., He, Y., and Wei, X. 2006. Distributed interacted multisensor joint probabilistic data association
algorithm based on D–S theory. Science in China, Series F – Information Sciences, 49(2): 219–227.

[283] Castella, F.R. 1976. Sliding window detection. IEEE Transactions on Aerospace and Electronic Systems, 12(6):
815–819.

[284] Hammer, D.E. 1976. Techniques for automatic target detection in scanning 3D radar. Proceedings of AGARD No.
197, The Hague, June.

[285] He, Y., Lu, D., and Peng, Y. 1999. Track file management techniques in distributed multisensor data fusion.Modern
Radar, 1999(6): 65–70.

[286] He, Y., Huang, X., and Tang, X. 2000. Research object model information fusion system. Ship Electronic Engineering,
2000(4): 23–26.

[287] Tang, X., He, Y., and Huang, X. 2002. Management techniques of track ID in multi-sensor fusion system. Fire
Control & Command Control, 27(4): 18–22.

[288] He, Y., Tang, J., and Wang, G. 1995. Optimal tracking-quality-management in multiradar tracking systems. Modern
Radar, 1995(1): 14–19.

[289] Wan, Z. and Ping, H. 2001. Track file management in multi sensor data fusion. Ship Electronic Engineering, 125(5):
24–28.

[290] Zhai, W. and Dai, G. 2003. The analysis of passive radar in brief. Electronic Warfare, 2003(2): 41–46.
[291] He, Y., Xiu, J., Tang, X., and Dong, S. 2003. Location and tracking of the over-the-horizon target on TDOA. Acta

Electronica Sinica, 31(12): 1917–1920.
[292] Liu, C., Yan, L., and Zhou, D. 2003. A survey of passive target tracking. Modern Radar, 25(9): 5–7.
[293] Dong, Z. 2003. Pure azimuth multi-station multi-target information fusion set theory described method. Information

Command Control System and Simulation Technology, 2003(11): 20–32.

517References



[294] Nardone, S.C., Lindgren, A.G., and Gong, K.F. 1984. Fundamental properties and performance of conventional
bearing only target motion analysis. IEEE Transactions on Automatic Control, AC-29: 775–787.

[295] Passericux, J.M., Piuon, D., Blanc-Benon, P., et al. 1989. Target motion analysis with bearings and frequencies meas-
urements via instrumental variable estimator. Proceedings of International Conference on Acoustics, Speech, and
Signal Processing, pp. 2645–2652.

[296] Rajagopal, R., et al. 1997. Adaptive bearing estimation and tracking of multiple targets in a realistic passive sonar
scenario. SPIE, 3086: 139–150.

[297] Hammel, S.E. and Aidaia, V.J. 1985. Observability requirements for three-dimensional tracking via angle measure-
ments. IEEE Transactions on Aerospace and Electronic Systems, 21(2): 200–207.

[298] Song, T.L. 1996. Observability of target tracking with bearings-only measurements. IEEE Transactions on Aerospace
and Electronic Systems, 32(4): 1468–1471.

[299] Koteswara Rao, S. 2001. Pseudo-linear estimator for bearings-only passive target tracking. IEE Radar Proceedings,
Sonar Navigation, 148(1): 16–22.

[300] Kirubarajan, T., Bar-Shalom, Y., and Lerro, D. 2001. Bearings-only tracking of maneuvering targets using a batch-
recursive estimator. IEEE Transactions on Aerospace and Electronic Systems, 37(3): 770–779.

[301] Wei, X. and Sun, Z. 1999. Passive location of fixed emitter using phase rate of change. Systems Engineering and
Electronics, 21(3): 34–37.

[302] Wei, X., Sun, Z., and Zhou, Y. 1999. Passive location and observability analysis of moving target with phase rate of
change measurements. Systems Engineering and Electronics, 21(8): 34–37.

[303] Becker, K. 1999. Passive localization of frequency-agile radars from angle and frequency measurements. IEEE
Transactions on Aerospace and Electronic Systems, 35(4): 1129–1143.

[304] Guo, F., Gong, X., Feng, D., and Sun, Z. 2004. A location method in single platform passive radar using Doppler-shift
changing rate. Proceedings of 9th Annual National Radar Conference, Vol. 8, pp. 717–720.

[305] Leung, D.S.P. and Williams, D.S. 1991. A multiple hypothesis based multiple sensor spatial data fusion algorithm.
SPIE Automatic Object Recognition, 1471: 314–325.

[306] Yuan, G., Wu, Y., and Zhang, J. 2005. Fast track initiation algorithm for passive location system. Journal of System
Simulation, 17(6): 1484–1486.

[307] Dunham, D.T. and Hutchins, R.G. 1997. Tracking multiple targets in cluttered environments with a probabilistic
multi-hypothesis tracker. SPIE, 3086: 284–295.

[308] Xiu, J., He, Y., Wang, G., and Xiu, J. 2002. Study on multitarget tracking algorithm in two direction-finding location
systems. Acta Electronica Sinica, 30(12): 1763–1767.

[309] Peach, N. 1995. Bearings-only tracking using a set of range-parameterised extended Kalman filters. IEE Proceedings
on Control Theory Application, 142(1): 73–80.

[310] Kronhamn, T.R. 1998. Bearings-only target motion analysis based on a multihypothesis Kalman filter and adaptive
ownership motion control. IEE Radar Proceedings, Sonar Navigation, 145(4): 247–252.

[311] Wang, G.H., Bai, J., He, Y., et al. 2009. Optimal deployment of multiple passive sensors in the sense of minimum
concentration ellipse. IET Radar, Sonar & Navigation, 3(1): 8–17.

[312] Bai, J., Wang, G., Xiu, J., et al. 2009. New deghosting method based on generalized triangulation. Journal of System
Engineering and Electronics, 20(3): 504–511.

[313] Wang, B.,Wang, G., and He, Y. 2010. Clustering algorithm of passive sensor network for locating interference source.
Electronics, Optics & Control, 17(3): 15–18.

[314] Xiu, J., He, Y., Wang, G., et al. 2005. Constellation of multisensors in bearing-only location system. IEE Proceedings
on Radar, Sonar and Navigation, 152(3): 215–218.

[315] Weisstein, E.W. 1999.Concise Encyclopedia of Mathematics. Chapman&Hall/CRCnetBASE.Fan, L., Zhang, P., and
Ji, H. 1999. The techniques of small signal detection and velocity tracking for pulse Doppler radar. Journal of
Electronics (in Chinese), 17(6): 607–612.

[316] Mellen, G., Pachter, M., and Raquet, J. 2003. Closed-form solution for determining emitter location using
time difference of arrival measurements. IEEE Transactions on Aerospace and Electronic Systems, 39(3):
1056–1058.

[317] Chen, G. 1997. Analysis of fighting effectiveness for airborne PD fire-control radar. Modern Radar, 4: 21–24.
[318] Ben, D. 2000. The property of airborne pulsed Doppler radar and the methods of counter countermeasures. Modern

Radar, 8: 1–6.
[319] Weber, P., Hayk, S., and Cray, R. 1985. Simultaneous resolution of unambiguous range and Doppler in a pulse-

Doppler radar using multiple PRFs. Proceedings of IEEE, 73(6): 1144–1145.
[320] Trunk, G. and Brockett, S. 1993. Range and velocity ambiguity resolution. Proceedings of IEEE National Rader

Conference, pp. 146–149.
[321] Skillman, W.A. and Mooney, D.H. 1986. Multiple high-PRF ranging. CW and Doppler Radar: 205–214.

518 References



[322] Redy, N.S. and Swamy, M.N. 1986. Resolution of range and Doppler ambiguities in medium PRF radar in multiple
target environment. Signal Processing, 11(3): 223–236.

[323] Doviak, R.J. and Zrnic, D.S. 1993. Doppler Radar and Weather Observations. New York: Academic Press.
[324] Trungk, G. and Brockett, S. 1993. Range and velocity ambiguity resolution. IEEE National Radar Conference.
[325] Shnitkin, H.A. 1991. Unique joint STARS phased-array antenna. Microwave Journal, Jan: 131–141.
[326] Bar-Shalom, Y. and Negative, Y. 2001. Correlation and optical tracking with Doppler measurements. IEEE

Transactions on Aerospace and Electronic Systems, 37(3): 1117–1120.
[327] Lei, M. and Han, C. 2007. Sequential nonlinear tracking using UKF and raw range-rate measurements. IEEE

Transactions on Aerospace and Electronic Systems, 43(1): 239–250.
[328] Duan, Z., Li, X.R., Han, C., and Zhu, H. 2005. Sequential unscented Kalman filter for radar target tracking with range

rate measurements. 8th International Conference on Information Fusion, pp. 130–137.
[329] Smith, M.A. 2008. On Doppler measurements for tracking. Proceedings of International Conference on Radar,

pp. 513–518.
[330] Li, X.R., Zhao, Z., and Jilkov, V.P. 2002. Estimator’s credibility and its measures. Proceedings of IFAC 15th World

Congress, July.
[331] Zhang, G. 1994. Phased Array Radar System. Beijing: National Defense Industry Press.
[332] Wang, Z. 2000. The prospect of the development of phased array radar. Lingbayi Technology, 2000(1): 5–11.
[333] Zhang, Z. 1995. Development and prospects of phased array radar. Modern Electronic, 1995(3): 1–6.
[334] Zhang, G. 2000. Comparison between passive PARs and active PARs. Modern Radar, 22(4): 7–13.
[335] Hu, W., Yu, W., Lu, J., et al. 2010. Theory and Method of Resource and Management for Phased Array Radars.

Beijing: National Defense Industry Press.
[336] Zhang, G. 2003. Effect of operation modes on phased array radar range. Information and Electronic Engineering, 2003

(1): 1–6.
[337] Navarro, A.M. 1977.General Properties of Alpha–Beta andGammaTracking Filters. Technical Report 77-24347, US

Department of Commerce, National Technical Information Services, The Hague, January.
[338] Bar-Shalom, Y. 1997. Multitarget–multisensor tracking and fusion. Proceedings of National Radar Conference, May.
[339] Bar-Shalom, Y. 1978. Tracking methods in a multitarget environment. IEEE Transactions on Automatic Control, 24

(8): 618–626.
[340] Castella, F.R. 1981. Tracking accuracies with position and rate measurements. IEEE Transactions on Aerospace and

Electronic Systems, 17(3): 433–438.
[341] Kural, F. 2010. Performance evaluation of track association and maintenance for a MFPAR with Doppler velocity

measurements. Progress in Electromagnetics Research, 108: 249–275.
[342] Bar-Shalom, Y., Chang, K., and Blom, H. 1990. Automatic track formation in clutter with a recursive algorithm.

In Bar-Shalom, Y. (ed.), Multitarget–Multisensor Tracking, Vol. 1. Norwood, MA: Artech House, pp. 25–42.
[343] Musicki, D. 2010. Doppler-aided target tracking in heavy clutter. Paper presented at the 13th International Conference

on Information Fusion, Edinburgh, UK, July 26–29.
[344] Musicki, D. and La Scala, B. 2008. Multi-target tracking in clutter without measurement assignment. IEEE Transac-

tions on Aerospace and Electronic Systems, 44(3), 877–896.
[345] Wang, X., Musicki, D., Ellem, R., and Fletcher, F. 2009. Efficient and enhanced multi-target tracking with Doppler

measurements. IEEE Transactions on Aerospace and Electronic Systems, 45(4), 1400–1417.
[346] Shi, L., Wang, X., and Xiao, S. 2005. Adaptive data rate tracking of phased-array radar based on residue norm.

Shipboard Electronic Warfare, 28(5): 45–47.
[347] Shin, H.J., Hong, S.M., and Hong, D.H. 1995. Adaptive-update-rate target tracking for phased-array radar. IEE Pro-

ceedings on Radar, Sonar and Navigation, 142(3): 137–143.
[348] van Keuk, G. 1987. Software structure and sampling strategy for automatic tracking with a phased array radar.

Proceedings of AGARD Conference, Monterey, CA, Vol. 11, pp. 1–13.
[349] Watson, G.A. and Blair, W.D. 1994. Tracking performance of a phased array radar with revisit time controlled using

the IMM algorithm. Proceedings of IEEE National Radar Conference, Atlanta, GA, pp. 160–165.
[350] Wang, F. 2002. Study on phased array radar adaptive resource scheduling.Master’s thesis, Northwestern Polytechnical

University, Xian.
[351] Baugh, R.A. 1973. Computer Control of Modern Radars. New York: RCA Corporation, pp. 37–54.
[352] Lu, J. 2007. Theory and method of resource optimization and management for phased array radars. Ph.D. thesis,

National University of Defense Technology, Changsha.
[353] Mao, Y. 2011. Resource management under tracking mode and task scheduling for phased array. Master’s thesis,

Xidian University, Xian.
[354] Cheng, T. 2008. Research on adaptive resource management technology for phased array radar. Ph.D. thesis,

University of Electronic Science and Technology of China, Chengdu.

519References



[355] Liu, C.L. and Layland, J.W. 1973. Scheduling algorithms for multiprogramming in a hard real time environment.
Journal of the ACM, 20(1): 44–61.

[356] Goossens, J. and Devillers, R. 1999. Feasibility intervals for the deadline driven scheduler with arbitrary deadlines.
IEEE Conference on Real-Time Systems.

[357] Jeffay, K., Stanat, D.F., and Martel, C.U. 1991. On non-preemptive scheduling of periodic and sporadic tasks.
Proceedings of the 12th IEEE Symposium on Real-Time Systems.

[358] Lu, J. 2007. Theory and method of resource optimization and management for phased array radars. Ph.D. thesis,
National University of Defense Technology, Changsha.

[359] Huizing, A.G. and Bloemen, A.A.F. 1996. An efficient scheduling algorithm for a multifunction radar.
IEEE International Symposium on Phased Array Systems and Technology, Boston, MA, October 15–18,
pp. 359–364.

[360] Huizing, A.G. and Bosse, E. 1998. A high-level multifunction radar simulation for studying the performance of multi-
sensor data fusion systems. Proceedings of SPIE on Signal Processing Sensor Fusion Target Recognition, Orlando, FL,
Vol. 3374, pp. 129–138.

[361] Mao, Y. 2011. Resource management under tracking mode and task scheduling for phased array. Master’s thesis,
Xidian University, Xian.

[362] Farina, A. and Neri, P. 1980. Multitarget interleaved tracking for phased array radar. IEE Proceedings, Part F:
Communication, Radar, and Signal Processing, 127(4): 312–318.

[363] Orman, A.J., Potts, C.N., Shahani, A.K., et al. 1996. Scheduling for a multifunction phased array radar system.
European Journal of Operational Research, 90(1): 13–25.

[364] Dana, A.M.P. 1990. Registration: a prerequisite for multiple sensor tracking. In Bar-Shalom, Y. (ed.), Multitarget–
Multisensor Tracking: Advanced Applications. Norwood, MA: Artech House, pp. 155–185.

[365] Zhou, Y., Henry, L., andMartin, B. 1993. Sensor alignment with earth-centered earth-fixed (ECEF) coordinate system.
IEEE Transactions on Aerospace and Electronic Systems, 35(2): 410–417.

[366] Burke, J.J. 1996. The SAGE Real Time Quality Control Function and its Interface with BUIC II/BUIC III. MITRE
Corporation Technical Report No. 308, November.

[367] Leung, H. and Blanchett, M.A. 1994. Least square fusion of multiple radar data. Proceedings of IEEE International
Radar Conference, Paris.

[368] Zhou, Y. and Henry, L. 1997. An exact maximum likelihood registration algorithm for data fusion. IEEE Transactions
on Signal Processing, 45(6): 1560–1572.

[369] Okello, N.N. and Ristic, B. 2003. Maximum likelihood registration for multiple dissimilar sensors. IEEE Transactions
on Aerospace and Electronic Systems, 39(3), 1074–1083.

[370] Li, N. 2000. Study on the assessment of efficacy and cost-effectiveness ratio of surveillance radar net.Modern Radar,
2000(2).

[371] Xie, H., Yang, Z., and He, F. 2001. Study on the modeling of anti-jamming ability of ground surveillance radar net.
Electronic Warfare, 2001(18).

[372] He, Y., Xiu, J., Wang, G., and Xiu, J. 2003. Theorem for the combination of bistatic radar measurements using least
squares. IEEE Transactions on Aerospace and Electronic Systems, 39(4): 1441–1445.

[373] Zhang, X. 2010. Conception of MIMO radar countermeasures. Modern Radar, 32(4): 1–4.
[374] Li, S., Zhang, L., Chen, J., et al. 2010. Two-dimensional DOA estimation for orthogonal MIMO radar based on

complete complementary sequence. Chinese Journal of Radio Science, 25(4): 617–624.
[375] Ditzler, W.R. 1987. A demonstration of multisensor tracking. Proceedings of the Tri-Service Data Fusion Symposium,

June, pp. 303–311.
[376] He, Y., Peng, Y., and Lu, D. 1996. Survey of multisensor data fusion models. Journal of Tsinghua University, 1996(9):

14–20.
[377] He, Y., Lu, D., Peng, Y., and Gao, Z. 1997. Two new track correlation algorithms in a multisensor data fusion system.

Acta Electronica Sinica, 1997(9): 10–14.
[378] Bar-Shalom, Y. 1981. On the track-to-track correlation problem. IEEE Transactions on Automatic Control, AC-26:

571–572.
[379] Wei, X., Zhang, J., and He, Y. 2010. Track correlation algorithm based on multi-dimension assignment and gray

theory. Journal of Electronics & Information Technology, 32(4): 898–901.
[380] Chang, C.B. and Youens, L.C. 1982. Measurement correlation for multiple sensor tracking in a dense target environ-

ment. IEEE Transactions on Automatic Control, AC-27: 1250–1252.
[381] He, Y., Peng, Y., Lu, D., and Gao, Z. 1997. Binary track correlation algorithms in a distributed multisensor data fusion

system. Journal of Electronics (in Chinese), 1997(6): 721–728.
[382] Kosaka, M., Miyamoto, S., and Ihara, H. 1983. A track correlation algorithm for multisensor integration. Proceedings

of the IEEE/AIAA 5th Digital Avionics Systems Conference, Vol. 10, pp. 1–8.

520 References



[383] Wang, G. and He, Y. 1997. Radar-to-ESM correlation based on fuzzy synthetic function and statistical hypothesis
testing. Systems Engineering and Electronics, (4): 13–16.

[384] Liu, G., Wang, G., and He, Y. 1994. Multiple radar track is fuzzy in the relevant calculation model and simulation
comparison. Fire Control Radar Technology, 1994(3): 13–16.

[385] He, Y., Huang, X. 1999. Track correlation algorithms based on fuzzy synthetic decision. Journal of Naval University
of Engineering, 1999(4).

[386] Wilson, J.F. 1997. A fuzzy logic multisensor association algorithm. SPIE, 3068: 76–87.
[387] Tummala, M., Glem, I., and Midwood, S. 1996. Multisensor Data Fusion for the Vessel Traffic System. NPS

EC-96-055.
[388] Tummala, M. and Midwood, S. 1998. A Fuzzy Associative Data Fusion Algorithm for Vessel Traffic System. NPS

EC-98-004.
[389] Kim, K.H. 1994. Development of track to track fusion algorithms. Proceedings of the American Control Conference,

Baltimore, MD, June, pp. 1037–1041.
[390] He, Y., Lu, D., and Peng, Y. 1998. Fuzzy track correlation algorithms for multitarget and multisensor tracking. Acta

Electronica Sinica, 26(3): 15–19.
[391] He, Y. and Huang, X. 1999. Distributed multi factor fuzzy comprehensive decision track correlation algorithm.

Proceedings of 7th Annual National Radar Conference, Nanjing, pp. 417–420.
[392] Guan, X., He, Y., and Yi, X. 2006. Gray track-to-track association algorithm for distributed multitarget tracking

system. Signal Processing, 86(11).
[393] Kang, Y. 2006. Data Fusion Theory with Application, 2nd edn. Xidian University Press, Xian.
[394] Gong, Y., Yang, H., Hu, W., et al. 2006. Performance evaluation of tracking fusion systems. The performance of fire

and command control. Fire Control & Command Control, 31(9): 4–7.
[395] Meng, Z. and Zhang, N. 2002. Evaluation of six tracker actual radar tracking environment. Information Command

Control System and Simulation Technology, 12: 27–32.
[396] Lian, X. 2003. Radar multi-target tracker and its evaluation criteria. Radar & Ecm, 3: 23–25.
[397] Chen, H. 2002. Performance Evaluation of Multitarget Tracking Algorithms. University of Connecticut, Storrs, CT.
[398] Alouani, A.T., Gray, J.E., and McCabe, D.H. 2003. Performance evaluation of an asynchronous multisensor track

fusion filter. Proceedings of SPIE, 2003: 1–12.
[399] Lian, X. 2003. Radar multi-target tracker and its evaluation criteria. Radar & Ecm, 3: 23–25.
[400] Manson, K., et al. 1992. Taxonomic performance evaluation for multitarget tracking systems. IEEE Transactions on

Aerospace and Electronic Systems, 28(3): 775–787.
[401] Wang, G. 2006. Study on Distributed Detection, Tracking, and Heterogeneous Sensor Association and Cueing.

Beijing: Higher Education Press.
[402] He, Y., Peng, Y., and Lu, D. 1997. New track correlation algorithm for multitarget andmultisensor tracking. Journal of

Tsinghua University, (9): 108–113.
[403] Yan, H., Wang, X., and Wang, G. 2008. Study on performance evaluation for tracking filter algorithms. Modern

Radar, 30(4): 33–36.
[404] Wang, H. 1994. The Principle and Application of Computer Simulation. Changsha: National University of Defense

Technology Press.
[405] Gu, Q. 1995. Application of Simulation Technology. Beijing: National Defense Industry Press.
[406] Hall, D.L. and Llinas, J. 1997. An introduction to multisensor data fusion. IEEE Transactions on Aerospace and

Electronic Systems, 85(1): 6–23.
[407] Kokar, K., Bedworth, M., and Frankel, C. 2000. A reference model for data fusion systems. In Sensor Fusion:

Architectures, Algorithms and Applications IV, Proceedings of SPIE No. 4051.
[408] Wang, J. and Luo, J. 2004. Data association algorithm based on fuzzy synthetic evaluation of multiple features in

multi-target passive tracking. Acta Aeronautica et Astronautica Sinica, 25(2): 172–176.
[409] Liu, J., Zhu, W., and Li, D. 2001. Tracks correlation decision method based on bearing measures for heterogeneous

sensors. Journal of Qingdao University, 16(3): 8–11.
[410] Lin, L., Kirubarajan, T., and Bar-Shalom, Y. 2002. New assignment-based data association for tracking move–stop–

move targets. Proceedings of 5th International Conference on Information Fusion.
[411] Su, F. 2001. Detection and tracking based on Hough transform. Master’s thesis, Naval Aeronautical and Astronautical

University, Yantai.
[412] Pawlak, R.J. and Beex, A.A. 1995. Fusion technique for multisensor track initiation. IEE Radar Proceedings, Sonar

Navigation, 142(5).
[413] Tuveny, O., Artaud, M., Tomasimi, B., and Alengrin, G. 1993. Track initiation within a multi-sensor environment

radar/IR. Part 2: Evaluation and multisensor approach. In Signal Process, Sensor Fusion and Target Recognition,
Proceedings of SPIE No. 1956.

521References



[414] Johnston, S.L. 1997. An efficient decentralized multiradar multitarget tracker for air surveillance. IEEE Transactions
on Aerospace and Electronic Systems, 33(4): 1357–1363.

[415] Furcolo, B., Spatola, A., and Tarantino, M. 1983. SATCAS-80: a new generation of air traffic control systems. Alta
Frequenza, Vol. LII, No. 5.

[416] Grasso, G., Paoli, L., and Pardini, S. 1975. Comparison between a manual and an automatic collision avoidance
system. Alta Frequenza, Vol. XLIV, No. 2.

[417] Liu, W. and Hu, M. 2005. ATC multiradar data processing system. Jiangsu Aviation, 2005(3): 17–19.
[418] Shu, X., Cui, D., and Jiang, W. 2007. Multi-radar data processing in air traffic control command monitoring system.

Journal of Computer Applications, 28(4): 337–342.
[419] He, M. 2002. Data fusion of multi-sensor target tracking technology research. Ph.D. thesis, National University of

Defense Technology, Changsha.
[420] Mazor, E., Averbuch, A., and Bar-Shalom, Y. 1998. Interacting multiple model methods in target tracking: a survey.

IEEE Transactions on Aerospace and Electronic Systems, 34(1): 103–123.
[421] Desai, U.B. and Das, B. 1985. Parallel algorithms for Kalman filtering. Proceedings of the American Control

Conference, pp. 920–921.
[422] Meyer, G.G. andWeinert, H.W. 1984. Parallel algorithms and computational structures for linear estimation problems.

Statistical Signal Processing: 507–516.
[423] Bar-Shalom, Y., Li, X.R., and Kirubarajan, T. 2001. Estimation with Applications to Tracking and Navigation:

Theory, Algorithms and Software. New York: John Wiley & Sons.
[424] Lobbia, R. andKent,M. 1994. Data fusion of decentralized local tracker outputs. IEEE Transactions on Aerospace and

Electronic Systems, 30(3).
[425] You, X. 2008. The Typical C4I and Weapon Systems of Foreign Navy. Beijing: National Defense Industry Press.
[426] Zhu, L., Feng, C., and Zhang, Y. 2005. Key technologies analysis of airborne early warning system. Information

Command Control System and Simulation Technology, 27(5): 67–70.
[427] Zhang, J., Dang, L., and Diao, H. 2010. Study on the key problem of air defense fire control radar network data fusion.

Science and Technology Information, 1: 31.
[428] Deb, S., Pattipati, K.R., and Bar-Shalom, Y. 1993. A multisensor multitarget data association algorithm for hetero-

geneous sensors. IEEE Transactions on Aerospace and Electronic Systems, 29(2).
[429] Bath, W.G. 1982. Association of multisite radar data in the presence of large navigation and sensor alignment errors.

IEE International Conference on Radar.
[430] Keneic, R.J. 1993. Local and remote track file registration using minimum description length. IEEE Transactions on

Aerospace and Electronic Systems, 29(3): 245–249.
[431] Castella, F.R. 1995. Theoretical performance of a multisensor track-to-track correlation technique. IEE Radar

Proceedings, Sonar Navigation, 142(6): 281-285.
[432] Lin, Y. 2003. Study on multiple moving targets passive tracking and data association algorithms. Ph.D. thesis,

Zhejiang University, Hangzhou.
[433] Han, C., Zhu, H., Duan, Z., et al. 2010.Multisource Information Fusion, 2nd edn. Beijing: Tsinghua University Press.
[434] Butler, J.M. 1998. Tracking and control in multi-function radar. Ph.D. thesis, University of London.

522 References



Index

0–1 integer programming algorithm
application 130
linear algorithm 128–129
logarithm likelihood ratio calculation 126–128
recursive algorithm 129–130

absolute registration 72
absolute value of error cost function 21–22
accumulative number of track interruptions 430–431
active calibration 88
active phased array radar technology 488
adaptive sampling period algorithm 345

constant gain filtering method 346–347
interactive multiple-model (IMM) algorithm

347–348
predicted covariance threshold algorithm 348–349

adaptive scheduling strategy 352–355
performance analysis 357–359

adaptive tracking algorithm
current statistical model algorithm 180–182
interacting multiple model algorithm (IMM)

186–187
interacting state estimates 187
model modification 187
model output 188–189
model possibility calculation 188
model probability update 188

jerk model tracking algorithm 182–184

modified-input estimation algorithm 174–176
multiple model algorithm 184–186
Singer model tracking algorithm 176–180

ADS-B system calibration 88–89
aims of radar data processing 1–2

relation diagram 2
air traffic flow management (ATFM) 468
air warning radar networks 492

key technologies
coordinate transformation 494
multi-station track association 494–495
space registration 493
system error registration 494
time registration 493

structure 492–493
airborne early warning (AEW) radar

data processing technology 487–488
active phased array radar technology 488
data fusion technology 488–489

features, components and task 486–487
working modes 489

AEW mode 490–491
marine mode 491
over-the-horizon mode 491
passive working mode 492

aircraft motion equation 449–451
algorithm simulation examples 457–463

correct association probability 462–463

Radar Data Processing with Applications, First Edition. He You, Xiu Jianjuan, and Guan Xin.
© 2016 Publishing House of Electronics Industry. All rights reserved. Published 2016 by John Wiley & Sons
Singapore Pte. Ltd.



algorithm simulation examples (cont’d)
position error of root mean square 460–461
speed of algorithm 462

all-neighbor Bayesian algorithm for multi-target track
termination 255–256

AN/SPY-1A multi-function phased array radar
484–485

annular gate 96–97
antenna coordinate system 79

transformation to/from sight of target 86
anti-jamming ability performance indexes 407–408
arbitrarily random number generation 447–449
astronomical time synchronization 72
ATC command monitoring system (ATCCMS) 468

functional architecture 473
logic architecture 474

ATC systems, data processing applications 467–468
application, components and requirements

464–466
basic data source 468–469
data processing structures 466–467
centralized structure 467

functional subsystem at operational level 469–473
functional subsystem of management and decision

level 473
supporting environment 474

augmented state registration (ASR) algorithm
397–398

average track initiation time 429–430

Bar-Shalom, Y. 13, 14
Bar-Shalom poly concept 13
basic concepts 2

data association 4
measurement preprocessing 2–3
outlier rejection 3
saturation prevention 3–4
space alignment 3
system error registration 3
time synchronization 3

measurements 2
track initiation and termination 5
tracking 5–6
tracks 7–9
wave gate 4–5

Bayes’ formula 23
Bayesian algorithm for multi-target track termination

254–255
Bayesian estimation 22
Bayesian multi-target data association methods 138,

167–168
integrated PDA algorithm 152

data analysis 154
track existence 152–154

joint probabilistic data algorithm (JPDA) 154–155
basic model 155–160
joint event probability calculation 160–162
performance analysis 165–167
simplified model 164–165
state estimation covariance calculation 162–164

nearest-neighbour algorithm
nearest-neighbour standard filter (NNSF)

138–139
probabilistic nearest-neighbour filter (PNNF)

algorithm 139–140
probabilistic data association (PDA) algorithm 141

association probability 144–146
covariance update 142–144
start update 141–142

bistatic radar networks
basic location relation 413–416
combined estimation 416–417

feasibility of 417–420
Blackman, S. S. 14
bound norm cost function 22
Bucy, S. S. 12

cancelled track 8
candidate echoes 96
carrier coordinate system 78–79

transformation to/from NED 84–85
center computer 335
central limit theorem for normally distributed random

number generation 445–446
centroid group tracking (CGT) 233–234

initiation, confirmation and cancellation 234
other features 237
track updating 234–237

circulation threshold value segmentation method 206
clustering track initiation method 108–109
clutter suppression

principle 476–477
shipboard method 477

correlation filter module 479
echo pretreatment module 477–478
manual intervention 479–480
radar control module 478–479

collision detection 473
computation amount and time 116
computer simulation technology 443
conditional extremum derivation 292–297
confirmed track 7
constant false alarm rate (CFAR) 1, 476
constant gain filtering method 346–347

524 Index



constant-acceleration (CA) model 174
constant-velocity (CV) model 173
constrained limited exhaustive search (CLES) 165
control instructions 473
converted measurement Kalman filters (CMKFs) 319
cooperative calibration 88
coordinate system transformation 80, 469–470

antenna to/from sight of target 86
NED systems 86–87
NED to/from Earth rectangular 85–86
NED to/from shipborne 84–85
rectangular to/from polar 83–84
rotation transformation 81–83
translation transformation 80–81

coordinates for space registration 75
carrier coordinate system 78–79
Descartes rectangular coordinate system 75–77
Earth coordinate system 77–78
north east down (NED) coordinate system 78
north east down (NED) coordinate system 79
radar antenna coordinate system 79
sight of target coordinate system 80
space polar coordinate system 77

correlated measurements 2
correlation wave gate 4
cost function 21
cost function method 253–254
coverage performance indexes 406–407
Cramer–Rao lower bound (CRLB) 27
current situation radar processing technology 13–14
current statistical model algorithm 180–182

comparison with other algorithms 192–198

data association 4, 11
multi-target method 500

data association evaluation 429
accumulative number of track interruptions

430–431
average track initiation time 429–430
track ambiguity 431–432

data compression techniques 89
monostatic radar 89

equal-weighted average measurement
preprocessing 89–90

variable-weighted average measurement
preprocessing 90–91

multistatic radar 91–92
measurement synthesis 91–93
serial combination 93

data correlation 4
data format conversion 468
data fusion 472

data fusion performance evaluation 436
detection probability of networks 436–437
response time 437
track capacity 436

data preprocessing 468–469
equal-weighted average measurement 89–90
variable-weighted average measurement 90–91

data processing 469–472
data processing algorithm evaluation 438

analytic method 438–439
Monte Carlo method 438
semi-physical simulation method 439–440
test validation method 440

data processing practical examples 464
air warning radar networks 492

key technologies 493–495
structure 492–493

airborne early warning (AEW) radar
data processing technology 487–489
features, components and tasks 486–487
working modes 489–492

ATC systems 467–468
application, components and requirements

464–466
basic data source 468–469
data processing structures 466–467
functional subsystem at operational level

469–473
functional subsystem of management and

decision level 473
supporting environment 474

fleet air defense system 484
components and function 484–485
main performance indexes 485–486

ground-based radar
data acquisition principle 480–481
data processing procedure 481–482

phased array radar 495, 498
data processing procedure 495–496
functional features 495
test examples 496–498

shipboard monitoring systems
application, components and requirements

482–483
marine control system structure 483–484

shipboard navigation radar 474–476
marine collision avoidance system 475
tracking algorithm 476

shipboard radar clutter suppression
method 477–480
principle of clutter suppression 476–477

data processing relation diagram 2

525Index



data processing simulation technology 441
algorithm simulation examples 457–463
correct association probability 462–463
position error of root mean square 460–461
speed of algorithm 462, 463

basis of simulation technology
basic concept 442–443
stochastic noise simulation 444–449

observation process simulation 452
direction cosine noise 452–453
range noise 452

target motion model simulation
motion equation of aircraft 449–451
real-time track creation 451–452

track management simulation
initiation and termination 455–456
statistical evaluation of errors 456–457

tracking filtering simulation
filtering and prediction algorithm 453–455
multi-target data association methods 455

data processor design requirements
basic tasks 9
engineering design 9–10
evaluation 11–12

data processors 1
de-duplification 423
density approximation method for normally

distributed random number generation
446–447

depth-first search (DPS) 164
Descartes rectangular coordinate system 75–77

transformation to/from polar 83–84
detection overlap coefficient 407
detection probability of networks 436–437
diagrammatical segmentation method 206–208
digital beam forming (DBF) 333
digital data network (DDN) 468
direction cosine noise 452–453
distance segmentation method 205–206
divergence 435–436
Doppler, Christian 304
Doppler change rate

and azimuth joint location method 283–285
azimuth and elevation joint location method

285–286
Doppler effect 305
Doppler frequency 305
Doppler measurement unscented Kalman filtering

(DUKF) algorithm 319–320

earliest deadline first (EDF) scheduling algorithm
353–354

Earth-centered, Earth-fixed (ECEF) coordinate
system 373

coordinate transformation relationship 373–374
ECEF–GLS registration algorithm 374–377

Earth coordinate system 77–78
transformation to/from NED 85–86

echo pretreatment module clutter suppression
477–478

adaptive radar control with clutter maps 478
manual intervention 477
radar control with area control 478

elliptic/ellipsoidal gate 97–98
area/volume ratio 100

equal-weighted average measurement
preprocessing 89–90

error calibration techniques 88–89
error registration 470–471
errors, systematic

composition 362–363
influence 363–366
statistical evaluation 456–457

evaluation of data processing performance 427, 440
basic terms 428–429
data association 429

accumulative number of track interruptions
430–431

average track initiation time 429–430
track ambiguity 431–432

data fusion performance evaluation 436
detection probability of networks 436–437
response time 437
track capacity 436

data processing algorithm evaluation 438
analytic method 438–439
Monte Carlo method 438
semi-physical simulation method 439–440
test validation method 440

tracking performance 432–433
divergence 435–436
false track ratio 434–435
maneuvering target tracking ability 434
track accuracy 433–434

evaluation of data processors 11–12
data association 11
immediacy 11
tracking batches 11
tracking filter accuracy 11

extended Kalman filter (EKF) 53
algorithm 13–14
application examples 67–71
filter model 54–58

problems in application 58

526 Index



passive radar 278
principles 59

fading-memory likelihood function 121
false targets 10
false track initiation probability 268–269
false track life 8, 269–270
false track ratio 434–435
false tracks 116
filtering

block diagram 6
linear 34, 52

Kalman filter (KF) 34–48
Kalman filter (KF), steady state 48–52

nonlinear 53, 71
application examples 67–71
comparison between algorithms 70
extended Kalman filter (EKF) 53–58
particle filter (PF) 65–71
unscented Kalman filter (UKF) 58–65

finite-memory likelihood function 122
Fisher, R. A. 12
Fisher information 27, 29
fixed radar registration algorithm 366–368

cooperative targets 366–368
generalized least squares (GLS) algorithm

371–373
generalized least squares (GLS) algorithm, ECEF

coordinates 373–377
least squares (LS) algorithm 370–371
real-time quality control (RTQC) algorithm

368–370
simulation analysis 377–380

fixed scheduling strategy
performance analysis 357–359

fixed track 7–8
fleet air defense system 484

components and function 484
AN/SPY-1A multi-function phased array radar
484–485

MK1 operational readiness and test system 485
MK1 weapon control system 485
MK99 missile fire control system 485

main performance indexes 485–486
flight plan and radar data correlation 472
flight status correlation 473
format conversion of radar data 468
formation group tracking (FGT)

logic description 238–240
overview 238

formation target track initiation method 108–109
free measurements 2

frequency overlap coefficient 407–408
frequency-locked frequency tracking loop 306

generalized correlation algorithm 130
application 133

cycle flowchart 135
score function 135–136
suboptimal correlated recursive equation of

score function sequences 133–135
score function 130–133

generalized least squares (GLS) algorithm 371–373
Earth-centered, Earth-fixed (ECEF) coordinate

system 373–377
coordinate transformation relationship 373–374
ECEF–GLS registration algorithm 374–377

global track 2
gray fine track initiation algorithm 231–233

analysis of algorithm 222–231
calculation formula 247–249
simulation verification 221–222
state matrix establishment 221
track confirmation 220–221

gray fine track initiation algorithm for group targets
214–215

relative position vector of measurement 215–216
establishment of model 219–220
establishment of vector 216–219
rules 220

ground-based radar
data acquisition principle 480–481
data processing procedure 481–482

group target tracking 203–204, 246–247
algorithm performance analysis

simulation analysis 240–246
simulation environment 240
simulation results 241–245

centroid group tracking (CGT) 233–234
initiation, confirmation and cancellation 234
other features 237
track updating 234–237

formation group tracking (FGT)
logic description 238–240
overview 238

gray fine track initiation algorithm 214–215,
231–233

analysis of algorithm 222–231
relative position vector of measurement

215–220
simulation verification 221–222
state matrix establishment 221
track confirmation 220–221

track initiation 204

527Index



group target tracking (cont’d)
group correlation 208–209
group definition 204–205
group segmentation 205–208
group velocity estimation 209–214

group tracking 500–501

high-level data link control (HDLC) protocol 468
historical perspective on radar processing

technology 12–13
Hough transform and logic-based track initiation

method 107–108
Hough transform-based track initiation method

103–106

identification of friend or foe (IFF) 334
identity (ID) of tracks 9
IMM–DUKF algorithm 320
immediacy 10

evaluation 11
IMM–PDAF algorithm 340–341
information fusion system 273–274
initiation response time 266–268
innovation covariance 42–43
interacting multiple model algorithm (IMM) 186–187

adaptive sampling period 347–348
comparison with other algorithms 192–198
interacting state estimates 187
model modification 187
model output 188–189
model possibility calculation 188
model probability update 188

isolated track 273
issues

data processing technology in other sensors 502
multi-radar information system optimization 504
multi-radar systems 503
multi-target tracking and track association joint

optimization 503
multi-target tracking in complex electromagnetic

wave and clutter 504
non-Gaussian noise 503
non-standard and nonlinear systems 503
target feature utilization 504
track initiation in passive sensor tracking 502–503

jerk model tracking algorithm 182–184
comparison with other algorithms 192–198

joint maximum likelihood algorithm
feasible partitions 123–125
recursive algorithm 125–126

joint probabilistic data algorithm (JPDA) 13,
154–155, 343–345

basic model
applications 157–160
association matrix 155–156
association probability calculation 156–157
validation matrix 155

joint event probability calculation 160–162
performance analysis 165–167
simplified model 164–165
state estimation covariance calculation 162–164

Kalman, R. E. 12
Kalman filter (KF) 12–13, 34

2-dimensional state vector estimation 44–45
4-dimensional state vector estimation 45–46
6-dimensional state vector estimation 46–47
9-dimensional state vector estimation 47–48
filtering model 41–44

algorithm 44
algorithm, single-cycle flow 45

initialization 44
system model 35

constant acceleration (CA) model 37
constant velocity (CV) model 35–36
coordinate turn (CT) model 38–39
measurement equation 39–41
state equation 35–39

Kalman filter (KF), steady state 48, 50–52
mathematical definition

filter stability 49
stability judgment 49

random linear system, controllability and
observability 49–50

k-means clustering track initation method
108–109

Kolmogorov, Andrey 12

Lagrange interpolation algorithm 74
Lagrange multiplier method 292–297
least squares (LS) algorithm

fixed radar registration 370–371
least squares (LS) parameter estimation 20, 26

static vectors 28–30
least-squares curve-fitting algorithm 74–75
left-hand space rectangular coordinate system 76
likelihood function

calculation 119–120
modified 121–122

linear filtering 34, 52
Kalman filter (KF) 34

filtering model 41–44
initialization 44–48
system model 35–41

Kalman filter (KF), steady state 48, 50–52

528 Index



mathematical definition 49
random linear system, controllability and
observability 49–50

linear minimum mean square error (LMMSE)
parameter estimation 20

static vectors 32–33
linear multiple-target (LM) approach 343
local track 2
logic-based track initiation method 101–102

Hough transform and logic-based method 107–108
modified 102–103

maneuver detection 170–171
schematic diagram 170
variable-dimension filtering 172–174
white noise model with adjustable level

171–172
maneuvering target tracking 500
maneuvering target tracking ability 434
marine collision avoidance system 475

tracking algorithm 476
marine control system structure 483–484
master clock time synchronization 72
maximum a priori (MAP) parameter estimation

20, 23–24
maximum likelihood (ML) parameter estimation

20, 24
maximum likelihood method 12
maximum likelihood registration algorithm (MLR)

390–393
maximum likelihood registration of mobile radar

algorithm (MLRM) 393–397
measurement correlation 4
measurement preprocessing 2–3

outlier rejection 3
saturation prevention 3–4
space alignment 3
system error registration 3
time synchronization 3

measurement preprocessing techniques 72, 93–94
data compression techniques 89

monostatic radar 89–91
multistatic radar 91–93

error calibration techniques 88–89
space registration

coordinate transformation 80–88
coordinates 75–80
tracking system selection 87–88

time registration 72–73
interpolation/extrapolation using velocity 73–74
Lagrange interpolation algorithm 74
least-squares curve-fitting algorithm 74–75

measurement preprocessing technology 500

minimum mean square error (MMSE) parameter
estimation 20, 21, 24–25

static vectors 30–32
minimum variance estimator 25
mixed congruential random number generation

444–445
MK1 operational readiness and test system 485
MK1 weapon control system 485
MK99 missile fire control system 485
mobile ad hoc network (MANET) technology 506
mobile radar registration algorithm 380

cooperative targets 386–390
maximum likelihood registration algorithm (MLR)

390–393
maximum likelihood registration of mobile radar

algorithm (MLRM) 393–397
modeling method 380–386

model splice 481
modified EDF scheduling algorithm 354
modified logic-based track intiation method

102–103
modified-input estimation algorithm 174–176
monostatic radar networks 408

process of data processing 408–410
flowchart 409

state estimation 410
centralized structures 411–412
distributed structures 413

Monte Carlo simulations 443
motion equation of aircraft 449–451
moving target indication (MTI) 476
multiple hypothesis filter (MHT) 168
multiple hypothesis method 13
multiple hypothesis tracking (MHT) 471
multiple model algorithm 184–186

interacting multiple model algorithm (IMM)
186–189

multiple-input, mulitple-output (MIMO) system
420–421

multiple-radar data processing systems
(MRDPSs) 468

multiplicative congruential random number
generation 444

multistatic radar networks 420–421
generic data processing 422–423
observation equation 422
tracking principle 421–422

multi-target data association methods 118, 137, 455
0–1 integer programming algorithm

application 130
linear algorithm 128–129
logarithm likelihood ratio calculation 126–128
recursive algorithm 129–130

529Index



multi-target data association methods (cont’d)
generalized correlation algorithm 130
application 133–136
score function 130–133

joint maximum likelihood algorithm 123
feasible partitions 123–125
recursive algorithm 125–126

track-splitting algorithm 118–119
characteristics 122–123
likelihood function calculation 119–120
modified likelihood function 121–122
threshold setting 120–121

multi-target data association methods, Bayesian 138,
167–168

integrated PDA algorithm 152
data analysis 154
track existence 152–154

joint probabilistic data algorithm (JPDA) 154–155
basic model 155–160
joint event probability calculation 160–162
performance analysis 165–167
simplified model 164–165
state estimation covariance calculation

162–164
nearest-neighbour algorithm
nearest-neighbour standard filter (NNSF)

138–139
probabilistic nearest-neighbour filter (PNNF)

algorithm 139–140
probabilistic data association (PDA) algorithm 141
association probability 144–146
covariance update 142–144
start update 141–142

multi-target track management 275
information fusion system 273–274
track batch management 258–259
descriptive diagram 261–262
double-track batch characteristics 261–262
double-track solid figure description 262–265
single-track batch assignment method 259–260
track data storage 265–266

track quality management 266
initiation rule and track deletion 266–270
optimization under mono-radar circumstances

270–272
optimization under multiple site circumstances

272–273
multi-target track termination (MMTT) 255
multi-target track termination theory 275

algorithm performance analysis
parameter setting 256–257
simulation environment 256–257

simulation results and analysis 257–258
all-neighbor Bayesian algorithm 255–256
Bayesian algorithm 254–255
cost function method 253–254
sequential probability ratio test (SPRT) algorithm

250–252
tracking gate method 252

multi-target tracking 95–96, 117
gate shape and size 96

annular gate 96–97
elliptic/ellipsoidal gate 97–98
rectangular gate 99
sector gate 99–100

track initiation algorithm comparison and analysis
109–116

track initiation algorithms 100–101
formation target method 108–109
Hough transform and logic-based method

107–108
Hough transform-based method 103–106
logic-based method 101–102
modified logic-based method 102–103

track initiation issues 116
main indicators of performance 116
scan times 116–117

multi-target-in-clutter tracking algorithms
343–345

multi-tracking target principle 338
multi-tracking termination theory 501

nearest-neighbor algorithm
nearest-neighbor standard filter (NNSF) 138–139

performance 147–151
probabilistic nearest-neighbor filter (PNNF)

algorithm 139–140
network data processing 405–406, 426

bistatic radar networks
basic location relation 413–416
combined estimation 416–417
combined estimation, feasibility of 417–420

monostatic radar networks 408
process of data processing 408–410
state estimation 410–413

multistatic radar networks 420–421
generic data processing 422–423
observation equation 422
tracking principle 421–422

performance evaluation indexes 406
anti-jamming ability 407–408
coverage 406–407
target capacity 407

track association 423–426

530 Index



network error registration algorithm 362,
402–404

augmented state registration (ASR) algorithm
397–398

fixed radar registration algorithm 366–368
cooperative targets 366–368
generalized least squares (GLS) algorithm
371–373

generalized least squares (GLS) algorithm,
ECEF coordinates 373–377

least squares (LS) algorithm 370–371
real-time quality control (RTQC) algorithm
368–370

simulation analysis 377–380
mobile radar registration algorithm 380

cooperative targets 386–390
maximum likelihood registration algorithm
(MLR) 390–397

maximum likelihood registration of mobile
radar algorithm (MLRM) 393–397

modeling method 380–386
simulation analysis 398–402
systematic errors

composition 362–363
influence 363–366

noncooperative calibration 88
non-Gaussian noise 503
nonlinear filtering 53, 71

extended Kalman filter (EKF) 53
application examples 67–71
comparison between algorithms 70
filter model 54–58
principles 59
problems in application 58

particle filter (PF)
application examples 67–71
filtering model 65–67

unscented Kalman filter (UKF) 58–59
application examples 67–71
filtering model 60–61
principles 59
simulation analysis 61–65
unscented transformation (UT) 59–60

non-pre-emptive EDF (NPEDF) scheduling
algorithm 353–354

normal distribution random number generation
445–447

north east down (NED) coordinate system 78, 79
transformation to/from Earth rectangular

85–86
transformation to/from shipborne 84–85
transformations 86–87

observation equation with Doppler radial velocity
337–340

observation process simulation 452
direction cosine noise 452–453
range noise 452

one-step predicted covariance 42
optimal Bayesian filter (OBF) 168
optimal range–velocity mutual coupling tracking

309–312
outlier elimination 481
outlier rejection 3

parameter estimation 20, 33
basic techniques 23

least squares (LS) 26
maximum a priori (MAP) 23–24
maximum likelihood (ML) 24
minimum mean square error (MMSE) 24–25

concept 20–23
estimator properties

consistency 26–27
efficiency 27
unbiasedness 26
variance 26

static vectors 28
least squares (LS) 28–30
linear minimum mean square error

(LMMSE) 32–33
minimum mean square error (MMSE) 30–32

particle filter (PF)
algorithm 14
filtering model 65–67

application examples 67–71
passive calibration 88
passive radar data processing 276, 303

advantages 276–277
optimal deployment of direction-finding

location 289
conditional extremum derivation from Lagrange

multiplier method 292–297
position concentration ellipse area 289–291
position concentration ellipse area minimum

297–298
spatial data association 278

Doppler change rate and azimuth joint location
method 283–285

Doppler change rate, azimuth and elevation joint
location method 285–286

multiple-model method 286–289
phase changing rate method 278–283

time difference of arrival (TDOA) measurements
location model 299

531Index



passive radar data processing (cont’d)
three-dimensional condition 301–303
two-dimensional condition 299–301

phased array radar 495
data processing procedure
adaptive track update rate 495–496
measurements processing 495
track filter 495

functional features 495
test examples
adaptive tracking 497
multiple-function operation 496
split track tracking 497–498

phased array radar data processing 332, 361
algorithm performance analysis
comparison and discussion 360–361
simulation environment and parameter settings

355–356
simulation results and analysis 356–360

characteristics 333–334
data processing 336–337
adaptive sampling period algorithm 345–349
multi-target-in-clutter tracking algorithms

343–345
multi-tracking target principle 338
real-time task scheduling strategy 349–355
single-target-in-clutter tracking algorithms

337–343
major indexes 334
structure 334–335
working procedure 335–336
flowchart 336
track-and-scan (TAS) mode 336
track-while-scan (TWS) mode 336

phase-locked frequency tracker 307
Poisson parameter model 145–146
polar coordinate system 77

transformation to/from rectangular 83–84
position error 457
possible track 7
pre-emptive EDF scheduling algorithm 353
primary signal processing 1
probabilistic data association algorithm (PDA) 141

association probability 144–145
modified PDAF algorithm 146–147
nonparameter models 145–146
parameter models 145
performance analysis 147–151

covariance update 142–144
integrated PDA algorithm 152
data analysis 154
track existence 152–154

start update 141–142

probabilistic data association filter (PDAF) 141, 337
modified 146–147

performance 147–151
with Doppler radial velocity 341–343

probabilistic nearest-neighbor filter (PNNF)
algorithm 139–140

performance 147–151
probability density function (PDF) 13, 22
probability mass function (PMF) 145
pulse Doppler (PD) radar data processing 304, 331

algorithm performance analysis
simulation environment and parameter settings

321–322
simulation results and analysis 322–330

algorithms 307–309
multi-target tracking 312
optimal range–velocity mutual coupling

tracking 309–312
target tracking with Doppler measurements

312–320
characteristics 304–305
tracking systems 305

multi-target system 307
single-target range 306–307
single-target velocity 306

pulse repetition frequency (PRF) 305

radar antenna coordinate system 79
transformation to/from sight of target 86

radar control module clutter suppression 478–479
adaptive radar control with clutter maps 479
manual intervention 478
radar control with area control 479

radar controller 335
radar head processing delay 470
radar scheduler 335
random error 2
range noise 452
range tracking loop 308
ratio of errors 2
real-time quality control (RTQC) algorithm

368–370
real-time task scheduling strategy 349

adaptive scheduling strategy 352–355
influential factors 349–351
template scheduling strategy 351–352

real-time track creation 451–452
rectangular coordinate system 75–77

transformation to/from polar 83–84
rectangular gate 99

area/volume ratio 100
redundant track 8
relative registration 72

532 Index



research achievements
basis of state estimation 499
data processing applications 502
group tracking 500–501
maneuvering target tracking 500
measurement preprocessing technology 500
multi-target data association method 500
multi-tracking termination theory 501
performance evaluation 501
simulation technology 501
system error registration 501
track initiation in multi-target tracking 500
track management 501

research directions 505
advanced radar data processing algorithm

realization 506
automatic target tracking 507
common theoretical models 506–507
database and knowledge base technology 506
high-speed calculation and parallel processing

technology 506
multi-radar information fusion and integration

technology 505
multi-radar network system tracking and

invulnerability 507
multi-radar resource allocation 505
performance evaluation and test platforms 506
target tracking and identification optimization 505

response time 437
Riccati equation 310
right-hand space rectangular coordinate system 76
risk function 21
rotation coordinate transformation 81–83

saturation prevention 3–4
score function 130–133

applications 135–136
suboptimal correlated recursive equation 133–135

secondary signal processing 1–2
sector gate 99–100
segmentation of groups 205

circulation threshold value method 206
diagrammatical method 206–208
distance segmentation method 205–206

semi-object simulation technology 443
semi-physical simulation evaluationmethod 439–440
sequential probability ratio test (SPRT) algorithm

250–252
shipboard monitoring systems

application, components and requirements
482–483

marine control system structure 483–484
shipboard navigation radar 474–476

marine collision avoidance system 475
tracking algorithm 476

shipboard radar clutter suppression
method 477

correlation filter module 479
echo pretreatment module 477–478
manual intervention 479–480
radar control module 478–479

principle of clutter suppression 476–477
shipborne coordinate system 78–79

transformation to/from NED 84–85
sight of target coordinate system 80

transformation to/from antenna 87
signal processing relation diagram 2
signal processors 1
significance of radar data processing 1–2
simulation technology 501

basic concept 442
classification of system simulation 442–443
Monte Carlo simulations 443

stochastic noise simulation 444
normal distribution random number generation

445–447
uniformly random number generation
444–445

Singer model tracking algorithm 176–180, 347
comparison with other algorithms 192–198

single overlap coefficient 408
single-target-in-clutter tracking algorithms 337

IMM–PDAF algorithm 340–341
observation equation with Doppler radial velocity

337–340
PDAF algorithm with Doppler radial velocity

341–343
sliding window 102
space alignment 3
space polar coordinate system 77

transformation to/from rectangular 83–84
space registration

coordinate transformation 80
antenna to/from sight of target 86
NED systems 86–87
NED to/from Earth rectangular 85–86
NED to/from shipborne 84–85
rectangular to/from polar 83–84
rotation transformation 81–83
translation transformation 80–81

coordinates 75
carrier coordinate system 78–79
Descartes rectangular coordinate system 75–77
Earth coordinate system 77–78
north east down (NED) coordinate system 78, 79
radar antenna coordinate system 79

533Index



space registration (cont’d)
sight of target coordinate system 80
space polar coordinate system 77

tracking system selection 87–88
space–time adaptive processing (STAP) 488
speed of algorithm 462
splice of model 481
squared error cost function 21
state estimation

basis 499
centralized structures 411–412
distributed structures 413

state variable method 6
static vector parameter estimation 28

least squares (LS) 28–30
linear minimum mean square error

(LMMSE) 32–33
minimum mean square error (MMSE) 30–32

statistical evaluation of errors 456–457
stereographic projection 369
stochastic noise digital simulation 444

normal distribution random number generation
445–447

uniformly random number generation 444–445
strongest-neighbour filter (SNF) 139
system error 2
system error registration 3, 501
system simulation technology 442
system track 2
systematic errors

composition 362–363
influence 363–366

target capacity performance indexes 407
target motion model simulation

motion equation of aircraft 449–451
real-time track creation 451–452

target tracking with Doppler measurements 312
Doppler measurement unscented Kalman filtering

(DUKF) algorithm 319–320
unbiased sequential extended Kalman filtering

(USEKF) algorithm 312–317
unbiased sequential unscented Kalman filtering

(USUKF) algorithm 318–319
unscented Kalman filtering (UKF) algorithm for

moving targets 320
technical indexes of data processors 10

false targets 10
immediacy 10
tracking accuracy 10
tracking capacity 10
true target loss 10

template scheduling strategy 351–352
tentative track 7
tertiary signal processing 1–2
time difference of arrival (TDOA) technique

location model 299
three-dimensional condition 301–303
two-dimensional condition 299–301

time registration 72–73, 470, 493
interpolation/extrapolation using velocity

73–74
Lagrange interpolation algorithm 74
least-squares curve-fitting algorithm

74–75
time synchronization 3, 72
track accuracy 433–434
track ambiguity 431–432
track-and-scan (TAS) mode 336
track association 423–426, 471–472
track batch management 258–259

descriptive diagram 261–262
double-track batch characteristics 261–262
double-track solid figure description

262–265
single-track batch assignment method 259–260
track data storage 265–266

track cancellation 472
start update 136

track capacity 436
track confirmation 135–136
track IDs 9
track initiation 5, 95–96, 117, 136

algorithm comparison and analysis 109–116
algorithms 100–101

formation target method 108–109
Hough transform and logic-based method

107–108
Hough transform-based method 103–106
logic-based method 101–102
modified logic-based method 102–103

gate shape and size 96
annular gate 96–97
elliptic/ellipsoidal gate 97–98
rectangular gate 99
sector gate 99–100

group targets 204
group definition 204–205
group segmentation 205–208

issues 116
main indicators of performance 116
scan times 116–117

multi-target tracking 500
simulation 455–456

534 Index



track interruption 8
accumulative number 430–431

track life 8–9
false track life 8
true track life 9

track maintenance 136
track management simulation

initiation and termination 455–456
statistical evaluation of errors 456–457

track pre-estimation 473
track quality 116
track quality management 266

initiation rule and track deletion 266–270
optimization under mono-radar circumstances

270–272
optimization under multiple site circumstances

272–273
track reaction time 116
track switch 8
track termination 5

simulation 455–456
tracking 5–6
tracking accuracy 10
tracking algorithms 6, 9–10
tracking batches 11
tracking capacity 10
tracking filter accuracy 11
tracking filtering algorithms 6
tracking filtering simulation

filtering and prediction algorithm 453–455
multi-target data association methods 455

tracking gate method 252
tracking maneuvering targets 169–170, 201–202

adaptive tracking algorithm
current statistical model algorithm 180–182
interacting multiple model algorithm (IMM)
186–189

jerk model tracking algorithm 182–184
modified-input estimation algorithm 174–176
multiple model algorithm 184–186
Singer model tracking algorithm 176–180

maneuver detection 170–171
schematic diagram 170
variable-dimension filtering 172–174
white noise model with adjustable level
171–172

performance of tracking algorithms 189
parameter setting 189–191
simulation environment 189–191
simulation results and analysis 191–201

tracking performance evaluation 432–433
divergence 435–436

false track ratio 434–435
maneuvering target tracking ability 434
track accuracy 433–434

track-splitting algorithm 118–119
characteristics 122–123
likelihood function calculation 119–120
modified likelihood function 121–122
threshold setting 120–121

track-while-scan (TWS) mode 336
tracking system selection 87–88
tracking target groups 203–204, 246–247

algorithm performance analysis
simulation analysis 240–246
simulation environment 240
simulation results 241–245

centroid group tracking (CGT) 233–234
initiation, confirmation and cancellation 234
other features 237
track updating 234–237

formation group tracking (FGT)
logic description 238–240
overview 238

gray fine track initiation algorithm 214–215,
231–233

analysis of algorithm 222–231
relative position vector of measurement

215–220
simulation verification 221–222
state matrix establishment 221
track confirmation 220–221

track initiation 204
group correlation 208–209
group definition 204–205
group segmentation 205–208
group velocity estimation 209–214

tracking wave gate 4
tracks 7–9

concepts
cancelled track 8
confirmed track 7
fixed track 7–8
possible track 7
redundant track 8
tentative track 7
track interruption 8
track life 8–9
track switch 8

transformation method for normally distributed
random number generation 446

translation coordinate transformation 80–81
true target loss 10
true track life 9, 269–270

535Index



unbiased converted measurements Kalman filter
(UCMKF) 61

unbiased sequential extended Kalman filtering
(USEKF) algorithm 312–317

unbiased sequential unscented Kalman filtering
(USUKF) algorithm 318–319

uniform cost function 21, 22
uniformly random number generation 444–445
unscented Kalman filter (UKF) 58–59

algorithm 13
algorithm for moving targets 320
application examples 67–71
filtering model 60–61
principles 59
simulation analysis 61–65
unscented transformation (UT) 59–60

unscented transformation (UT) 59–60

validation gate 4
variable-dimension filtering (VDF) 169,

172–174
comparison with other algorithms 192–198

variable-weighted average measurement
preprocessing 90–91

velocity error 457
velocity estimation for groups 209

association and distinction algorithm 210–211
center extrapolation algorithm 211–214
direct estimation algorithm 209

voice recording and processing 469
voltage-controlled oscillator (VCO) 306

wave gate 2, 4–5
Wiener, N. 12
Wiener filter 12

536 Index


